CN1155014C - 由半导体陶瓷制成的单片电子元件 - Google Patents

由半导体陶瓷制成的单片电子元件 Download PDF

Info

Publication number
CN1155014C
CN1155014C CNB001037323A CN00103732A CN1155014C CN 1155014 C CN1155014 C CN 1155014C CN B001037323 A CNB001037323 A CN B001037323A CN 00103732 A CN00103732 A CN 00103732A CN 1155014 C CN1155014 C CN 1155014C
Authority
CN
China
Prior art keywords
atom number
total atom
ceramic
oxide
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB001037323A
Other languages
English (en)
Other versions
CN1266269A (zh
Inventor
新见秀明
松永达也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1266269A publication Critical patent/CN1266269A/zh
Application granted granted Critical
Publication of CN1155014C publication Critical patent/CN1155014C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

一种由半导体陶瓷制成的单片电子元件,该元件包括交替堆叠的半导体陶瓷层与内部电极层组成的煅烧叠层以及形成于煅烧叠层上的外部电极,其中每层半导体陶瓷层包括半导体化煅烧钛酸钡,其包含下列物质:氧化硼;从钡、锶、钙、铅、钇和稀土元素中选择的至少一种金属的第一氧化物;以及从钛、锡、锆、铌、钨和锑中选择的至少一种金属的第二氧化物,注入的氧化硼数量按还原的原子硼计满足一定的关系。

Description

由半导体陶瓷制成的单片电子元件
本发明涉及由半导体陶瓷制成的单片电子元件,特别涉及由具有正温度电阻系数的半导体陶瓷制成的单片电子元件(以下可称为单片电子元件)。
具有正温度电阻系数(以下称为PTC特性)(这意味着当温度超过居里温度时电阻会急剧升高)的半导体电子元件已经被用于保护电路的过电流或者控制彩色电视机的消磁模块。考虑到PTC特性的优点,以钛酸钡为主的半导体陶瓷一般用于这类半导体电子元件。
但是为了使钛酸钡基的陶瓷成为半导体,一般必须在1300℃或更高的温度下焙烧。如此高温下的处理具有如下缺点:容易损坏焙烧用窑炉;窑炉维护成本高;以及能源消耗大。因此需要一种能够在较低温度下焙烧的含钛酸钡半导体陶瓷。
为了克服上述缺陷,“由硼导电液相煅烧制备的半导体化钛酸钡陶瓷”(In-Chyuan HO,美国陶瓷协会通讯,Vol.77,No.3,P829-p832,1994)一文揭示了一种改进的技术。简而言之,通过将氮化硼加入钛酸钡降低了陶瓷呈现半导体特性的温度。该篇文献报道,在1100℃左右的煅烧温度下,加入氮化硼的陶瓷可以变得具有半导体特性。
与此同时,近年来需要一种单片半导体陶瓷电子元件,它在环境温度下电阻较小而耐压较高,并且适于高密度封装。
一般而言,单片半导体陶瓷电子元件的制造方法为,将陶瓷生片和内部电极涂胶层交替叠放并且在焙烧窑炉内一起焙烧。因此诸如镍之类的贱金属被用于制造内部电极,因为即使在金属与陶瓷材料同时焙烧时这种贱金属也可与陶瓷材料建立欧姆接触。当在空气中焙烧时,这种贱金属被氧化。因此上述堆叠体在还原气氛中焙烧并且随后在内部电极不被氧化的温度下再氧化,从而一起焙烧半导体陶瓷材料和内部电极材料。但是较低温度下再氧化对这种焙烧成品的PTC性能是有害的。
已公开的日本专利申请No.8-153605揭示了一种即使在低温下再氧化也能获得PTC特性的方法。该方法采用微粒状的钙钛矿化合物作为主成分的钛盐。利用钙铁矿化合物可以使煅烧温度低达1000~1250℃并且即使在低达500℃或更高些的温度下再氧化也能获得PTC特性。
但是普通单片电子元件的制造必须通过1000℃左右的再氧化才能获得令人满意的PTC性能,并且内部电极有可能氧化。因此需要一种单片电子元件,它通过低温焙烧和低于普通所采用的温度的再氧化获得令人满意的PTC特性。
由上可见,本发明的目标是提供一种单片电子元件,它可以通过1000℃或以下的焙烧制得,并且即使以较低温度再氧化也呈现出令人满意的PTC性能。
因此本发明提供一种由半导体陶瓷制成的单片电子元件,该元件包括交替堆叠的半导体陶瓷层与内部电极层组成的煅烧叠层以及形成于煅烧叠层上的外部电极,其中每层半导体陶瓷层包括半导体化煅烧钛酸钡,其包含下列物质:氧化硼;从钡、锶、钙、铅、钇和稀土元素中选择的至少一种金属的第一氧化物;以及从钛、锡、锆、铌、钨和锑中选择的至少一种金属的第二氧化物,掺入的氧化硼数量按还原的原子硼计满足下列关系:
0.001≤B/β≤0.50以及
0.5≤B/(α-β)≤10.0
其中α表示半导体陶瓷中所含钡、锶、钙、铅、钇和稀土元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
具有这种成分的半导体陶瓷可以在1000℃或更低的温度下焙烧并且即使陶瓷经低温再氧化也呈现出改善的PTC性能。因此可以采用贱金属作为内部电极并且获得令人满意的PTC性能。
比较好的是由半导体陶瓷制成的单片电子元件包含施主元素和受主元素,这些元素的掺入量满足下列关系:
0.0001≤Md/β≤0.005以及
0.00001≤Ma/β≤0.005
其中Md表示半导体陶瓷层中施主元素的原子总数,Ma表示半导体陶瓷层内受主元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
具有这种成分的陶瓷提供了呈现极高效PTC性能的单片电子元件。
通过以下结合附图对本发明较佳实施例的描述,可以进一步理解本发明的各种目标、特征和附带优点,其中:
图1为按照本发明的由半导体陶瓷制成的单片电子元件实例的剖面示意图。
本发明的单片电子元件包括交替堆叠的半导体陶瓷层与内部电极层(以贱金属为主)组成的煅烧叠层以及形成于煅烧叠层露出内部电极一面上的外部电极。
本发明采用的半导体陶瓷包含作为主成分的钛酸钡和辅成分的氧化硼。
上述钛酸钡中的钡(Ba)可以部分由锶(Sr)、钙(Ca)、铅(Pb)、钇(Y)或稀土元素(这些元素以下称为Ba位元素)替代,而上述钛酸钡中的钛(Ti)可以部分由锡(Sn)、锆(Zr)、铌(Nb)、钨(W)和锑(Sb)(这些元素以下称为Ti位元素)替代。
除了Ba位元素以外,Ba或其他诸如Sr、Ca、Pb、Y或稀土元素之类的可替换Ba元素进一步加入上述半导体陶瓷中从而使Ba或其他诸如Sr、Ca、Pb、Y或稀土元素之类的可替换Ba元素的总量大于Ti和Sn、Zr、Nb、W和Sb的总量。
上述半导体陶瓷可包含施主元素和受主元素。术语“施主元素”指的是诸如Y、Nb、Sb、W、Ta、Mo或稀土元素之类一般用作钛酸钡(BaTiO3)内施主的元素,而术语“受主元素”指的是诸如Mn、Fe、Co、Ni、Cr或碱金属元素之类一般用作钛酸钡(BaTiO3)内受主的元素。
上述内部电极可以由诸如Ni、Co、Fe或Mo之类的贱金属构成。这些贱金属可以单独或以合金形式使用。考虑到极佳的抗氧化性能,比较好的是采用Ni。
对于构成上述外部电极的材料并无特殊的限制,诸如Ag、Pd和Ag-Pd合金都可以采用。
实例
以下借助实例描述本发明,但是实例不应构成对本发明的限制。
实例1
以下描述制造本发明单片电子元件的方法。图1为按照本发明的半导体陶瓷制成的单片电子元件实例的剖面示意图。
首先热液合成钛酸钡,其Ba位元素与Ti位元素的比例为0.998。随后根据下列方程式(I)称量BaCO3、Sm2O3、BN和MnCO3并加入钛酸钡以形成混合物:(Ba0.998TiO3粉末,热液合成)+0.001Sm2O3+xBaCO3+yBN+0.0002MnCO3  …(I)
最终的混合物与粘合剂混合,并且所形成的混合物与锆球湿法混合10个小时,从而形成陶瓷浆液。浆液通过刮浆刀成形并且干燥后形成陶瓷生片。通过印制方法将Ni涂胶涂敷在每块生片上从而在生片上形成内部电极层,这样制备的生片堆叠形成叠层。在300℃下空气中去除粘合剂之后,叠层在950℃下的氢气/氮气还原气氛下焙烧2小时从而制成煅烧的叠层。煅烧叠层每层陶瓷的成分由下列方程式表示:
Ba0.998Sm0.002TiO3+xBaO+1/2yB2O3+0.0002MnO2
以下如图1所示,在包含半导体陶瓷层5和内部电极层7的煅烧叠层3露出内部电极的面上涂敷构成Ag电极的涂胶。获取的片形物在800℃下空气中焙烧2小时从而通过烘焙形成外部电极9并进行再氧化。由此制成按照本发明的单片电子元件1。
对于同样方法制成的多个单片电子元件(通过改动构成相应陶瓷的BaCO3(X)和BN(Y)加入量来制得元件),测量了室温下电阻和用log(R250/R25)表示的变化率(其中R250表示250℃下的电阻而R25表示25℃下的电阻)。结果示于表1。表1中的符号*指的是落在本发明范围以外的样品。在实例1中,满足下列关系:B/β=B/Ti和B/(α-β)=B/(Ba+Sm-Ti)。
                          表1
样本编号  B/ri(B/β)     B/(Ba+Sm-Ti)(B/α-β)           添加物             性能   煅烧性
  元素Ba的数量(摩尔)   元素B的数量(摩尔) 室温下电阻(Ω)   电阻log(R250/R25)的变化率
※1  0.0005     0.2   0.00250   0.005 至少1000000   无法测量   ×
※2  0.0005     0.5   0.00100   0.005 至少1000000   无法测量   ×
※3  0.0005     2   0.00025   0.005 55000   0.6   ×
※4  0.0005     8   0.00006   0.005 6000   0.9   ×
※5  0.0005     12   0.00004   0.005 25000   0.8   ×
※6  0.001     0.2   0.00500   0.001 28   1.3   △
7  0.001     0.5   0.0020   0.001 0.97   3.5   ○
8  0.001     2   0.00050   0.001 0.62   3.9   ○
9  0.001     8   0.00013   0.001 0.89   3.3   ○
※10  0.001     12   0.00008   0.001 30   2.2   △
※11  0.01     0.2   0.05000   0.01 25   1.9   △
12  0.01     0.5   0.02000   0.01 0.99   3.6   ○
13  0.01     2   0.00500   0.01 0.45   3.8   ○
14  0.01     8   0.00125   0.01 0.95   3.7   ○
※15  0.01     12   0.00083   0.01 45   2.6   △
※16  0.05     0.2   0.25000   0.05 26   2.9   △
17  0.05     0.5   0.10000   0.05 0.82   3.9   ○
18  0.05     2   0.02500   0.05 0.21   4.2   ○
19  0.05     8   0.00625   0.05 0.73   4.1   ○
※20  0.05     12   0.00417   0.05 19   2.4   △
※21  0.1     0.2   0.50000   0.1 16   2.8   △
22  0.1     0.5   0.20000   0.1 0.65   3.7   ○
23  0.1     2   0.05000   0.1 0.52   3.8   ○
24  0.1     8   0.01250   0.1 0.65   3.8   ○
※25  0.1     12   0.00833   0.1 26   2.9   △
※26  0.5     0.2   2.50000   0.5 56   2.1   △
27  0.5     0.5   1.00000   0.5 2.5   3.1   ○
28  0.5     2   0.25000   0.5 2.1   3.2   ○
29  0.5     8   0.06250   0.5 2.9   3.1   ○
※30  0.5     12   0.04167   0.5 35   2.6   △
※31  0.7     0.2   3.50000   0.7 89   1.3   △
※32  0.7     0.5   1.40000   0.7 25   1.5   △
※33  0.7     2   0.35000   0.7 39   1.5   △
※34  0.7     8   0.08750   0.7 190   1.3   △
※35  0.7     12   0.05833   0.7 480   0.9   △
                                                      符号*指的是落在本发明范围以外的样品
由表1可见,参数落在0.001≤B/β≤0.50和0.5≤B/(α-β)≤10.0范围内的样品具有较低的室温电阻并且用log(R250/R25)表示的电阻变化率至少为2。
B/β小于0.001的样品1~5具有极高的室温电阻和较小的电阻变化率,而B/β大于0.50的样品31~35具有较高的室温电阻和较小的电阻变化率。B/(α-β)小于0.5的样品1、6、11、16、21、26和31具有较高的室温电阻和较小的电阻变化率,而B/(α-β)大于10.0的样品5、10、15、20、25、30和35具有较高的室温电阻和较小的电阻变化率。
重复实例1的程序,除了BaCO3(X)和BN(Y)加入量分别固定为0.02摩尔和0.06摩尔并改动作为施主源加入的Sm2O3(Md)数量和作为受主源加入的MnCO3(Ma)数量以制成单片电子元件。同样测量了室温下电阻和用log(R250/R25)表示的变化率。结果示于表2。符号*指的是落在本发明范围以外的样品。
                                   表2
  样本编号     Sm/Ti(Md/β)     Mn/Ti(Ma/β)   室温下电阻(Ω)   电阻log(R250/R25)的变化率
  *41     0.002     0.000005   0.15   2.2
  42     0.002     0.00001   0.17   2.3
  43     0.002     0.00005   0.19   3.8
  44     0.002     0.0001   0.20   4.1
  45     0.002     0.0005   0.35   4.5
  46     0.002     0.001   1.20   4.9
  47     0.002     0.005   3.50   5.3
  *48     0.002     0.01   890.00   1.5
  *49     0.00005     0.0005   260.00   1.2
  50     0.0001     0.0005   2.60   4.2
  51     0.0005     0.0005   0.80   5.0
  52     0.001     0.0005   0.41   4.6
  53     0.005     0.0005   0.32   3.1
  *54     0.01     0.0005   0.20   1.9
                                符号*指的是落在本发明范围以外的样品
由表2可见,参数落在0.0001≤Md/β≤0.005和0.00001≤Ma/β≤0.005范围内的样品具有较低的室温电阻并且用log(R250/R25)表示的电阻变化率升高较快。
Md/β小于0.0001的样品49具有极高的室温电阻和较小的电阻变化率,而Md/β大于0.005的样品54具有较低的电阻变化率。
Ma/β小于0.00001的样品41具有较小的电阻变化率,而Ma/β大于0.005的样品48具有较高的室温电阻和较小的电阻变化率。
如上所述,按照本发明的半导体陶瓷制成的单片电子元件包含由交替堆叠的半导体陶瓷层与内部电极层组成的煅烧叠层以及形成于煅烧叠层上的外部电极,其中每层半导体陶瓷层包括半导体化煅烧钛酸钡,其包含下列物质:氧部电极,其中每层半导体陶瓷层包括半导体化煅烧钛酸钡,其包含下列物质:氧化硼;从钡、锶、钙、铅、钇和稀土元素中选择的至少一种金属的第一氧化物;以及从钛、锡、锆、铌、钨和锑中选择的至少一种金属的第二氧化物,掺入的氧化硼数量按还原的原子硼计满足下列关系:
0.001≤B/β≤0.50以及
0.5≤B/(α-β)≤10.0
其中α表示半导体陶瓷中所含钡、锶、钙、铅、钇和稀土元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。因此单片电子元件可以在1000℃或更低的温度下焙烧并且即使经低温再氧化也呈现出满意的PTC性能。
比较好的是由半导体化陶瓷制成的单片电子元件包含施主元素和受主元素,这些元素的掺入量满足下列关系:
0.0001≤Md/β≤0.005以及
0.00001≤Ma/β≤0.005
其中Md表示半导体陶瓷层中施主元素的原子总数,Ma表示半导体陶瓷层内受主元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。因此元件呈现出令人满意的PTC性能。

Claims (4)

1.一种由半导体陶瓷制成的单片电子元件,其特征在于该元件包括交替堆叠的半导体陶瓷层与内部电极层组成的煅烧叠层以及形成于煅烧叠层上的外部电极,其中每层半导体陶瓷层包括半导体化煅烧钛酸钡,该半导体陶瓷层包含下列物质:氧化硼;从钡、锶、钙、铅、钇和稀土元素中选择的至少一种金属的第一氧化物;以及从钛、锡、锆、铌、钨和锑中选择的至少一种金属的第二氧化物,掺入的氧化硼数量按还原的原子硼计满足下列关系:
0.001≤B/β≤0.50以及
0.5≤B/(α-β)≤8.0
其中α表示半导体陶瓷中所含钡、锶、钙、铅、钇和稀土元素的原子总数,而β表半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
2.如权利要求1所述的由半导体陶瓷制成的单片电子元件,其特征在于包含施主元素和受主元素,这些元素的掺入量满足下列关系:
0.0001≤Md/β≤0.005以及
0.00001≤Ma/β≤0.005
其中Md表示半导体陶瓷层中施主元素的原子总数,Ma表示半导体陶瓷层内受主元素的总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
3.一种半导体陶瓷,其特征在于包含:作为主要成分的钛酸钡;氧化硼;从钡、锶、钙、铅、钇和稀土元素中选择的至少一种金属的第一氧化物;以及从钛、锡、锆、铌、钨和锑中选择的至少一种金属的第二氧化物,掺入的氧化硼数量按还原的原子硼计满足下列关系:
0.001≤B/β≤0.50以及
0.5≤B/(α-β)≤8.0
其中表示半导体陶瓷中所含钡、锶、钙、铅、钇和稀土元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
4.如权利要求3所述的半导体陶瓷,其特征在于进一步包含:
施主元素和受主元素,这些元素的掺入量满足下列关系:
0.0001≤Md/β≤0.005以及
0.00001≤Ma/β≤0.005
其中Md表示半导体陶瓷层中施主元素的原子总数,Ma表示半导体陶瓷层内受主元素的原子总数,而β表示半导体陶瓷中所含钛、锡、锆、铌、钨和锑的原子总数。
CNB001037323A 1999-03-05 2000-03-03 由半导体陶瓷制成的单片电子元件 Expired - Lifetime CN1155014C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11058444A JP2000256062A (ja) 1999-03-05 1999-03-05 積層型半導体セラミック素子
JP58444/1999 1999-03-05

Publications (2)

Publication Number Publication Date
CN1266269A CN1266269A (zh) 2000-09-13
CN1155014C true CN1155014C (zh) 2004-06-23

Family

ID=13084585

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001037323A Expired - Lifetime CN1155014C (zh) 1999-03-05 2000-03-03 由半导体陶瓷制成的单片电子元件

Country Status (5)

Country Link
JP (1) JP2000256062A (zh)
KR (1) KR100327911B1 (zh)
CN (1) CN1155014C (zh)
DE (1) DE10008929B4 (zh)
TW (1) TW491821B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130957A (ja) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd 半導体磁器、半導体磁器の製造方法およびサーミスタ
JP2007048764A (ja) 2003-10-30 2007-02-22 Murata Mfg Co Ltd 積層型正特性サーミスタおよびその設計方法
WO2007139061A1 (ja) 2006-05-31 2007-12-06 Murata Manufacturing Co., Ltd. 半導体セラミック、積層型半導体セラミックコンデンサ、半導体セラミックの製造方法、及び積層型半導体セラミックコンデンサの製造方法
EP2774904B1 (en) * 2011-11-01 2017-05-24 Murata Manufacturing Co., Ltd. Ptc thermistor and method for manufacturing ptc thermistor
CN102531575A (zh) * 2011-12-14 2012-07-04 华中科技大学 一种Sm2O3掺杂BaTiO3基片式PTCR陶瓷材料及其制备方法
CN113744942B (zh) * 2020-05-29 2023-11-21 东电化电子元器件(珠海保税区)有限公司 包括电阻器的电气部件以及包括该电气部件的电气电路
CN113651612A (zh) * 2021-08-13 2021-11-16 湖州南木纳米科技有限公司 钛酸钡系ptc热敏陶瓷材料及其在锂电池中的应用
CN113402986B (zh) * 2021-08-20 2022-06-24 光之科技(北京)有限公司 Ptc材料的制备方法及ptc材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506596A (en) * 1967-10-11 1970-04-14 Matsushita Electric Ind Co Ltd Semiconducting ceramic compositions with positive temperature coefficient of resistance
JPH03280411A (ja) * 1990-03-29 1991-12-11 Taiyo Yuden Co Ltd 表面再酸化型半導体磁器コンデンサの製造方法
JPH08153605A (ja) * 1994-06-28 1996-06-11 Teika Corp 積層型半導体セラミック素子の製造方法
JP3376911B2 (ja) * 1998-03-05 2003-02-17 株式会社村田製作所 半導体セラミックおよび半導体セラミック素子

Also Published As

Publication number Publication date
JP2000256062A (ja) 2000-09-19
CN1266269A (zh) 2000-09-13
KR100327911B1 (ko) 2002-03-15
DE10008929A1 (de) 2000-10-12
DE10008929B4 (de) 2008-05-08
TW491821B (en) 2002-06-21
KR20000076768A (ko) 2000-12-26

Similar Documents

Publication Publication Date Title
CN1179379C (zh) 介电陶瓷组成物及叠层陶瓷电容器
CN1085635C (zh) 介电陶瓷组合物及使用该组合物的叠层陶瓷电容器
CN102115329A (zh) 介电陶瓷组合物及具有该组合物的多层陶瓷电容器
CN107082636A (zh) 介电陶瓷组合物和含有该介电陶瓷组合物的多层陶瓷电容器
CN1155014C (zh) 由半导体陶瓷制成的单片电子元件
JP2001031471A (ja) チタン酸バリウム系半導体セラミック粉末および積層型半導体セラミック素子
JP2020203824A (ja) 誘電体磁器組成物及びこれを含む積層セラミックキャパシタ
CN1087720C (zh) 半导体陶瓷及由其制得的电子元件
KR20190116141A (ko) 유전체 자기 조성물 및 이를 포함하는 적층 세라믹 커패시터
US6359327B1 (en) Monolithic electronic element fabricated from semiconducting ceramic
JP2004323315A (ja) 誘電体磁器組成物及びその製造方法並びにそれを用いた積層セラミックコンデンサ
KR100321915B1 (ko) 모놀리식 반도체 세라믹 전자 부품
KR100366324B1 (ko) 반도체 세라믹 재료 및 이것을 사용한 전자 부품
KR100366180B1 (ko) 반도체 세라믹 재료, 세라믹 재료의 제조 공정 및 서미스터
US6911102B2 (en) Laminated type semiconductor ceramic element and production method for the laminated type semiconductor ceramic element
CN100341078C (zh) BaTiO3基叠层片式PTC热敏电阻器的制备工艺
US8021568B2 (en) Nickel-molybdenum-doped lead zirconate titanate, method for the production of a piezoceramic component using said lead zirconate titanate, and use of the piezoceramic component
US20140247107A1 (en) Barium titanate semiconductor ceramic and ptc thermistor using the same
JP4984958B2 (ja) 積層型サーミスタおよびその製造方法
US7348873B2 (en) Multilayer positive temperature coefficient thermistor and method for designing the same
KR100916135B1 (ko) 적층형 정특성 서미스터 조성물 및 제조방법
JP2004063548A (ja) 積層型正特性サーミスタの設計方法
JPH07110787B2 (ja) 高誘電率磁器組成物

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20040623