CN114823137A - 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用 - Google Patents

一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用 Download PDF

Info

Publication number
CN114823137A
CN114823137A CN202210326627.0A CN202210326627A CN114823137A CN 114823137 A CN114823137 A CN 114823137A CN 202210326627 A CN202210326627 A CN 202210326627A CN 114823137 A CN114823137 A CN 114823137A
Authority
CN
China
Prior art keywords
barium titanate
alkali metal
ceramic dielectric
dielectric material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210326627.0A
Other languages
English (en)
Inventor
张蕾
王宇阳
黄雄
于淑会
孙蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Electronic Materials
Original Assignee
Shenzhen Institute of Advanced Electronic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Electronic Materials filed Critical Shenzhen Institute of Advanced Electronic Materials
Priority to CN202210326627.0A priority Critical patent/CN114823137A/zh
Publication of CN114823137A publication Critical patent/CN114823137A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用,属于陶瓷介质技术领域。本发明共掺杂钛酸钡陶瓷介电材料包括92~99.6mol%的主体材料和0.4~8mol%的掺杂材料;主体材料包括BaTiO3,掺杂材料包括玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物。BaTiO3的颗粒尺寸为270~310nm。本发明提供的共掺杂钛酸钡陶瓷介电材料及电容器制备过程简单,不含有毒物质,与镍等贱金属内电极匹配良好,介电常数大,绝缘电阻率高,损耗小,击穿场强大,TCC符合温度稳定性要求,具有广阔的应用前景。

Description

一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用
技术领域
本发明属于陶瓷介质技术领域,具体涉及一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用。
背景技术
随着市场对高容、高压和高可靠性储能器件需求量的不断增加,多层陶瓷电容器(MLCC)应运而生。相比于同类产品,MLCC具有极低的等效串联电阻和极优的高温稳定性。得益于此,MLCC被广泛应用于个人通讯、电动汽车、5G基站、清洁能源和智能电网等使用场景。
钛酸钡(BaTiO3)是MLCC中Ⅱ类电容器的基体材料,具有较高的电容和介电常数。近年来,集成电路的小型化使得MLCC逐渐向体积小、容量大的方向发展。这对钛酸钡基陶瓷材料的各种性能提出了更高要求。式(1)为MLCC的电容计算方法,其中C为电容,N为介质层数,ε0为真空介电常数,εr为材料介电常数,S为电极面积,d为介质层厚。
Figure BDA0003573746960000011
由于特殊应用场景的限制,MLCC的尺寸通常较为固定,一般无法通过改变单层内电极的面积来增大电容,因而若想提高钛酸钡基MLCC的电容,可以通过以下几个方面来实现:一、增大钛酸钡基陶瓷材料的介电常数,如改变掺杂体系和增大晶粒尺寸来实现;二、增加介质层的叠层数N,即等同于减小介质层厚度d。
受限于MLCC尺寸的限制,每一层介质层需要五颗晶粒及以上的厚度来保证基体材料性能的相对稳定。因此,在超薄层MLCC器件的制作过程中,增大晶粒尺寸和减小介质层厚度相悖。因而掺杂剂的选取显得尤为重要。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于设计提供一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用。本发明选择稀土元素的氧化物做掺杂剂,对钛酸钡进行改性,并添加玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物为掺杂材料细化颗粒,制备具有稳定电容特性,高可靠性,高介电常数,高绝缘电阻率,低损耗,高击穿场强且更易叠层的细晶陶瓷。
为了实现上述目的,本发明采用以下技术方案:
一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述掺杂钛酸钡陶瓷介电材料包括92~99.6mol%的主体材料和0.4~8mol%的掺杂材料;
所述主体材料包括BaTiO3,所述掺杂材料包括玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物。
所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述BaTiO3的颗粒尺寸为270~310nm,所述0.4~8mol%的掺杂材料中包括玻璃相材料0.1~2mol%,抗还原剂0.1~2mol%,碱金属化合物0.1~2mol%,稀土氧化物0.1~2mol%。
所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述BaTiO3的介电常数为2273~4273。
所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述玻璃相材料包括玻璃相SiO2、Al2O3、BaSiO3和ZnO中的一种或几种的组合物,所述抗还原剂包括V2O5、MnO2和Cr2O3中的一种或几种的组合物,所述稀土氧化物包括Eu2O3、Dy2O3、Ho2O3、Yb2O3、Er2O3和Tm2O3中的一种或几种的组合物,优选稀土氧化物为Dy2O3和Ho2O3的组合物,所述碱金属化合物包括碱金属的氧化物、碱金属的氢氧化物和碱金属的盐类物质中的一种或几种的组合物;碱金属化合物可以为MgCO3、Mg(OH)2、MgO、MgCl2和Mg(NO3)2等。
优选碱金属的盐类物质包括碱金属的卤化物、碱金属的硝酸盐和碱金属的碳酸盐,优选碱金属化合物中碱金属为Mg。
任一所述的共掺杂钛酸钡陶瓷介电材料的制备方法,其特征在于包括以下步骤:称取92~99.6mol%BaTiO3和0.4~8mol%掺杂材料进行湿法球磨,干燥后即得到共掺杂钛酸钡陶瓷介电材料;
所述掺杂材料包括玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物。
一种多层陶瓷电容器,其特征在于所述多层陶瓷电容器的制备材料包括任一所述的共掺杂钛酸钡陶瓷介电材料。
所述的一种多层陶瓷电容器,其特征在于所述多层陶瓷电容器的损耗为2.51%~3.42%,所述多层陶瓷电容器在25℃时,介电常数为2273~4273,电阻率为2.69~10.9GΩ·m。
所述的一种多层陶瓷电容器的制备方法,其特征在于包括以下制备方法:在还原气氛中,取共掺杂钛酸钡陶瓷介电材料和金属内电极,进行烧结,获得绝缘性陶瓷介质层,再制备获得多层陶瓷电容器,优选烧结的温度为1100~1200℃。
任一所述的共掺杂钛酸钡陶瓷介电材料在作为电子元器件制备材料中的应用。
所述的应用,其特征在于所述电子元器件包括多层陶瓷电容器。
本发明的设计原理:
本发明以BaTiO3为主体材料,添加了SiO2、Al2O3、BaSiO3和ZnO等玻璃相材料作为烧结助剂,添加MgCO3、Mg(OH)2、MgO,MgCl2,Mg(NO3)2等碱金属化合物细化晶粒,添加V2O5、MnO2、Cr2O3等作为抗还原剂,添加Eu2O3、Dy2O3、Ho2O3、Yb2O3、Er2O3和Tm2O3等稀土氧化物形成“芯核结构”。
本发明中,采用常用的BaTiO3主体材料,能够降低工艺复杂程度,节约成本。根据经验,BaTiO3纳米颗粒烧结制成多层陶瓷电容器(MLCC)后晶粒尺寸长20%以内,故控制主体BaTiO3的颗粒尺寸在270~310nm,以得到最终陶瓷晶粒在327~372nm。
本发明采用两性掺杂的方式,选用Dy等稀土元素作为BT材料Ba位掺杂的施主和Ti位掺杂的受主。当稀土元素作为施主掺杂在Ba位时,居里温度降低,介电常数增加。除此之外,稀土元素也会影响BT晶粒的形成,形成“芯-壳”结构,降低容温变化率;同时也可以掺杂于Ti位,减少氧空位的产生,进而显著提高器件的可靠性。
Dy3+作为一种典型的两性稀土离子,一直以来备受MLCC生产厂商青睐,常备用作稀土元素添加剂。研究中发现,当严格控制烧结温度时单掺稀土元素Dy可以制备介电性能优异的陶瓷材料。但是稀土元素Dy由于扩散系数较大,在烧结过程中不容易被控制,导致陶瓷粉料烧结温度区间过窄,这对工业生产是极为不利的。
在元素周期表中,稀土元素Dy和Ho两者相邻,Ho3+和Dy3+的离子半径分别为
Figure BDA0003573746960000031
Figure BDA0003573746960000032
这使得Ho3+和Dy3+具有很多相似的物理性质。更为重要的是,在钛酸钡晶体中的取代机制基本相同。使用两种离子共同掺杂,可以表现出有益的“协同效应”,有效降低了单掺Dy3+时的温度敏感性,有利于获得芯/壳比例合适的陶瓷,从而使材料的性能得到有效改善。
与现有技术相比,本发明具有以下有益效果:
本发明以BaTiO3作为主体材料,通过添加多种掺杂材料的,制备具有高介电常数和高可靠性的钛酸钡陶瓷介电材料:
(1)添加玻璃相材料如SiO2、Al2O3、BaSiO3和ZnO等作为烧结助剂,产生液相,均匀包裹每个颗粒,降低并加宽烧结温度,同时防止颗粒过度长大,并促进BaTiO3的传质过程以提高陶瓷致密度;其中,内电极表面的液相可以阻碍金属元素向介质层扩散,增强MLCC的可靠性,增加了本发明在MLCC应用领域的优异性。
(2)添加MgCO3、Mg(OH)2、MgO,MgCl2,Mg(NO3)2等碱金属化合物用以细化晶粒,防止陶瓷颗粒在烧结过程中的晶粒过度长大。
(3)为防止Ti4+离子在还原气氛下烧结时还原成Ti3+产生氧空位,本发明还加入抗还原剂V2O5、MnO2、Cr2O3等让可以发生变价的V、Mn、Cr元素取代钛酸钡(BT)中的Ti位,从而抑制氧空位的产生,提高剩余极化强度。
(4)选择Eu2O3、Dy2O3、Ho2O3、Er2O3、Yb2O3、Tm2O3等稀土氧化物中的一种或几种做掺杂材料,形成“芯-壳”结构,借此稳定介电常数同时提高可靠性。
本发明通过共掺杂钛酸钡陶瓷介电材料在还原气氛中烧结制备的多层陶瓷电容器MLCC,介电常数介于2273~4273之间,室温电阻率最高能达到2.69~10.9GΩ·m,且能够满足可靠特性要求。多层陶瓷电容器在2V/s的升压速率,以2mA作为击穿阈值电流的条件下,拟合得到的击穿场强为146.29~209.82V/μm。本发明提供的共掺杂钛酸钡陶瓷介电材料及电容器制备过程简单,不含有毒物质,与镍等贱金属内电极匹配良好,介电常数大,绝缘电阻率高,损耗小,击穿场强大,TCC符合温度稳定性要求,具有广阔的应用前景。
附图说明
图1为实施例1中MLCC试样的扫描电子显微镜图;
图2为实施例2中MLCC试样的扫描电子显微镜图;
图3为对比例中MLCC试样的扫描电子显微镜图;
图4为实施例1中MLCC试样的晶粒尺寸分布图;
图5为实施例2中MLCC试样的晶粒尺寸分布图;
图6为对比例中MLCC试样的晶粒尺寸分布图;
图7为实施例1中MLCC试样TCC图;
图8为实施例2中MLCC试样TCC图;
图9为对比例中MLCC试样TCC图;
图10为实施例和对比例中MLCC试样击穿强度韦伯分布示意图。
具体实施方式
下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1:
共掺杂钛酸钡陶瓷介电材料和MLCC试样制备过程如下:
(1)选取颗粒尺寸在270nm的高纯BaTiO3粉体按比例与各种掺杂材料混合(共掺杂钛酸钡陶瓷介电材料的组分见表1),采用氧化锆球作为球磨介质,以无水乙醇作为溶剂,料:球:溶剂质量比2:1:1.5置于球磨机中,转速为400r/min,进行湿法球磨20h,球磨完毕后进行干燥,得到共掺杂钛酸钡陶瓷介电材料。
表1实施例1共掺杂钛酸钡陶瓷介电材料的配方表
Figure BDA0003573746960000051
(2)制备MLCC试样:取上述方法获得的共掺杂钛酸钡陶瓷介电材料,制成浆料,流延成1.1μm的膜片,再经过电极印刷、叠层、压制、切割形成具有一定形状和尺寸的生坯。其中,采用镍浆作为内电极,叠层数为58层。将生坯片在还原气氛(1%H2+99%N2)中1160℃条件下,烧结2h,随后降至950℃进行再氧化处理2h,再降至25℃完成烧结,形成独石结构瓷体。随后在瓷体两端通过沾铜的方式沾上铜浆,于850℃烧结形成与瓷体牢固结合的铜电极,再在铜电极的表面电镀上镍层,第二次电镀上锡层,制得MLCC试样。
性能测试如下:
1、电容与损耗:
测试仪器:介电参数测试仪(E4980A;Agilent;USA)。
测试方法:在25℃室温下,将驱动场调整为1V/μm,频率为1000Hz,通过介电参数测试仪测量其基础电学性能。
2、击穿电场强度:
测试仪器:程控耐压测试仪(CS9912BX;长盛;中国南京)。
测试方法:在器件两端施加增压速率为2V/s的直流电压,当通过电流值达到2mA时,视为样品被击穿,记下此时的击穿电压,重复多次后,根据威布尔击穿分布计算击穿电场强度。
3、TCC:
测试仪器:宽频介电测试仪(Alpha-A;Novocontrol GmbH;德国)。
测试方法:按照1.5V的驱动场,从-100℃~200℃之间,每间隔2℃测量该温度下的不同频率(1Hz、10Hz、100Hz、1k Hz、10k Hz、100k Hz)下的电容与损耗。
制备的MLCC试样的性能测试见表2。
表2实施例1中MLCC试样的性能测试结果表
Figure BDA0003573746960000061
实施例2:
共掺杂钛酸钡陶瓷介电材料和MLCC试样制备过程如下:
(1)选取颗粒尺寸在310nm的高纯BaTiO3粉体按比例与各种掺杂材料混合(共掺杂钛酸钡陶瓷介电材料的组分见表3),采用氧化锆球作为球磨介质,以无水乙醇作为溶剂,料:球:溶剂质量比2:1:1.5置于球磨机中,转速为400r/min,进行湿法球磨20h,球磨完毕后进行干燥,得到共掺杂钛酸钡陶瓷介电材料。
表3实施例2共掺杂钛酸钡陶瓷介电材料的配方表
Figure BDA0003573746960000062
(2)制备MLCC试样:取上述方法获得的共掺杂钛酸钡陶瓷介电材料,制成浆料,流延成1.1μm的膜片,再经过电极印刷、叠层、压制、切割形成具有一定形状和尺寸的生坯。其中,采用镍浆作为内电极,叠层数为76层。将生坯片在还原气氛(1%H2+99%N2)中1180℃条件下,烧结2h,随后降至950℃进行再氧化处理2h,再降至25℃完成烧结,形成独石结构瓷体。随后在瓷体两端通过沾铜的方式沾上铜浆,于850℃烧结形成与瓷体牢固结合的铜电极,再在铜电极的表面电镀上镍层,第二次电镀上锡层,制得MLCC试样。
制备的MLCC试样的性能测试见表4。
表4实施例2中MLCC试样的的性能测试结果表
Figure BDA0003573746960000063
对比例:
本对比例中的MLCC试样为同样规格的市售商用MLCC器件(型号为:MC23)。其基体材料为BaTiO3,晶粒尺寸颗粒尺寸为290nm。对比例的配方见表5,除此之外,其他方法及参数选取玉实施例1相同。对比例的性能测试结果见表6。
表5对比例的配方表
Figure BDA0003573746960000071
表6对比例的性能测试结果表
Figure BDA0003573746960000072
实施例1、实施例2和对比例的结果表明:
如表2和表4所示,实施例1和实施例2的电容都符合0.1±0.015μF,为达标产品,介电常数大,绝缘电阻率高,耐压性好,产品损耗少,稳定性佳。实施例1和实施例2所制备的共掺杂钛酸钡陶瓷介电材料,通过调整主体与改性添加物的配比,在1100℃~1200℃的温度范围内,可形成25℃时介电常数介于2200~4300之间,损耗介于2.51~3.42%之间,击穿场强介于146.29~209.82V/μm之间,且电阻率最高能达到2.69~10.9GΩ·m的可调系统陶瓷介电材料,优于对比例中的MLCC器件。
此外,实施例1、实施例2和对比例中的MLCC试样的扫描电子显微镜(FESEM)表征结果如图1、图2和图3所示,从图中可以看出,本发明实施例制得的样品致密度良好,没有明显孔洞。
实施例中制备的MLCC试样以及和对比例中的MLCC试样根据SEM图统计的陶瓷晶粒尺寸分布如图4、图5和图6所示(其中,实施例1统计晶粒325个,实施例2统计晶粒197个,对比例144个),从图中可以看出,本发明实施例制得的MLCC试样的陶瓷晶粒尺寸分布规律。
对比实施例1、实施例2制得的MLCC试样和对比例中的MLCC试样的TCC,结果如图7、图8和图9所示:在1V驱动电压下,测量-100℃~200℃之间不同频率下的电容与损耗。当温度为25℃时,实施例1在1kHz时的损耗稳定在0.04%左右,实施例2在1kHz时的损耗稳定在0.02%左右,对比例的损耗则高达2.11%左右。因此实施例中的MLCC试样的损耗要低于对比例。同时,为了进一步验证二者的稳定性,通过击穿强度的韦伯分布(测试图见图10),拟合得到实施例1的击穿场强为209.82V/μm,实施例2的击穿场强为146.29V/μm,对比例样品的击穿场强为140.94V/μm,因此实施例中的MLCC试样的耐压性和稳定性更好,综合评比,实施例的MLCC试样的性能优于对比例中的样品。
综上所述,本发明制得的陶瓷介电材料具有高介电常数和高可靠性,具有广阔的应用前景。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述掺杂钛酸钡陶瓷介电材料包括92~99.6mol%的主体材料和0.4~8mol%的掺杂材料;
所述主体材料包括BaTiO3,所述掺杂材料包括玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物。
2.如权利要求1所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述BaTiO3的颗粒尺寸为270~310nm,所述0.4~8mol%的掺杂材料中包括玻璃相材料0.1~2mol%,抗还原剂0.1~2mol%,碱金属化合物0.1~2mol%,稀土氧化物0.1~2mol%。
3.如权利要求1所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述BaTiO3的介电常数为2273~4273。
4.如权利要求1所述的一种共掺杂钛酸钡陶瓷介电材料,其特征在于所述玻璃相材料包括玻璃相SiO2、Al2O3、BaSiO3和ZnO中的一种或几种的组合物,所述抗还原剂包括V2O5、MnO2和Cr2O3中的一种或几种的组合物,所述稀土氧化物包括Eu2O3、Dy2O3、Ho2O3、Yb2O3、Er2O3和Tm2O3中的一种或几种的组合物,优选稀土氧化物为Dy2O3和Ho2O3的组合物,所述碱金属化合物包括碱金属的氧化物、碱金属的氢氧化物和碱金属的盐类物质中的一种或几种的组合物;
优选碱金属的盐类物质包括碱金属的卤化物、碱金属的硝酸盐和碱金属的碳酸盐,优选碱金属化合物中碱金属为Mg。
5.如权利要求1-4任一所述的共掺杂钛酸钡陶瓷介电材料的制备方法,其特征在于包括以下步骤:称取92~99.6mol%BaTiO3和0.4~8mol%掺杂材料进行湿法球磨,干燥后即得到共掺杂钛酸钡陶瓷介电材料;
所述掺杂材料包括玻璃相材料、抗还原剂、碱金属化合物和稀土氧化物。
6.一种多层陶瓷电容器,其特征在于所述多层陶瓷电容器的制备材料包括如权利要求1-4任一所述的共掺杂钛酸钡陶瓷介电材料。
7.如权利要求6所述的一种多层陶瓷电容器,其特征在于所述多层陶瓷电容器的损耗为2.51%~3.42%,所述多层陶瓷电容器在25℃时,介电常数为2273~4273,电阻率为2.69~10.9GΩ·m。
8.如权利要求6所述的一种多层陶瓷电容器的制备方法,其特征在于包括以下制备方法:在还原气氛中,取共掺杂钛酸钡陶瓷介电材料和金属内电极,进行烧结,获得绝缘性陶瓷介质层,再制备获得多层陶瓷电容器,优选烧结的温度为1100~1200℃。
9.如权利要求1-4任一所述的共掺杂钛酸钡陶瓷介电材料在作为电子元器件制备材料中的应用。
10.如权利要求9所述的应用,其特征在于所述电子元器件包括多层陶瓷电容器。
CN202210326627.0A 2022-03-30 2022-03-30 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用 Pending CN114823137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210326627.0A CN114823137A (zh) 2022-03-30 2022-03-30 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210326627.0A CN114823137A (zh) 2022-03-30 2022-03-30 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114823137A true CN114823137A (zh) 2022-07-29

Family

ID=82531943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210326627.0A Pending CN114823137A (zh) 2022-03-30 2022-03-30 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114823137A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497766A (zh) * 2024-01-03 2024-02-02 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池和用电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497766A (zh) * 2024-01-03 2024-02-02 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池和用电装置

Similar Documents

Publication Publication Date Title
US7652870B2 (en) Multilayer ceramic capacitor
TWI402872B (zh) 電介質瓷器及疊層陶瓷電容器以及它們的製造方法
US11292747B2 (en) Barium strontium titanate-based dielectric ceramic materials, preparation method and application thereof
US6303529B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
CN114014649B (zh) 共掺杂钛酸钡陶瓷介电材料、制备方法及其应用
WO2007026614A1 (ja) 誘電体磁器およびその製法、並びに積層セラミックコンデンサ
CN106747419B (zh) 一种用于中高压x7r特性多层陶瓷电容器的介质材料
KR20070085205A (ko) 유전체 세라믹 및 그 제조방법, 및 적층 세라믹 커패시터
JP4497162B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
CN103288452A (zh) 电介质陶瓷组合物以及电子元件
KR20030056175A (ko) 내환원성 유전체 자기 조성물
CN113880569A (zh) 一种多层片式陶瓷电容器的介质材料及其制备方法
CN114538917B (zh) 一种高容量陶瓷介电材料、陶瓷电容器及其制备方法
CN114956806B (zh) 共掺杂钛酸钡陶瓷介电材料、制备及其应用
CN115206679A (zh) 一种电介质陶瓷组合物及其应用
JP4721576B2 (ja) 積層セラミックコンデンサ及びその製法
US6613706B2 (en) Dielectric ceramic composition and ceramic capacitor
KR100471155B1 (ko) 저온소성 유전체 자기조성물과 이를 이용한 적층세라믹커패시터
CN114823137A (zh) 一种共掺杂钛酸钡陶瓷介电材料、制备方法及其应用
CN106673644B (zh) 一种用于中温烧结的钛酸锶基储能介质材料
Chen et al. Effect of Y2O3 and Dy2O3 on dielectric properties of Ba0. 7 Sr0. 3 TiO3 series capacitor ceramics
JP4511323B2 (ja) 積層セラミックコンデンサおよびその製法
JP5151039B2 (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP4627876B2 (ja) 誘電体磁器および積層型電子部品
JP4594049B2 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination