CN115537738B - 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法 - Google Patents

一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法 Download PDF

Info

Publication number
CN115537738B
CN115537738B CN202211319048.XA CN202211319048A CN115537738B CN 115537738 B CN115537738 B CN 115537738B CN 202211319048 A CN202211319048 A CN 202211319048A CN 115537738 B CN115537738 B CN 115537738B
Authority
CN
China
Prior art keywords
film
target
bafe
substrate
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211319048.XA
Other languages
English (en)
Other versions
CN115537738A (zh
Inventor
张鑫
杨瑞鑫
崔梦范
王松伟
李林
赵景泰
饶光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202211319048.XA priority Critical patent/CN115537738B/zh
Publication of CN115537738A publication Critical patent/CN115537738A/zh
Application granted granted Critical
Publication of CN115537738B publication Critical patent/CN115537738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • H01F41/205Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明公开了一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,该方法选用了SrTiO3(111)衬底,Sr3Al2O6作为缓冲层,得到结构为BaFe12O19(0001)/Sr3Al2O6/SrTiO3的异质结薄膜。其制备方法包括以下步骤:(1)使用脉冲激光沉积系统(PLD)在SrTiO3(111)衬底上沉积作为缓冲层的Sr3Al2O6薄膜。(2)使用脉冲激光沉积系统在Sr3Al2O6/SrTiO3异质结结构上沉积M型铁氧体BaFe12O19薄膜。本实验以Sr3Al2O6作为缓冲层,制备了BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜。后续的磁性结果显示,材料的剩磁比高达0.97,矫顽力增加至15 kOe,这使得该材料在微波吸收、垂直磁记录、永磁等方面具有广阔的应用前景。

Description

一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法
技术领域
本发明涉及一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,具体涉及一种矫顽力为12-15 kOe、饱和磁化强度为60-70 emu/cm3、剩磁比为0.90-0.97的BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜的制备方法。
背景技术
随着科学技术的发展,下一代微波器件,如环行器、隔离器、移相器和滤波器等,要求应用于其中的铁氧体材料具有片式、非互易、自偏置、低损耗等特点。M型铁氧体由于具有大的垂直磁晶各向异性、较高的饱和磁化强度、较高的矫顽力、较强的单轴磁晶各向异性场、高电阻率和介电常数、良好的化学稳定性和机械强度等特点,被认为是下一代微波铁氧体器件中最具应用潜力的材料之一。同时,M型铁氧体的这些特点使其在垂直磁记录材料等方面也具有巨大的应用前景。
尽管M 型钡铁氧体具有上述优势,然而如何开发一种制备高质量M型铁氧体薄膜的方法。一直是目前困扰该材料投入实际使用中的一个重大难题。为了解决这一问题许多研究者都相继投入到了M型钡铁氧体的相关制备研究之中。
在20世纪70年代,Glass等利用液相外延(LEP)的方法制备出了M型铁氧体的单晶薄膜,但是并未对其磁性能有所研究。1992年,Dorsey等用脉冲激光沉积(PLD)的方法制备了具有沿c轴取向的BaFe12O19薄膜,虽提高了铁磁共振线宽性能,但剩磁比非常低。随后,Sui等利用磁控溅射沉积BaFe12O19薄膜,其剩磁比达到了0.63,矫顽力为4.1 kOe。2002年,Wang等同样使用LEP技术沉积了BaFe12O19的厚膜(45 μm),但是剩磁比和矫顽力却很低,达不到器件应用的要求。紧接着,Song等利用PLD方法在蓝宝石单晶衬底(Al2O3)上沉积了c轴取向的BaFe12O19薄膜,其剩磁等方面的性能有所提高,但剩磁比依旧很低,只有0.3。近些年来,Wei等通过PLD沉积了自组装纳米岛状的BaFe12O19薄膜,其剩磁比为0.1左右。Mohebbi等原位沉积了具有沿c轴取向的BaFe12O19薄膜,提高了薄膜的电阻率,其矫顽力和饱和磁化强度与块体的相近,剩磁比为0.37。Zheng等用PLD法在Pt(111)/Al2O3(0001)上沉积了矫顽力为1 kOe的BaFe12O19薄膜,但是剩磁比仅有0.3。
综上所述,BaFe12O19薄膜的矫顽力与剩磁比均较小。因此,近几年来,相关研究学者探究了增加缓冲层对BaFe12O19薄膜性能的影响,发现缓冲层的存在可以明显提高其性能。Koichi Kakizaki等在室温下用射频溅射法制备了以AlN作为缓冲层的BaFe12O19薄膜,矫顽力达到了7 kOe。Nobuhiro Matsushita等在Si衬底上制备BaFe12O19/Pt多层复合薄膜以提高BaFe12O19薄膜的磁性能,矫顽力和剩磁比分别达到了2 kOe和0.6。S. Salemizadeh等使用Al2O3作为薄膜缓冲层在Si(110)衬底上沉积了矫顽力为4.9 kOe、剩磁比为0.61的BaFe12O19薄膜。X. H. Liu等在Si衬底上以MgO作为缓冲层制备了BaFe12O19薄膜,薄膜的面内剩磁比为0.2,面外剩磁比为0.5,矫顽力为1.4 kOe。
根据目前研究结果可知,增加缓冲层有效的提高了矫顽力及剩磁比,但离实际应用还有一定距离,因此,对于制备出高的矫顽力、高的饱和磁化强度和大的剩磁比的薄膜仍是我们需要努力的一个方向。
发明内容
本发明的目的是提供一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,显著增大了其室温剩磁比和矫顽力,可以提高其在微波吸收领域、垂直磁记录等方面的应用。
为了达到上述目的,发明了一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,该方法首次将缓冲层Sr3Al2O6加入到SrTiO3(111)衬底和目标薄膜BaFe12O19(0001)之间,构成BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜,并通过调控沉积薄膜时的衬底温度、氧气压强、激光能量和镀膜时间等因素,获取BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜,以获得优良的矫顽力,剩磁比以及饱和磁化强度。
一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,包括以下步骤:
(1)靶材制备:使用纯度为99.9 %以上的SrCO3、Al2O3、BaCO3和Fe2O3制备用于脉冲激光沉积的Sr3Al2O6与BaFe12O19的靶材;
(2)薄膜沉积:将SrTiO3(111)衬底、BaFe12O19靶材与Sr3Al2O6靶材置于PLD样品腔内,使用脉冲激光沉积的方法首先在SrTiO3(111)衬底上沉积Sr3Al2O6薄膜,然后沉积BaFe12O19薄膜;
(3)原位退火:将样品腔内条件设置为600 ℃、1-2 kPa氧压,在此条件下保持120min,然后缓慢降至室温;
(4)马弗炉退火:将沉积完成的薄膜置于马弗炉中退火,温度为1100 ℃,时间60min,以保证薄膜的生长。
其中,步骤(1)所述Sr3Al2O6靶材的制备方法,包括如下步骤:
1)靶材所用原料是纯度分别为99.95 %和99.99 %的SrCO3和Al2O3粉末药品,按照样品的原子摩尔比进行配比;
2)使用行星式球磨机将原料混合成为均匀细小的粉末;
3)将球磨得到的粉末置于箱式炉中进行煅烧,煅烧温度为1100 ℃,煅烧时间为20h;
4)将煅烧之后的样品进行研磨,然后加入PVA作为粘结剂,研磨至均匀细小的粉末之后将其加入模具中压制成为靶材胚体;
5)将靶材胚体在箱式炉中进行烧结,烧结温度为1350 ℃,烧结时间为24 h,即可得到所需的靶材,得到的靶材需要干燥收置,防止受潮。
其中,步骤(1)所述BaFe12O19靶材的制备方法,包括如下步骤:
1)靶材所用原料是纯度分别为99.95 %和99.9 %的BaCO3和Fe2O3粉末药品,按照样品的原子摩尔比进行配比;
2)使用行星式球磨机将原料研磨成为均匀细小的粉末;
3)将球磨得到的粉末置于箱式炉中进行煅烧,煅烧温度为1100 ℃,煅烧时间为10h;
4)将煅烧之后的样品进行研磨,然后加入PVA作为粘结剂,研磨至均匀细小的粉末之后将其加入模具中压制成为靶材胚体;
5)将靶材胚体在箱式炉中进行烧结,烧结温度为1250 ℃,烧结时间为20 h,即可得到所需的靶材。
步骤(2)所述SrTiO3(111)衬底为单晶基片,晶面为(111),得到的是(0001)取向的M型铁氧体薄膜。
步骤(2)所述Sr3Al2O6薄膜的沉积过程中衬底温度为720 ℃,激光能量为300 mJ,激光频率为2 Hz,沉积时间为5 min,在沉积过程中的氧压约为1 Pa。
步骤(2)所述BaFe12O19薄膜的沉积过程中衬底温度为650-720 ℃,激光能量为250-300 mJ,激光频率为5-10 Hz,沉积时间为20-30 min,在沉积过程中氧压为10-20 Pa。
步骤(2)所述沉积过程中,靶材与衬底的间距为33-36 mm,靶材与衬底互为逆向转动。
本发明的有益效果是:
(1)未加Sr3Al2O6缓冲层时,面外的剩磁比在10 K和300 K温度下约为0.22和0.25,而加入缓冲层之后约为0.81和0.97,显著增大了剩磁比。
(2)加入了Sr3Al2O6缓冲层之后,垂直于薄膜面内方向的矫顽力在10 K时为12kOe,在300 K时达到了15 kOe,是未加缓冲层时的十几倍。
(3)X射线衍射图谱显示,所有的衍射峰沿(0001)取向,表明薄膜具有良好的取向性。
(4)PLD是非常成熟的制膜技术,可以高效、可控的生长出所需要的薄膜,并且制备过程简单,周期较短。
附图说明
图1为实例1所制备的BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜样品的X射线衍射图谱。
图2为实例1所制备的BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜样品在300 K温度下的面外的磁滞回线(磁化强度(M)随磁场(H)的变化曲线)。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限制。
实施例1
一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法:
(1)制备Sr3Al2O6靶材:
将纯度为99.95 %的SrCO3和纯度为99.99 %的Al2O3根据相应原子比进行计算、称量,然后使用行星式球磨机进行球磨(转速为300 r/min),球磨之后将其置于80 ℃干燥箱中进行干燥,彻底干燥后使用100目的筛子进行过筛,然后将过筛后的粉末置于箱式炉中于1100 ℃煅烧20 h,取出后加入PVA进行研磨,然后将其压制成直径为24 mm、厚度为3 mm的片子,将片子置于箱式炉中在1350 ℃下烧结24 h,即可得到镀膜需要的靶材。
(2)制备BaFe12O19靶材:
将纯度为99.95 %的BaCO3和纯度为99.9 %的Fe2O3根据相应原子比进行计算、称量,然后用行星式球磨机进行球磨(转速为300 r/min),球磨之后将其置于80 ℃干燥箱中进行干燥,彻底干燥后使用100目的筛子进行过筛,然后将过筛后的粉末置于箱式炉中于1100 ℃煅烧10 h,取出后加入PVA进行研磨,然后将其压制成直径为24 mm、厚度为3 mm的片子,将片子置于箱式炉中在1250 ℃下烧结20 h,即可得到镀膜需要的靶材。
(3)清洗衬底:
镀膜使用的衬底首先使用丙酮超声清洗10 min,然后用酒精超声清洗10 min,最后使用去离子水超声清洗10 min。
(4)使用高温胶将清洗完成的衬底粘到样品托上,将衬底和靶材安置到样品腔内。
(5)在SrTiO3(111)衬底上沉积Sr3Al2O6薄膜,将样品腔温度升至720 ℃,氧压控制在1 Pa左右,调节激光能量为300 mJ、激光频率为2 Hz、衬底与靶材的间距为33 mm,然后沉积Sr3Al2O6薄膜5 min。
(6)在Sr3Al2O6/SrTiO3异质结上沉积BaFe12O19薄膜,样品腔温度保持在720 ℃,氧压为15 Pa,激光能量为300 mJ,激光频率为7 Hz,衬底与靶材的间距为33 mm,然后沉积BaFe12O19薄膜20 min。
(7)沉积完成后将样品腔内的氧压调整至2 kPa,设置样品腔温度为600 ℃,保持120 min,然后逐渐降温至室温。
(8)将沉积完成的薄膜置于箱式炉中进行退火处理,退火条件为1100 ℃、60 min,该薄膜制备完毕。
实施例2
一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法:
(1)清洗衬底
镀膜使用的衬底首先使用丙酮超声清洗10 min,然后用酒精超声清洗10 min,最后使用去离子水超声清洗10 min。
(2)使用高温胶将清洗完成的衬底粘到样品托上,将衬底和靶材安置到样品腔内。
(3)在SrTiO3(111)衬底上沉积Sr3Al2O6薄膜,将样品腔温度升至720 ℃,氧压控制在1 Pa左右,调节激光能量为300 mJ、激光频率为2 Hz、衬底与靶材的间距为33 mm,然后沉积Sr3Al2O6薄膜5 min。
(4)在Sr3Al2O6/SrTiO3上沉积BaFe12O19薄膜,样品腔温度保持在720 ℃,氧压为15Pa,激光能量为300 mJ,激光频率为7 Hz,衬底与靶材的间距为33 mm,然后沉积BaFe12O19薄膜30 min。
(5)沉积完成后将样品腔内的氧压调整至2 kPa,设置样品腔温度为600 ℃,保持120 min,然后逐渐降温至室温。
(6)将沉积完成的薄膜置于箱式炉中进行退火处理,退火条件为1100 ℃、60 min,BaFe12O19(0001)/Sr3Al2O6/SrTiO3异质结薄膜制备完毕。
对实施例1制备得到的M型铁氧体异质结薄膜进行表征:
(1)X射线衍射表征:如图1所示,X射线衍射结果表明,图谱中出现的峰都是(0001)晶向的取向峰,说明制备的样品为单一取向的薄膜。
(2)磁性能测试:如图2所示是室温下该异质结薄膜的磁滞回线,剩磁比为0.97左右,矫顽力的大小为15 kOe左右,证明我们制备出了高剩磁比高矫顽力的M型铁氧体异质结薄膜。

Claims (7)

1.一种高剩磁比高矫顽力的M型铁氧体异质结薄膜的制备方法,其特征在于,将BaFe12O19与Sr3Al2O6结合,具体包括如下步骤:
(1)靶材制备:使用纯度为99.9 %以上的SrCO3、Al2O3、BaCO3和Fe2O3制备用于脉冲激光沉积的Sr3Al2O6与BaFe12O19的靶材;
(2)薄膜沉积:将SrTiO3(111)衬底、BaFe12O19靶材与Sr3Al2O6靶材置于PLD样品腔内,使用脉冲激光沉积的方法首先在SrTiO3(111)衬底上沉积Sr3Al2O6薄膜,然后沉积BaFe12O19薄膜,上述SrTiO3(111)衬底为单晶基片,晶面为(111),得到的是(0001)取向的M型铁氧体BaFe12O19薄膜;
(3)原位退火:将样品腔内条件设置为600 ℃、1-2 kPa氧压,在此条件下保持120 min,然后缓慢降至室温;
(4)马弗炉退火:将沉积完成的薄膜置于马弗炉中退火,温度为1100 ℃,时间60 min,以保证薄膜的生长。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述Sr3Al2O6靶材的制备方法,包括如下步骤:
1)将纯度分别为99.95 %和99.99 %的SrCO3和Al2O3粉末按照化合物Sr3Al2O6的原子摩尔比进行配比;
2)使用行星式球磨机对原料进行混合研磨;
3)将球磨得到的粉末置于箱式炉中进行煅烧,煅烧温度为1100 ℃,煅烧时间为20 h;
4)将煅烧之后的样品进行研磨,然后加入PVA作为粘结剂,研磨至均匀细小的粉末之后将其加入模具中压制成靶材胚体;
5)将靶材胚体在箱式炉中进行烧结,烧结温度为1350 ℃,烧结时间为24 h,即可得到所需的靶材,得到的靶材需要干燥收置,防止受潮。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述BaFe12O19靶材的制备方法,包括如下步骤:
1)将纯度分别为99.95 %和99.9 %的BaCO3和Fe2O3粉末按照BaFe12O19的原子摩尔比进行配比;
2)使用行星式球磨机将原料进行混合研磨;
3)将球磨得到的粉末置于箱式炉中进行煅烧,煅烧温度为1100 ℃,煅烧时间为10 h;
4)将煅烧之后的样品进行研磨,然后加入PVA作为粘结剂,研磨至均匀细小的粉末之后将其加入模具中压制成为靶材胚体;
5)将靶材胚体在箱式炉中进行烧结,烧结温度为1250 ℃,烧结时间为20 h,即可得到所需的靶材。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述Sr3Al2O6薄膜的沉积过程中衬底温度为720 ℃,激光能量为300 mJ,激光频率为2 Hz,沉积时间为5 min,氧压约为1Pa。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述BaFe12O19薄膜的沉积过程中衬底温度为650-720 ℃,激光能量为250-300 mJ,激光频率为5-10 Hz,沉积时间为20-30min,氧压为10-20 Pa。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述沉积过程中,靶材与衬底的间距为33-36 mm,靶材与衬底互为逆向转动。
7. 用权利要求1-6任意一项所述的制备方法制备的高剩磁比高矫顽力的M型铁氧体异质结薄膜,该异质结薄膜的剩磁比范围为0.90-0.97,矫顽力为12-15 kOe,饱和磁化强度为60-70 emu/cm3
CN202211319048.XA 2022-10-26 2022-10-26 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法 Active CN115537738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211319048.XA CN115537738B (zh) 2022-10-26 2022-10-26 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211319048.XA CN115537738B (zh) 2022-10-26 2022-10-26 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN115537738A CN115537738A (zh) 2022-12-30
CN115537738B true CN115537738B (zh) 2024-05-31

Family

ID=84719500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211319048.XA Active CN115537738B (zh) 2022-10-26 2022-10-26 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115537738B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116804267A (zh) * 2023-07-06 2023-09-26 宁波江丰电子材料股份有限公司 一种铬硅靶材及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744853A (ja) * 1993-05-28 1995-02-14 Internatl Business Mach Corp <Ibm> 薄膜磁気記録媒体、磁気ディスクドライブ、バリウムフェライト薄膜製造方法、及び長手磁気記録方法
WO2012094266A1 (en) * 2011-01-06 2012-07-12 Los Alamos National Security, Llc Multiferroics that are both ferroelectric and ferromagnetic at room temperature
CN106431382A (zh) * 2016-09-08 2017-02-22 苏州大学 制备具有室温宽频大磁电容效应的铁氧体外延薄膜的方法
CN112410880A (zh) * 2020-11-19 2021-02-26 中国科学院深圳先进技术研究院 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构
CN113493898A (zh) * 2020-04-08 2021-10-12 中国科学院物理研究所 铁磁绝缘材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744853A (ja) * 1993-05-28 1995-02-14 Internatl Business Mach Corp <Ibm> 薄膜磁気記録媒体、磁気ディスクドライブ、バリウムフェライト薄膜製造方法、及び長手磁気記録方法
WO2012094266A1 (en) * 2011-01-06 2012-07-12 Los Alamos National Security, Llc Multiferroics that are both ferroelectric and ferromagnetic at room temperature
CN106431382A (zh) * 2016-09-08 2017-02-22 苏州大学 制备具有室温宽频大磁电容效应的铁氧体外延薄膜的方法
CN113493898A (zh) * 2020-04-08 2021-10-12 中国科学院物理研究所 铁磁绝缘材料及其制备方法和应用
CN112410880A (zh) * 2020-11-19 2021-02-26 中国科学院深圳先进技术研究院 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
范艳洁 ; 黄英 ; 黄飞 ; 杜朝锋 ; .钡铁氧体薄膜的研究及应用.磁性材料及器件.2006,(第06期),全文. *
钡铁氧体薄膜的研究及应用;范艳洁;黄英;黄飞;杜朝锋;;磁性材料及器件;20061230(第06期);全文 *

Also Published As

Publication number Publication date
CN115537738A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Chen et al. Low-loss barium ferrite quasi-single-crystals for microwave application
Zhang et al. Development and application of ferrite materials for low temperature co-fired ceramic technology
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
Gao et al. The magnetic properties of NixZn1− xFe2O4 films fabricated by alternative sputtering technology
CN115537738B (zh) 一种高剩磁比高矫顽力的m型铁氧体异质结薄膜的制备方法
US20100173101A1 (en) Method of manufacturing thick-film, low microwave loss, self-biased barium-hexaferrite having perpendicular magnetic anisotropy
Wang et al. Crystallographically textured Zn2W-type barium hexaferrite for microwave and millimeter wave applications
Dehlinger et al. Microstructural and magnetic properties of thick (≥ 10 μm) magnetron sputtered barium ferrite films
CN108930017B (zh) 一种La0.7Sr0.3MnO3铁磁薄膜的制备方法
Samarasekara et al. Magnetic and structural properties of RF sputtered polycrystalline lithium mixed ferrimagnetic films
Kostishin et al. Characterization of c-oriented BaFe12O19 films synthesized by ion beam deposition on Al2O3 (102) substrate
CN102683003A (zh) 一种单轴磁各向异性薄膜的制备方法
Aldbea et al. Aging effects on the structural and magnetic properties of terbium–aluminium Co-doping of yttrium iron garnet films prepared using the sol–gel method
CN110451575B (zh) 一种基于尺寸效应增强铁酸铋纳米粉末磁性的方法
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
CN110846629A (zh) 一种基于yig薄膜材料的微波吸收体及其制备方法
CN107056271B (zh) 一种GaFeO3陶瓷靶材及纳米薄膜的制备方法
Liu et al. Microstructure and Magnetic Properties of Textured Barium W-Type Hexaferrite with Rare-Earth La3+ Substitution
Kiani et al. Microstructural and magnetic properties of self-biased strontium hexaferrite thick films by two-step sintering
CN113493898A (zh) 铁磁绝缘材料及其制备方法和应用
Xu et al. Deposition of perpendicular c-axis oriented BaM thin films on (001) Al2O3 substrates by introducing an interfacial BaM buffer layer
CN113235159B (zh) 一种制备单晶镍铁氧体薄膜的方法
CN115798925A (zh) 一种高矫顽力软硬磁复合铁氧体薄膜材料及其制备方法
CN115323494B (zh) 一种稀土掺杂钇铁石榴石单晶薄膜、制备方法及其应用
KR102156117B1 (ko) 상온 다강성 물질, 그의 제조방법 및 그를 포함하는 전자장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant