CN115504781A - 一种宽温稳定型陶瓷介电材料及其制备方法和应用 - Google Patents

一种宽温稳定型陶瓷介电材料及其制备方法和应用 Download PDF

Info

Publication number
CN115504781A
CN115504781A CN202211019896.9A CN202211019896A CN115504781A CN 115504781 A CN115504781 A CN 115504781A CN 202211019896 A CN202211019896 A CN 202211019896A CN 115504781 A CN115504781 A CN 115504781A
Authority
CN
China
Prior art keywords
dielectric material
ceramic dielectric
temperature stable
stable ceramic
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211019896.9A
Other languages
English (en)
Inventor
张蕾
李智超
黄雄
王朋飞
栾赛伟
于淑会
孙蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Electronic Materials
Original Assignee
Shenzhen Institute of Advanced Electronic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Electronic Materials filed Critical Shenzhen Institute of Advanced Electronic Materials
Priority to CN202211019896.9A priority Critical patent/CN115504781A/zh
Publication of CN115504781A publication Critical patent/CN115504781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Abstract

本发明一种宽温稳定型陶瓷介电材料及其制备方法和应用,属于介电材料技术领域。本发明宽温稳定型陶瓷介电材料包括以下摩尔百分比组分:钛酸钡91‑95%,烧结助剂3.5‑8%,稀土元素氧化物0.4‑0.8%,抗氧化剂0.7‑1.2%。钛酸钡的粒径为240‑280nm。烧结助剂包括CaO、MgO、SiO2,稀土元素氧化物包括Ho2O3、Y2O3,抗氧化剂包括MnO2。本发明制备得到的陶瓷介电材料具有高介电常数、宽温稳定性和优异的抗老化特性,满足X7S标准的陶瓷介电材料。同时本发明提供的高容量陶瓷介电材料的制备方法简单,不含有毒有害物质,制备得到的陶瓷电容器致密度高、晶粒小、缺陷少,适合实际生产应用。

Description

一种宽温稳定型陶瓷介电材料及其制备方法和应用
技术领域
本发明属于介电材料技术领域,尤其涉及一种宽温稳定型陶瓷介电材料及其制备方法和应用。
背景技术
多层陶瓷电容器广泛用于手机、电脑、汽车电子工业控制设备等,对电子信息产业有着十分重要的意义,因此被誉为“电子工业的大米”。由于这些电子设备有时需要在不同的环境使用,因此我们需要开发在使用范围内具有相对稳定的介电常数值。这也是各大厂商的一个重要的发展方向。
钛酸钡基陶瓷由于其较高的介电常数和环境友好性作为目前常用的MLCC介质材料,但纯钛酸钡在相变温度附近,介电常数会出现剧烈变化,尤其是居里温度附近发生的四方结构铁电相到立方结构顺电相的转变,产生的介电峰最尖锐。因此需要通过掺杂改性的方法使其满足各类电子元器件温度稳定性的要求,同时又保持较高的介电常数。根据EIA标准X7S表示以25℃的介电常数为基准,电容器在-55-125℃的最大变化率不超过22%。
开发高容量的MLCC,即在一定体积内提升电容量,需要合成小粒径且高介电常数的介电陶瓷材料陶瓷、减小电介质层厚度、增加MLCC内部的叠层数;电介质层更薄,其耐击穿性会发生大幅度的下降。并且层厚均匀度难以控制,也将导致耐电压或可靠性下降的问题;为了兼顾高介电常数和高击穿强度,同时提升介电材料的介电常数和电阻率,因此需要精细控制掺杂元素的使用种类和添加量。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于设计提供一种满足X7S要求的高容量的宽温稳定型陶瓷介电材料及其制备方法和应用。本发明提供的高容量陶瓷介电材料以钛酸钡为主体材料,以Y、Ho和Mn的氧化物形式进行掺杂,并且添加CaO、SiO2和MgO作为烧结助剂,制备得到的陶瓷介电材料具有高介电常数、宽温稳定性和优异的抗老化特性。
为了实现上述目的,本发明采取以下技术方案:
一方面,本发明提供了一种宽温稳定型陶瓷介电材料,所述宽温稳定型陶瓷介电材料包括以下摩尔百分比组分:钛酸钡91-95%,烧结助剂3.5-8%,稀土元素氧化物0.4-0.8%,抗氧化剂0.7-1.2%。
所述的一种宽温稳定型陶瓷介电材料,所述钛酸钡的粒径为240-280nm。当钛酸钡的粒径在上述范围内时,能够保证后续制备得到陶瓷晶粒在240-280nm之间,有利于厂商使用该瓷料生产更多堆叠层数的MLCC,可以更好地满足小型化的要求。
所述的一种宽温稳定型陶瓷介电材料,所述烧结助剂包括CaO、MgO、SiO2,所述稀土元素氧化物包括Ho2O3、Y2O3,所述抗氧化剂包括MnO2
其中,烧结助剂的作用是可以在烧结过程中一液体的形式包裹钛酸钡颗粒和其他掺杂剂,通过毛细孔引力的作用,使固相颗粒发生滑移、重排而趋于最紧密排列使两颗粒被相互拉紧,促进陶瓷材料的致密化且可以避免晶粒过度长大,当选用的烧结助剂CaO、MgO、SiO2在上述范围内时一方面能够避免烧结助剂加量过少导致的晶体粒度过大,而导致后期制备陶瓷电容器时的晶粒过大,使得介电层厚度增加,降低电容量和电阻率,另一方面,也能避免烧结助剂加量过多导致后期制备得到的介电陶瓷的电容温度变化率特性变差。
稀土元素掺杂有利于调控“芯-壳”结构的形成可以使材料具有较好的温度稳定影,且Dy、Ho、Er、Y等中等离子稀土元素可以同时进入钙钛矿结构的A位、B位,并显著提高材料的可靠性。这些中等半径的稀土元素进入Ba位的时候起到施主的作用,进入Ti位的时候起到受主作用,根据A/B比不同,两性稀土元素进入A位和B位的数量不同并且可以自主协调。如果以Re代表某种两性稀土元素,那么施主掺杂产生的Re· Ba和受主掺杂产生的Re′Ti相互吸引,会产生缔和缺陷[Re· Ba·Re′Ti],这类缺陷在电场作用下移动性很差,会阻碍氧空位迁移的障碍,提高材料的抗老化性能。
抗还原剂MnO2中的Mn元素可以取代钛酸钡中的Ti位,从而抑制氧空位的产生提高材料的抗老化性能。
所述的一种宽温稳定型陶瓷介电材料,所述宽温稳定型陶瓷介电材料包括以下摩尔百分比组分:钛酸钡91-95%,CaO0.5-1%,MgO2-5%,SiO21-2%,Ho2O30.2-0.3%,Y2O30.2-0.5%,MnO20.7-1.2%。
所述的一种宽温稳定型陶瓷介电材料,所述宽温稳定型陶瓷介电材料的介电常数为2000-2500。
另一方面,本发明提供了所述的一种宽温稳定型陶瓷介电材料的制备方法,其特征在于包括以下步骤:
(1)按照摩尔百分比称取钛酸钡、烧结助剂、稀土元素氧化物、抗氧化剂作为原料,置于滚磨瓶中进行湿磨后干燥,得到瓷粉;
(2)向步骤(1)得到的瓷粉中添加粘结剂,研磨后压制成生坯,再进行烧结,得到宽温稳定型陶瓷介电材料。
所述的制备方法,所述步骤(1)中滚磨瓶包括聚四氟乙烯滚磨瓶。
所述的制备方法,所述步骤(1)中湿磨的具体过程为:在滚磨瓶中以等质量0.5-2mm氧化锆球中的至少一种为球磨介质,加入水,以水:原料:氧化锆球的质量比为1:1:2混合,放置于滚磨机上以410-480rpm的转速湿磨20-24h。这样的混料工艺有利于使原料混合均匀充分接触,也可以保证原料的性质在混料过程中保持稳定。
所述的制备方法,所述步骤(2)中烧结的条件为:在空气气氛中进行,烧结温度1200-1230℃。当制备的过程中的烧结温度在上述范围内时,能够很好控制晶粒的粒度和产品的致密度,若烧结温度过低,不利于烧结助剂的熔融从而无法形成液相结构,若烧结的温度过高,则会使得晶粒的粒度过分增大,不利于得到性质优异的产品。
第三方面,本发明提供了任一项所述的宽温稳定型陶瓷介电材料在制作多层陶瓷电容器中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明提供的混料与烧结工艺有利于在保证致密度的情况下得到晶粒小且满足X7S温度稳定性的要求。本发明高容量陶瓷介电材料的制备方法简单、操作简便,也不含有毒有害物质,制备得到的陶瓷电容器致密度高、晶粒小、缺陷少,适合实际生产应用。
附图说明
图1为实施例1得到的陶瓷介电材料1的SEM图片;
图2为实施例1得到的陶瓷介电材料1的粒径统计图;
图3为实施例2得到的陶瓷介电材料2的SEM图片;
图4为实施例2得到的陶瓷介电材料2的粒径统计图;
图5为实施例1、2得到的陶瓷介电材料的介电常数与温度关系图;
图6为实施例1、2的得到的陶瓷介电材料的容温变化率图;
图7为实施例3得到的陶瓷介电材料2的SEM图片;
图8为实施例3得到的陶瓷介电材料2的粒径统计图;
图9为实施例1、3得到的陶瓷介电材料的介电常数与温度关系图;
图10为实施例1、3的得到的陶瓷介电材料的容温变化率图;
图11为实施例4得到的陶瓷介电材料2的SEM图片;
图12为实施例4得到的陶瓷介电材料2的粒径统计图;
图13为实施例1、4得到的陶瓷介电材料的介电常数与温度关系图;
图14为实施例1、4的得到的陶瓷介电材料的容温变化率图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和实施例对本发明作进一步说明。
实施例1:
本实施例1的一种陶瓷介电材料,其原料按摩尔百分数包括以下组分BaTiO3占比为92.78%,MgO 3.70%,SiO2 1.39%,CaO 0.74%,Ho2O3 0.23%,Y2O3 0.42%,MnO20.74%。其中,BaTiO3的粒径为250nm。
具体制备方法如下:
(1)瓷粉的制备:按照上述摩尔百分数称取各组分混合,置于滚磨瓶中,以等质量0.5mm和2mm氧化锆球为球磨介质,球料质量比为水:料:锆球为1:1:2,将滚磨瓶放在滚磨机上以480rpm的转速湿法球磨24h,球磨结束后干燥,得到瓷粉;
(2)生坯的制备:取适量步骤(1)中的瓷粉,加入相当于瓷粉质量15%的浓度为8%ωt的PVA水溶液,并将其混合均匀,随后将其压制成生坯。
(3)陶瓷材料的制备:将生坯在空气气氛1230℃下烧结2h,随后降至室温,即可得到所述的介电陶瓷材料1。
对制备得到的介电陶瓷材料1进行实验测试,结果如图1为陶瓷介电材料1的SEM图片;图2为陶瓷介电材料1的粒径统计图。从图1、图2可以看出实例1的陶瓷的平均晶粒尺寸均在250nm左右,适应MLCC小型化的发展方向。
实施例2:
本实施例2中的介电陶瓷材料所使用的原料及比例与实施例1中的相同。
具体制备方法如下:
(1)瓷粉的制备:按照上述摩尔百分数称取各组分混合,以氧化锆球为球磨介质,置于行星式球磨机中以等质量0.5mm和2mm氧化锆球为球磨介质,球料质量比为水:料:锆球为1:1:2,以480rpm的转速湿法球磨24h,球磨结束后干燥,得到瓷粉;
生坯的制备与陶瓷材料的制备方法与实施例1一样,得到介电陶瓷材料2。
对制备得到的介电陶瓷材料2进行实验检测,结果如图3为陶瓷介电材料2的SEM图片;图4为陶瓷介电材料2的粒径统计图。从图1、图2可以看出实例1的陶瓷的平均晶粒尺寸均在250nm左右。
由图2和4可知,陶瓷介电材料1和陶瓷介电材料2的粒径接近。
进一步对实施例1和2得到的陶瓷介电材料进行介电常数和容温变化率检测。得到的对比结果分别如图5和6,图5陶瓷介电材料1和陶瓷介电材料2在不同温度下的介电常数,图6为两者的容温变化率图,图中的虚线框为X7S型电容器的容温变化率标准框容温变化率的计算公式为:
Figure BDA0003813729990000051
Ct——样品在t时刻的电容值;
C25℃——样品在25℃时的电容值。
从图6可知,实施例2中的介电陶瓷材料介电常数随温度变化较大不能满足X7S型多层陶瓷电容器对温度稳定性的要求。因此本方法提供的制备工艺可以在保持较高的介电常数的前提下有效地提高BT基陶瓷的温度稳定性。
实施例3:
本实施例3的一种陶瓷介电材料,其原料按摩尔百分数包括以下组分BaTiO3占比为92.41%,MgO 3.70%,SiO2 1.39%,CaO 1.11%,Ho2O3 0.23%,Y2O3 0.42%,MnO20.74%。其中,BaTiO3的粒径为250nm。其制备方法与实施例1相同,得到陶瓷介电材料3。
对制备得到的介电陶瓷材料3进行实验测试,结果如图7为陶瓷介电材料3的SEM图片;图8为陶瓷介电材料3的粒径统计图。
进一步对实施例1和3得到的陶瓷介电材料进行介电常数和容温变化率检测。得到的对比结果分别如图9和10,图9所示陶瓷介电材料1和陶瓷介电材料3在不同温度下的介电常数,可看出实施例1的陶瓷相对实施例2有更高的介电常数。
实施例4:
本实施例4的一种陶瓷介电材料,其原料按摩尔百分数包括以下组分BaTiO3占比为92.64%,MgO 3.70%,SiO2 1.39%,CaO 0.74%,Ho2O3 0.37%,Y2O3 0.42%,MnO20.74%。其中,BaTiO3的粒径为250nm。其制备方法与实施例1相同,得到陶瓷介电材料4。
对制备得到的介电陶瓷材料4进行实验测试,结果如图11为陶瓷介电材料4的SEM图片;图12为陶瓷介电材料4的粒径统计图。
进一步对实施例1和4得到的陶瓷介电材料进行介电常数和容温变化率检测。得到的对比结果分别如图13和14,可以看出陶瓷样品4的晶粒尺寸较大,不能满足MLCC小型化的需求。
实施例5:
(1)瓷粉的制备:按照摩尔百分数称取钛酸钡91%,CaO1%,MgO5%,SiO21.3%,Ho2O30.3%,Y2O30.2%,MnO21.2%各组分混合,置于滚磨瓶中,以等质量0.5mm和1mm氧化锆球为球磨介质,球料质量比为水:料:锆球为1:1:2,将滚磨瓶放在滚磨机上以410rpm的转速湿法球磨20h,球磨结束后干燥,得到瓷粉;
(2)生坯的制备:取适量步骤(1)中的瓷粉,加入相当于瓷粉质量15%的浓度为8%ωt的PVA水溶液,并将其混合均匀,随后将其压制成生坯。
(3)陶瓷材料的制备:将生坯在空气气氛1200℃下烧结2h,随后降至室温,即可得到所述的介电陶瓷材料5。
实施例6:
(1)瓷粉的制备:按照摩尔百分数称取钛酸钡93.8%,CaO0.5%,MgO2%,SiO21.9%,Ho2O30.2%,Y2O30.5%,MnO20.9%各组分混合,置于滚磨瓶中,以等质量1mm和2mm氧化锆球为球磨介质,球料质量比为水:料:锆球为1:1:2,将滚磨瓶放在滚磨机上以450rpm的转速湿法球磨22h,球磨结束后干燥,得到瓷粉;
(2)生坯的制备:取适量步骤(1)中的瓷粉,加入相当于瓷粉质量15%的浓度为8%ωt的PVA水溶液,并将其混合均匀,随后将其压制成生坯。
(3)陶瓷材料的制备:将生坯在空气气氛1230℃下烧结2h,随后降至室温,即可得到所述的介电陶瓷材料6。

Claims (10)

1.一种宽温稳定型陶瓷介电材料,其特征在于所述宽温稳定型陶瓷介电材料包括以下摩尔百分比组分:钛酸钡91-95%,烧结助剂3.5-8%,稀土元素氧化物0.4-0.8%,抗氧化剂0.7-1.2%。
2.如权利要求1所述的一种宽温稳定型陶瓷介电材料,其特征在于所述钛酸钡的粒径为240-280nm。
3.如权利要求1所述的一种宽温稳定型陶瓷介电材料,其特征在于所述烧结助剂包括CaO、MgO、SiO2,所述稀土元素氧化物包括Ho2O3、Y2O3,所述抗氧化剂包括MnO2
4.如权利要求3所述的一种宽温稳定型陶瓷介电材料,其特征在于所述宽温稳定型陶瓷介电材料包括以下摩尔百分比组分:钛酸钡91-95%,CaO0.5-1%,MgO2-5%,SiO21-2%,Ho2O30.2-0.3%,Y2O30.2-0.5%,MnO20.7-1.2%。
5.如权利要求1所述的一种宽温稳定型陶瓷介电材料,其特征在于所述宽温稳定型陶瓷介电材料的介电常数为2000-2500。
6.如权利要求1-5任一项所述的一种宽温稳定型陶瓷介电材料的制备方法,其特征在于包括以下步骤:
(1)按照摩尔百分比称取钛酸钡、烧结助剂、稀土元素氧化物、抗氧化剂作为原料,置于滚磨瓶中进行湿磨后干燥,得到瓷粉;
(2)向步骤(1)得到的瓷粉中添加粘结剂,研磨后压制成生坯,再进行烧结,得到宽温稳定型陶瓷介电材料。
7.如权利要求6所述的制备方法,其特征在于所述步骤(1)中滚磨瓶包括聚四氟乙烯滚磨瓶。
8.如权利要求6所述的制备方法,其特征在于所述步骤(1)中湿磨的具体过程为:在滚磨瓶中以等质量0.5-2mm氧化锆球中的至少一种为球磨介质,加入水,以水:原料:氧化锆球的质量比为1:1:2混合,放置于滚磨机上以410-480rpm的转速湿磨20-24h。
9.如权利要求6所述的制备方法,其特征在于所述步骤(2)中烧结的条件为:在空气气氛中进行,烧结温度1200-1230℃。
10.如权利要求1-5任一项所述的宽温稳定型陶瓷介电材料在制作多层陶瓷电容器中的应用。
CN202211019896.9A 2022-08-24 2022-08-24 一种宽温稳定型陶瓷介电材料及其制备方法和应用 Pending CN115504781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211019896.9A CN115504781A (zh) 2022-08-24 2022-08-24 一种宽温稳定型陶瓷介电材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211019896.9A CN115504781A (zh) 2022-08-24 2022-08-24 一种宽温稳定型陶瓷介电材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115504781A true CN115504781A (zh) 2022-12-23

Family

ID=84502429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211019896.9A Pending CN115504781A (zh) 2022-08-24 2022-08-24 一种宽温稳定型陶瓷介电材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115504781A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332131A (zh) * 2000-07-05 2002-01-23 三星电机株式会社 介电陶瓷组合物、利用该组合物的陶瓷电容器及其制造方法
CN1404080A (zh) * 2002-10-14 2003-03-19 清华大学 温度稳定型的贱金属内电极多层陶瓷电容器介电材料
CN1461023A (zh) * 2003-06-27 2003-12-10 清华大学 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺
CN1619727A (zh) * 2003-11-19 2005-05-25 Tdk株式会社 电子零件、介电陶瓷组合物及其生产方法
JP2007169090A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 誘電体磁器組成物、およびそれを用いた積層セラミックコンデンサ
CN101182201A (zh) * 2007-11-27 2008-05-21 清华大学 纳米掺杂制备贱金属内电极多层陶瓷片式电容器介质材料
US20110085280A1 (en) * 2009-10-09 2011-04-14 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated capacitor
CN103553591A (zh) * 2013-10-11 2014-02-05 山东国瓷功能材料股份有限公司 一种高温高绝缘性能多层陶瓷电容器用电介质陶瓷材料
CN107840654A (zh) * 2017-10-13 2018-03-27 山东国瓷功能材料股份有限公司 一种用于陶瓷电容器的介质材料及其制备方法
CN110818407A (zh) * 2019-11-05 2020-02-21 广东风华高新科技股份有限公司 一种x7r特性mlcc介质材料及其制备方法
CN114538917A (zh) * 2022-01-29 2022-05-27 广东风华高新科技股份有限公司 一种高容量陶瓷介电材料、陶瓷电容器及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332131A (zh) * 2000-07-05 2002-01-23 三星电机株式会社 介电陶瓷组合物、利用该组合物的陶瓷电容器及其制造方法
CN1404080A (zh) * 2002-10-14 2003-03-19 清华大学 温度稳定型的贱金属内电极多层陶瓷电容器介电材料
CN1461023A (zh) * 2003-06-27 2003-12-10 清华大学 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺
CN1619727A (zh) * 2003-11-19 2005-05-25 Tdk株式会社 电子零件、介电陶瓷组合物及其生产方法
JP2007169090A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 誘電体磁器組成物、およびそれを用いた積層セラミックコンデンサ
CN101182201A (zh) * 2007-11-27 2008-05-21 清华大学 纳米掺杂制备贱金属内电极多层陶瓷片式电容器介质材料
US20110085280A1 (en) * 2009-10-09 2011-04-14 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated capacitor
CN103553591A (zh) * 2013-10-11 2014-02-05 山东国瓷功能材料股份有限公司 一种高温高绝缘性能多层陶瓷电容器用电介质陶瓷材料
CN107840654A (zh) * 2017-10-13 2018-03-27 山东国瓷功能材料股份有限公司 一种用于陶瓷电容器的介质材料及其制备方法
CN110818407A (zh) * 2019-11-05 2020-02-21 广东风华高新科技股份有限公司 一种x7r特性mlcc介质材料及其制备方法
CN114538917A (zh) * 2022-01-29 2022-05-27 广东风华高新科技股份有限公司 一种高容量陶瓷介电材料、陶瓷电容器及其制备方法

Similar Documents

Publication Publication Date Title
Liou et al. Dielectric characteristics of doped Ba1− xSrxTiO3 at the paraelectric state
KR20060059191A (ko) 적층 세라믹 콘덴서 및 그 제조방법
CN110828170B (zh) 多层陶瓷电容器
CN114014649B (zh) 共掺杂钛酸钡陶瓷介电材料、制备方法及其应用
KR20100133905A (ko) 유전물질용 소결체 및 이의 제조 방법
CN111763084A (zh) 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用
CN115180942B (zh) 电介质材料及其制备方法与应用
CN113880569A (zh) 一种多层片式陶瓷电容器的介质材料及其制备方法
CN111792930A (zh) 一种获得宽温域高介电常数的三弛豫态铁电陶瓷的方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
CN114349496A (zh) 电介质材料及其制备方法与应用
CN114566382A (zh) 一种陶瓷介质材料及其制备方法和应用
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
JP4519342B2 (ja) 誘電体磁器および積層型電子部品
CN114956806A (zh) 共掺杂钛酸钡陶瓷介电材料、制备及其应用
JP2003531809A (ja) 置換型チタン酸バリウムおよびチタン酸バリウムストロンチウム強誘電性組成物
US20230033065A1 (en) Ceramic dielectrics with high permittivity and low dielectric loss and preparation method therefor
Liu et al. Improving energy storage performance and high-temperature stability in Bi0. 5Na0. 5TiO3-based lead-free dielectric ceramics by ZrO2 doping
CN115504781A (zh) 一种宽温稳定型陶瓷介电材料及其制备方法和应用
CN1635592A (zh) 高介电、抗还原陶瓷材料及其制备的陶瓷电容器
JP6368751B2 (ja) 銀置換ニオブ酸ストロンチウム誘電体組成物及びその製造方法
CN115116745A (zh) 一种高有效容量多层陶瓷电容器介质材料及其制备方法
US20210300827A1 (en) Doped perovskite barium stannate material with preparation method and application thereof
CN114823137A (zh) 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用
JP2020152630A (ja) 低い誘電損失を有する誘電体の製造方法及びそれによって製造される誘電体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination