CN115491644B - 一种高性能SmFe基永磁薄膜材料的高通量制备方法 - Google Patents

一种高性能SmFe基永磁薄膜材料的高通量制备方法 Download PDF

Info

Publication number
CN115491644B
CN115491644B CN202210925713.3A CN202210925713A CN115491644B CN 115491644 B CN115491644 B CN 115491644B CN 202210925713 A CN202210925713 A CN 202210925713A CN 115491644 B CN115491644 B CN 115491644B
Authority
CN
China
Prior art keywords
film
smfe
permanent magnet
ion implantation
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210925713.3A
Other languages
English (en)
Other versions
CN115491644A (zh
Inventor
金佳莹
张志恒
任少卿
辛博
秦发祥
严密
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Baotou Rare Earth Research Institute
Original Assignee
Zhejiang University ZJU
Baotou Rare Earth Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Baotou Rare Earth Research Institute filed Critical Zhejiang University ZJU
Priority to CN202210925713.3A priority Critical patent/CN115491644B/zh
Publication of CN115491644A publication Critical patent/CN115491644A/zh
Application granted granted Critical
Publication of CN115491644B publication Critical patent/CN115491644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明公开一种高性能SmFe基永磁薄膜材料的高通量制备方法。其中薄膜材料包括衬底和衬底上生长的SmFe基稀土永磁薄膜。其中主要制备步骤包括:1)对衬底进行表面处理后,沉积一定厚度的(SmaRE1‑a)2Fe17合金薄膜;2)对合金薄膜进行N离子注入,获得N含量在不同区域连续变化的梯度薄膜;3)将梯度薄膜进行真空热处理,获得(SmaRE1‑a)2Fe17Nx薄膜;4)测试薄膜不同区域的成分及磁性能。采用离子注入机对SmFe基稀土合金薄膜进行N离子注入,克服了传统方法中氮化效率低、氮化程度难以控制的难题;经过真空热处理可高通量制备(SmaRE1‑a)2Fe17Nx梯度薄膜;结合高通量测试表征,可快速确定薄膜的最佳N含量,大幅节约实验成本;最终可获得性能可控、一致性高的SmFe基永磁薄膜材料。

Description

一种高性能SmFe基永磁薄膜材料的高通量制备方法
技术领域
本发明涉及稀土永磁领域,具体涉及一种高性能SmFe基永磁薄膜材料的高通量制备方法。
背景技术
自上世纪90年代Sm2Fe17Nx材料被发现以来,已经证明其具有优异的内禀磁性能,在室温下具有高饱和磁极化强度(Js=1.54T,与钕铁硼相当)、高磁晶各向异性场(钕铁硼的近2倍),居里温度达~480℃。从实际应用的角度,Sm2Fe17Nx材料的抗氧化性和耐蚀性均优于钕铁硼,是一种应用前景广阔的永磁材料。目前,Sm2Fe17Nx粉体材料的制备方法主要有熔体快淬法(RQ)、机械合金化法(MA)、粉末冶金法(PM)、氢化-歧化-脱氢-再化合法(HDDR),再通过热压、粘结法制成块体永磁体。但Sm2Fe17Nx材料在600℃以上便开始分解,已成为制备Sm2Fe17Nx大块永磁体的难题。
近年来随着高端电子信息产业的迅猛发展,多功能化、微型化电子元器件以及微型存储器件的需求与日俱增。在微型器件中,往往直接在电子元器件上沉积永磁薄膜,以满足微米量级厚度的要求。永磁薄膜在磁性微电子机械系统和微型存储器件等方面具有重要的应用前景,在航空航天、汽车、医疗、通讯等高新技术领域都扮演着重要的角色。在Sm2Fe17Nx材料中,N元素的含量显著影响磁性能,因此SmFe基薄膜的氮化效率和氮化程度是制备高性能、高稳定Sm2Fe17Nx永磁薄膜材料的关键因素。目前Sm2Fe17Nx永磁薄膜的制备通常是首先通过溶胶-凝胶、气相沉积、热蒸发及脉冲激光沉积等方法制备Sm2Fe17基合金薄膜,然后对合金薄膜进行晶化退火后再氮化,最终获得Sm2Fe17Nx永磁薄膜,但仍然面临氮化效率低、氮化程度不可控、相分解、各向异性改变等难题。此外长时间的晶化及氮化热处理导致传统工艺所获得的Sm2Fe17Nx薄膜中易出现α-Fe等杂相,缺陷多,性能均一性差。
发明内容
本发明的目的是克服现有技术的不足,提供一种高性能SmFe基永磁薄膜材料的高通量制备方法。
本发明中一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于:通过磁控溅射方法和N离子注入方法,高通量制备(SmaRE1-a)2Fe17Nx梯度薄膜,不同区域N的化学计量比x精准可控;对梯度薄膜不同区域的成分和磁性能进行高通量测试表征,筛选最优成分;最终可获得性能可控、一致性高的SmFe基永磁薄膜材料。
本发明中一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于具体包括以下步骤:
1)对衬底进行表面处理后,采用磁控溅射设备沉积一定厚度的(SmaRE1-a)2Fe17合金薄膜;其中Sm为钐元素,RE为除Sm外的其他镧系稀土元素中的一种或几种,Fe为铁元素,a满足以下关系:0.5≤a≤1;
2)将制得的合金薄膜放置于离子注入设备的工件放置区,进行N离子注入,通过控制注入时间、注入能量和注入区域,获得N含量在不同区域连续变化的梯度薄膜;
3)将制得的梯度薄膜放置于真空退火炉,进行热处理,获得(SmaRE1-a)2Fe17Nx薄膜;x满足以下关系:0.1≤x≤8;
4)高通量测试薄膜不同区域的成分及磁性能。
其特征在于,步骤1)中所述磁控溅射设备的高真空腔室中真空度≤1×10-3Pa。
其特征在于,步骤2)中离子注入设备抽真空达到≤1.0×10-4Pa,然后向离子注入设备中充入纯度≥99.9%的高纯氮气,使离子注入设备的真空度维持在0.1-20Pa之间。
其特征在于,步骤2)中离子注入的电压为250~5000V,注入时间≥1min,通过调整注入电压和注入时间,使N离子的注入剂量可控。
其特征在于,步骤3)中真空退火炉的真空度≤3×10-2Pa,退火温度为350~550℃,退火时间为10~150min。
本发明与现有技术相比具有的有益效果:本发明中将磁控溅射方法和离子注入方法相结合,实现(SmaRE1-a)2Fe17Nx永磁薄膜材料的高通量制备。通过N离子注入法直接在磁控溅射合金薄膜中非平衡态引入N元素,完全区别于传统制备方法中的晶化退火-氮化流程,缩短工艺流程。通过磁控溅射工艺参数调整(SmaRE1-a)2Fe17合金薄膜的厚度、取向、晶态等;通过离子注入工艺参数调整薄膜不同区域N的化学计量比x;结合不同区域的磁光克尔测试、成分分布测试等高通量测试表征,可高效、低成本筛选最优成分;最终以此指导批量制备,可获得性能可控、一致性高的SmFe基永磁薄膜材料。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明并不仅仅局限于以下实施例:
实施例1:
1)对10mm×10mm规格的单晶Si(100)衬底进行表面处理:依次经过氢氟酸、丙酮、无水乙醇超声清洗,再进行干燥。然后采用磁控溅射设备沉积10μm厚的Sm2Fe17合金薄膜;
2)将制得的Sm2Fe17合金薄膜放置于离子注入设备的工件放置区,抽真空达到5.0×10-5Pa,然后向离子注入设备中充入纯度99.99%的高纯氮气,使离子注入腔体的真空度维持在0.5Pa,开启工作电源,工作电压为3000V。进行N离子注入,控制不同位置的注入时间为1~20min,获得N含量在不同区域连续变化的梯度薄膜;
3)将制得的梯度薄膜放置于真空退火炉,抽真空度至9×10-4Pa,400℃退火60min,最终获得Sm2Fe17Nx薄膜;
4)高通量测试Sm2Fe17Nx薄膜不同区域的成分及磁性能。
经检测,不同区域的Sm2Fe17Nx薄膜中,随N元素的化学计量比x的增加,微区矫顽力呈现先增加后降低的趋势,在x=3.1时获得最大矫顽力2.6T。
实施例2:
1)对10mm×10mm规格的单晶Si(100)衬底进行表面处理:依次经过氢氟酸、丙酮、无水乙醇超声清洗,再进行干燥。然后采用磁控溅射设备沉积10μm厚的Sm2Fe17合金薄膜;
2)将制得的Sm2Fe17合金薄膜放置于离子注入设备的工件放置区,抽真空达到5.0×10-5Pa,然后向离子注入设备中充入纯度99.99%的高纯氮气,使离子注入腔体的真空度维持在0.5Pa,开启工作电源,工作电压为3000V。进行N离子注入,注入时间为6min;
3)将制得的薄膜放置于真空退火炉,抽真空度至9×10-4Pa,400℃退火60min,最终获得Sm2Fe17Nx薄膜;
4)高通量测试Sm2Fe17Nx薄膜不同区域的成分及磁性能。
经检测,不同区域的Sm2Fe17Nx薄膜中,成分接近Sm2Fe17N3.1,室温矫顽力达2.6T,且薄膜不同区域的磁性能起伏低于0.05T。
对比例1:
与实施例2的不同之处在于,经磁控溅射制得厚度为10μm的Sm2Fe17合金薄膜之后,将合金薄膜转入退火炉中,经过反复抽真空—充氮气清洗之后,充入纯度99.99%的高纯氮气,使氮气压力维持在~5.5Pa,400℃保温60min,最终获得Sm2Fe17Nx薄膜。经检测,所得Sm2Fe17Nx薄膜的各区域成分差距较大(1.0≤x≤5.5),且薄膜不同区域的磁性能起伏高于0.80T。
实施例3:
1)对10mm×10mm规格的单晶Si(100)衬底进行表面处理:依次经过氢氟酸、丙酮、无水乙醇超声清洗,再进行干燥。然后采用磁控溅射设备沉积8μm厚的(Sm0.9Ce0.1)2Fe17合金薄膜;
2)将制得的(Sm0.9Ce0.1)2Fe17合金薄膜放置于离子注入设备的工件放置区,抽真空达到3.0×10-5Pa,然后向离子注入设备中充入纯度99.99%的高纯氮气,使离子注入腔体的真空度维持在2Pa,开启工作电源,工作电压为1200V。进行N离子注入,控制不同位置的注入时间为1~30min,获得N含量在不同区域连续变化的梯度薄膜;
3)将制得的梯度薄膜放置于真空退火炉,抽真空度至8×10-4Pa,420℃退火50min,最终获得(Sm0.9Ce0.1)2Fe17Nx薄膜;
4)高通量测试(Sm0.9Ce0.1)2Fe17Nx薄膜不同区域的成分及磁性能。
经检测,不同区域的(Sm0.9Ce0.1)2Fe17Nx薄膜中,随N元素的化学计量比x的增加,微区矫顽力呈现先增加后降低的趋势,在x=3.3时获得最大矫顽力2.4T。
实施例4:
1)对10mm×10mm规格的单晶Si(100)衬底进行表面处理:依次经过氢氟酸、丙酮、无水乙醇超声清洗,再进行干燥。然后采用磁控溅射设备沉积8μm厚的(Sm0.9Ce0.1)2Fe17合金薄膜;
2)将制得的(Sm0.9Ce0.1)2Fe17合金薄膜放置于离子注入设备的工件放置区,抽真空达到3.0×10-5Pa,然后向离子注入设备中充入纯度99.99%的高纯氮气,使离子注入腔体的真空度维持在2Pa,开启工作电源,工作电压为1200V。进行N离子注入,注入时间为10min;
3)将制得的薄膜放置于真空退火炉,抽真空度至8×10-4Pa,420℃退火50min,最终获得(Sm0.9Ce0.1)2Fe17Nx薄膜;
4)高通量测试(Sm0.9Ce0.1)2Fe17Nx薄膜不同区域的成分及磁性能。
经检测,不同区域的(Sm0.9Ce0.1)2Fe17Nx薄膜中,成分接近(Sm0.9Ce0.1)2Fe17N3.3,室温矫顽力达2.4T,且薄膜不同区域的磁性能起伏低于0.05T。

Claims (4)

1.一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于:通过磁控溅射方法和N离子注入方法,高通量制备(SmaRE1-a)2Fe17Nx梯度薄膜,不同区域N的化学计量比x精准可控;对梯度薄膜不同区域的成分和磁性能进行高通量测试表征,筛选最优成分;最终可获得性能可控、一致性高的SmFe基永磁薄膜材料;
具体包括以下步骤:
1)对衬底进行表面处理后,采用磁控溅射设备沉积一定厚度的(SmaRE1-a)2Fe17合金薄膜;其中Sm为钐元素,RE为除Sm外的其他镧系稀土元素中的一种或几种,Fe为铁元素,a满足以下关系:0.5≤a≤1;
2)将制得的合金薄膜放置于离子注入设备的工件放置区,进行N离子注入,通过控制注入时间、注入能量和注入区域,获得N含量在不同区域连续变化的梯度薄膜;
3)将制得的梯度薄膜放置于真空退火炉,进行热处理,获得(SmaRE1-a)2Fe17Nx薄膜;x满足以下关系:0.1≤x≤8;
4)高通量测试薄膜不同区域的成分及磁性能;
步骤1)中所述磁控溅射设备的高真空腔室中真空度≤1×10-3Pa。
2.如权利要求1所述的一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于,步骤2)中离子注入设备抽真空达到≤1.0×10-4Pa,然后向离子注入设备中充入纯度≥99.9%的高纯氮气,使离子注入设备的真空度维持在0.1-20Pa之间。
3.如权利要求1所述的一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于,步骤2)中离子注入的电压为250~5000V,注入时间≥1min。
4.如权利要求1所述的一种高性能SmFe基永磁薄膜材料的高通量制备方法,其特征在于,步骤3)中真空退火炉的真空度≤3×10-2Pa,退火温度为350~550℃,退火时间为10~150min。
CN202210925713.3A 2022-08-03 2022-08-03 一种高性能SmFe基永磁薄膜材料的高通量制备方法 Active CN115491644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210925713.3A CN115491644B (zh) 2022-08-03 2022-08-03 一种高性能SmFe基永磁薄膜材料的高通量制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210925713.3A CN115491644B (zh) 2022-08-03 2022-08-03 一种高性能SmFe基永磁薄膜材料的高通量制备方法

Publications (2)

Publication Number Publication Date
CN115491644A CN115491644A (zh) 2022-12-20
CN115491644B true CN115491644B (zh) 2024-04-09

Family

ID=84465685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210925713.3A Active CN115491644B (zh) 2022-08-03 2022-08-03 一种高性能SmFe基永磁薄膜材料的高通量制备方法

Country Status (1)

Country Link
CN (1) CN115491644B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772976A (en) * 1984-08-27 1988-09-20 Hitachi, Ltd. Process for preparing magnetic layer and magnetic head prepared using the same
JPH02212320A (ja) * 1989-02-14 1990-08-23 Mitsubishi Steel Mfg Co Ltd 高い磁性を有する窒化鉄の製造方法
JPH11214219A (ja) * 1998-01-27 1999-08-06 Tdk Corp 薄膜磁石およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772976A (en) * 1984-08-27 1988-09-20 Hitachi, Ltd. Process for preparing magnetic layer and magnetic head prepared using the same
JPH02212320A (ja) * 1989-02-14 1990-08-23 Mitsubishi Steel Mfg Co Ltd 高い磁性を有する窒化鉄の製造方法
JPH11214219A (ja) * 1998-01-27 1999-08-06 Tdk Corp 薄膜磁石およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
离子束混合法制备Sm-Fe-N 磁性薄膜;孙树滋等;大连理工大学学报;第231-233页 *

Also Published As

Publication number Publication date
CN115491644A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
TWI550656B (zh) 塊狀永磁材料及其形成方法
US10385442B2 (en) Method for preparing rare-earth permanent magnetic material with grain boundary diffusion using composite target by vapor deposition
JP4698581B2 (ja) R−Fe−B系薄膜磁石及びその製造方法
CN105989983B (zh) 永久磁铁
JP2022516380A (ja) 希土類拡散磁石の製造方法と希土類拡散磁石
US3887451A (en) Method for sputtering garnet compound layer
Jiang et al. FeN foils by nitrogen ion-implantation
CN115491644B (zh) 一种高性能SmFe基永磁薄膜材料的高通量制备方法
JPH0569892B2 (zh)
CN110937925A (zh) 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法
CN113539665B (zh) 一种调控钕铁硼磁体粗晶生长的方法
CN105441877A (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
CN104694894A (zh) 一种高透磁钴靶及其制备方法
CN112746257B (zh) 一种具有垂直磁各向异性的异质结及其制备方法
JPS60171709A (ja) 高度異方性磁気材料の熱的に調節されたスパツタリング
CN113106406A (zh) 一种SmCo永磁薄膜的制备方法
CN115537738B (zh) 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法
CN115323494B (zh) 一种稀土掺杂钇铁石榴石单晶薄膜、制备方法及其应用
KR100826661B1 (ko) R-Fe-B계 박막자석 및 그 제조방법
CN1265017C (zh) 电子束物理气相沉积制备软磁与陶瓷纳米复合薄膜的制造方法
CN112195381B (zh) 一种Sr掺杂锰镓合金及其高矫顽力纳米晶磁体的制备方法
US11313022B2 (en) Method for manufacturing soft magnetic member
CN105463393B (zh) 一种磁性Fe3Si颗粒膜的制备方法
CN113948632A (zh) 一种自旋电子异质结及其制备方法
CN116791194A (zh) 一种稀土掺杂铥铁石榴石薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant