CN115483112A - 一种氮化硅陶瓷覆铜板及其制备工艺 - Google Patents

一种氮化硅陶瓷覆铜板及其制备工艺 Download PDF

Info

Publication number
CN115483112A
CN115483112A CN202211242099.7A CN202211242099A CN115483112A CN 115483112 A CN115483112 A CN 115483112A CN 202211242099 A CN202211242099 A CN 202211242099A CN 115483112 A CN115483112 A CN 115483112A
Authority
CN
China
Prior art keywords
copper
ceramic
silicon nitride
sic
clad plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211242099.7A
Other languages
English (en)
Inventor
林伟毅
张财根
陈智
刘卫平
谭承业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Gayi Semiconductor Materials Co ltd
Original Assignee
Fujian Gayi Semiconductor Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Gayi Semiconductor Materials Co ltd filed Critical Fujian Gayi Semiconductor Materials Co ltd
Priority to CN202211242099.7A priority Critical patent/CN115483112A/zh
Publication of CN115483112A publication Critical patent/CN115483112A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种氮化硅陶瓷覆铜板及其制备工艺,涉及半导体元器件技术领域,物料称量:将α‑Si3N4、β‑Si3N4、SiC、及烧结助剂按质量比75‑85:5‑15:5;物料混合,利用石墨烯对Si3N4湿法球磨改性,制备混合粉体;陶瓷烧结,制备SiC‑Si3N4陶瓷;制备氧化石墨烯,以氧化石墨烯作为铜基体与陶瓷基体之间的黏结剂;氧化石墨烯基导热胶黏剂的制备,用于在铜基体与陶瓷基体之间的粘结;在铜板基体与SiC‑Si3N4复合陶瓷之间均匀涂抹氧化石墨烯,将两个铜基体压实贴附在SiC‑Si3N4复合陶瓷两侧。加入SiC及石墨烯能够很大程度上提高它的导热性能,而且通过加入SiC,SiC呈纤维状,能够对Si3N4陶瓷的力学性能进行提升。

Description

一种氮化硅陶瓷覆铜板及其制备工艺
技术领域
本发明涉及半导体元器件技术领域,具体为一种氮化硅陶瓷覆铜板及其制备工艺。
背景技术
半导体器件沿着大功率化、高频化、集成化的方向迅猛发展。半导体器件工作产生的热量是引起半导体器件失效的关键因素,而绝缘基板的导热性是影响整体半导体器件散热的关键。而且由于在使用时,要面临复杂的力学环境,更提高对陶瓷覆铜板的可靠性要求。
在陶瓷覆铜板中,高导热氮化硅陶瓷由于其优异的力学和热学性能,被认为是兼具高强度和高导热的最佳半导体绝缘基板材料,在大功率绝缘栅双极型晶体管(IGBT)的散热应用方面极具潜力,其优良的力学性能和良好的高导热潜质使氮化硅陶瓷可以弥补现有氧化铝、氮化铝等陶瓷基板材料的不足。
但是,目前在高端半导体器件、特别是大功率IGBT散热基板中应用较多的传统氮化硅陶瓷材料的热导率只有20~30(W·m-1·K-1),根本无法满足大功率半导体器件基板散热的应用需求,难以为氮化硅陶瓷覆铜板带来应有的性能。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种氮化硅陶瓷覆铜板及其制备工艺,解决了背景技术中的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种氮化硅陶瓷覆铜板及其制备工艺,包括如下步骤:步骤1、物料称量:将α-Si3N4、β-Si3N4、SiC、及烧结助剂按质量比75-85:5-15:5步骤2、物料混合,利用石墨烯对Si3N4湿法球磨改性,制备混合粉体;步骤4、陶瓷烧结,制备SiC-Si3N4陶瓷;步骤5、制备氧化石墨烯,以氧化石墨烯作为铜基体与陶瓷基体之间的黏结剂;步骤6、氧化石墨烯基导热胶黏剂的制备,用于在铜基体与陶瓷基体之间的黏结;步骤7;在铜板基体与SiC-Si3N4复合陶瓷之间均匀涂抹氧化石墨烯,将两个铜基体压实贴附在SiC-Si3N4复合陶瓷两侧。
进一步的,步骤2中包括:步骤201、将称量好的原料粉末与Y2O3/MgSiN2烧结助剂与无水乙醇,采用磁力搅拌器进行搅拌,转速100r/min;步骤202、将混合粉末投入四氟乙烯的球磨罐中,加入海藻酸钠分散剂或者DisuperS19分散剂,5质量份的石墨烯粉末,进行湿混,球磨时间为10h,转速为200r/min;步骤203、在80℃的水浴条件下,将浆料注入圆底烧瓶中,干燥时间为2h,利用蒸发器蒸发掉无水乙醇,得到干燥的混合粉体。
进一步的,步骤2和步骤4之间还存在:步骤3、陶瓷烧结模具的准备;步骤301、依照铜板基体的形状制备石墨磨具,将干燥后的混合粉体装入涂有氮化硼乙醇溶液的模具中,在液态油压机上施加10MPa的压力压实;步骤302、将涂有氮化硼的石墨毡片放置于粉体两端与石墨压头之间,陶瓷烧结模具制备完成。
进一步的,步骤4中包括:步骤401、将装好粉体的模具置于真空热压炉中,以15℃/min的升温速率升至1250℃,保温120min;以10℃/min的升温速率至烧结温度1700℃,保温90-120min,施加压力32MPa,保温保压60min,之后缓慢降压至常压,完成样品的烧结;步骤402、在氮气或者惰性气体的氛围下,对炉体进行冷却,进而冷却样品至室温;步骤403、对冷却的样品进行打磨处理,打磨处理后,SiC-Si3N4陶瓷复合材料导热片制备完成。
进一步的,步骤5包含:步骤501、在冰水混浴的条件下,向三口烧瓶中依次按顺序加入3g的NaNO3,6g的石墨粉和150mL的浓硫酸,石墨粉的细度为8000目;步骤502、在磁力搅拌器在300-400r/min的速度下,对混合液进行搅拌,直至混液转变为黑色,再向其缓慢地加入18g的KMnO4颗粒;步骤503、水浴温度为30-40℃的恒温,磁力搅拌器持续搅拌混液至少30min。
进一步的,步骤5还包含:步骤504、在敞开的条件下,向混液中加入150m去离子水,在85-95℃的条件下保温,利用磁力搅拌器持续搅拌最少15min;步骤505、待混液冷却,通过滤纸过滤,去除不溶物;步骤506、将氧化处理后的石墨液体导入至蒸馏水中,对反应物进行稀释;向混液中加入15mL浓度为30%的双氧水,边加边搅拌
进一步的,步骤5还包含:步骤507、将烧杯在室温下静置6-8h,直至氧化石墨沉淀在烧杯底部,去除上层清液,余下的沉淀物用10%盐酸和蒸馏水依次各离心至少3遍;将离心产物进行干燥,氧化石墨烯制备完成。
进一步的,步骤6包含:步骤601、称取100g环氧树脂和90g脲醛树脂,将二者混合均匀后,边搅拌边缓慢滴加1.2g环氧树脂促进剂和5g塑化剂,随后加入一定量硅烷偶联剂改性后的10μm氮化硅和氧化石墨烯混合填料;添加后氮化硅占混合物总质量的45%,氧化石墨烯分别占混合物总质量的8%。
进一步的,步骤6还包含:步骤602、研磨30min后,在干燥箱中60℃加热4h,140℃加热6h固化,得到固化后的氧化石墨烯基导热胶黏剂。
本发明还提供一种氮化硅陶瓷覆铜板,包括:两个平行设置的铜板基体,及通过导热胶黏剂粘连在两个铜板基体之间SiC-Si3N4复合陶瓷板基体。
(三)有益效果
本发明提供了一种氮化硅陶瓷覆铜板及其制备工艺。具备以下有益效果:
加入SiC及石墨烯能够很大程度上提高它的导热性能,而且通过加入SiC,SiC呈纤维状,能够对Si3N4陶瓷的力学性能进行提升。
通过以掺入氧化石墨烯的形式,制备导热胶黏剂,耐热性更强,而且由于氧化石墨烯导热性能很高,对导热胶黏剂的导热性能起到了改善的作用,进一步的增加陶瓷覆铜板的导热性能。
附图说明
图1为本发明SiC-Si3N4复合陶瓷样品的SEM测试结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本发明提供一种氮化硅陶瓷覆铜板及其制备工艺,包括如下步骤:
步骤1、物料称量:将α-Si3N4、β-Si3N4、SiC、及烧结助剂按质量比75-85:5-15:5;
步骤2、物料混合,利用石墨烯对Si3N4湿法球磨改性,制备混合粉体;
步骤201、将称量好的原料粉末与Y2O3/MgSiN2烧结助剂与无水乙醇,采用磁力搅拌器进行搅拌,转速100r/min;
步骤202、将混合粉末投入四氟乙烯的球磨罐中,加入海藻酸钠分散剂或者DisuperS19分散剂,5质量份的石墨烯粉末,进行湿混,球磨时间为10h,转速为200r/min;
其中,DisuperS19分散剂是用于针对石墨烯粉末的发散,使石墨烯的添加剂在α-Si3N4、β-Si3N4、SiC的混合粉末中分布得更加均匀,分散效果相对于常规的发散效果更好;
步骤203、在80℃的水浴条件下,将浆料注入圆底烧瓶中,干燥时间为2h,利用蒸发器蒸发掉无水乙醇,得到干燥的混合粉体。
步骤3、陶瓷烧结模具的准备;
步骤301、依照铜板基体的形状制备石墨磨具,将干燥后的混合粉体装入涂有氮化硼乙醇溶液的模具中,在液态油压机上施加10MPa的压力压实;
步骤302、将涂有氮化硼的石墨毡片放置于粉体两端与石墨压头之间,陶瓷烧结模具制备完成。
在步骤3中,使用时,石墨具有较好的耐热性和导热性,作为模具时,能够经受住烧结带来的高热,且通过涂抹氮化硼,则是避免烧结时,物料黏结在模具的表面难以取下。
步骤4、陶瓷烧结,制备SiC-Si3N4陶瓷;
步骤401、将装好粉体的模具置于真空热压炉中,以15℃/min的升温速率升至1250℃,保温120min;以10℃/min的升温速率至烧结温度1700℃,保温90-120min,施加压力32MPa,保温保压60min,之后缓慢降压至常压,完成样品的烧结;
步骤402、在氮气或者惰性气体的氛围下,对炉体进行冷却,进而冷却样品至室温;通过在氮气氛围下进行冷却,在提供氮源的情况下,也避免烧结后的陶瓷与氧气等反应,影响组织性能,选择惰性气体,则是因为惰性气体基本不参与任何反应,对反应物料的能够起到保护作用;
步骤403、对冷却的样品进行打磨处理,打磨处理后,SiC-Si3N4陶瓷复合材料导热片制备完成。
在步骤4中,通过以α-Si3N4与SiC为原料,制备了SiC-Si3N4陶瓷,同时在SiC-Si3N4陶瓷中,掺入石墨烯粉末,从而改善SiC-Si3N4陶瓷的导热性,而且有石墨烯的占比较少,对SiC-Si3N4陶瓷的力学性能的改变相对较少。
经过测试,在α-Si3N4、β-Si3N4、SiC、烧结助剂、石墨烯的质量比为75:15:5:5时,制备的SiC-Si3N4复合陶瓷的性能如下:
测得其弯曲强度为617±8(MPa),断裂韧性为7.4±0.3(MPa-m0.5),弹性模量为121±3(GPa),导热系数为205±2W/m.k,样品的SEM测试见图1
可以看出来,在保持Si3N4陶瓷的基本性能大体不变时,加入SiC及石墨烯能够很大程度上提高它的导热性能,而且通过加入SiC,SiC呈纤维状,能够对Si3N4陶瓷的力学性能进行提升。
步骤5、制备氧化石墨烯,以氧化石墨烯作为铜基体与陶瓷基体之间的黏结剂;包含以下内容:
步骤501、在冰水混浴的条件下,向三口烧瓶中依次按顺序加入3g的NaNO3,6g的石墨粉和150mL的浓硫酸,其中,石墨粉的细度为8000目;
步骤502、在磁力搅拌器在300-400r/min的速度下,对混合液进行搅拌,直至混液转变为黑色,再向其缓慢地加入18g的KMnO4颗粒;
步骤503、水浴温度为30-40℃的恒温,磁力搅拌器持续搅拌混液至少30min;
步骤504、在敞开的条件下,向混液中加入150m去离子水,在85-95℃的条件下保温,利用磁力搅拌器持续搅拌最少15min;
步骤505、待混液冷却,通过滤纸过滤,去除不溶物;
步骤506、将氧化处理后的石墨液体导入至蒸馏水中,对反应物进行稀释;向混液中加入15mL浓度为30%的双氧水,边加边搅拌;
步骤507、将烧杯在室温下静置6-8h,直至氧化石墨沉淀在烧杯底部,去除上层清液,余下的沉淀物用10%盐酸和蒸馏水依次各离心至少3遍;将离心产物进行干燥,氧化石墨烯制备完成。
步骤6、氧化石墨烯基导热胶黏剂的制备,用于在铜基体与陶瓷基体之间的黏结;
步骤601、称取100g环氧树脂和90g脲醛树脂,将二者混合均匀后,边搅拌边缓慢滴加1.2g环氧树脂促进剂和5g塑化剂,随后加入一定量硅烷偶联剂改性后的10μm氮化硅和氧化石墨烯混合填料;其中,添加后氮化硅占混合物总质量的45%,氧化石墨烯分别占混合物总质量的8%,
步骤602、研磨30min后,在干燥箱中60℃加热4h,140℃加热6h固化,得到固化后的氧化石墨烯基导热胶黏剂;
结合步骤5及步骤6,是为了制备一种能够将铜基体和陶瓷基体连接在一起的材料,以胶水的形式将铜基体和陶瓷基体连接在一起,对现有的陶瓷覆盖铜基体的工艺进行改进,节省工艺成本;
步骤7;在铜板基体与SiC-Si3N4复合陶瓷之间均匀涂抹氧化石墨烯,将两个铜基体压实贴附在SiC-Si3N4复合陶瓷两侧。
氧化石墨烯是一种二维纳米结构的碳材料,理论导热系数高达5000W/(m·K),而制备的氧化石墨烯表面含有许多含氧官基团,如羟基、羧基、环氧基等,这些氧化基团,促进了氧化石墨烯与环氧树脂间的化学交联,形成共价键,共价键的存在提高了环氧树脂和氧化石墨烯间的界面强度,降低了界面热阻,增加了导热胶黏剂的导热性能。
而以硅烷偶联剂对氮化硅进行表面改性,改性后的氮化硅与环氧树脂的界面黏结力增强,热稳定性和导热性能得到改善,且与SiC-Si3N4复合陶瓷之间的截面结合力较高,从而使SiC-Si3N4复合陶瓷与铜板基体之间容易进行黏结;
同时,结合步骤5至7,通过以掺入氧化石墨烯的形式,制备导热胶黏剂,相对于焊接或者其他的连接方式,耐热性更强,而且由于氧化石墨烯导热性能很高,对导热胶黏剂的导热性能起到了改善的作用,在步骤1至4的基础上,进一步的增加陶瓷覆铜板的导热性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:包括如下步骤:
步骤1、物料称量:将α-Si3N4、β-Si3N4、SiC、及烧结助剂按质量比75-85:5-15:5;
步骤2、物料混合,利用石墨烯对Si3N4湿法球磨改性,制备混合粉体;
步骤4、陶瓷烧结,制备SiC-Si3N4陶瓷;步骤5、制备氧化石墨烯,以氧化石墨烯作为铜基体与陶瓷基体之间的黏结剂;
步骤6、氧化石墨烯基导热胶黏剂的制备,用于在铜基体与陶瓷基体之间的黏结;步骤7;在铜板基体与SiC-Si3N4复合陶瓷之间均匀涂抹氧化石墨烯,将两个铜基体压实贴附在SiC-Si3N4复合陶瓷两侧。
2.根据权利要求1所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤2中包括:
步骤201、将称量好的原料粉末与Y2O3/MgSiN2烧结助剂与无水乙醇,采用磁力搅拌器进行搅拌,转速100r/min;
步骤202、将混合粉末投入四氟乙烯的球磨罐中,加入海藻酸钠分散剂或者DisuperS19分散剂,5质量份的石墨烯粉末,进行湿混,球磨时间为10h,转速为200r/min;
步骤203、在80℃的水浴条件下,将浆料注入圆底烧瓶中,干燥时间为2h,利用蒸发器蒸发掉无水乙醇,得到干燥的混合粉体。
3.根据权利要求1所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤2和步骤4之间还存在:
步骤3、陶瓷烧结模具的准备;
步骤301、依照铜板基体的形状制备石墨磨具,将干燥后的混合粉体装入涂有氮化硼乙醇溶液的模具中,在液态油压机上施加10MPa的压力压实;
步骤302、将涂有氮化硼的石墨毡片放置于粉体两端与石墨压头之间,陶瓷烧结模具制备完成。
4.根据权利要求1所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤4中包括:
步骤401、将装好粉体的模具置于真空热压炉中,以15℃/min的升温速率升至1250℃,保温120min;以10℃/min的升温速率至烧结温度1700℃,保温90-120min,施加压力32MPa,保温保压60min,之后缓慢降压至常压,完成样品的烧结;
步骤402、在氮气或者惰性气体的氛围下,对炉体进行冷却,进而冷却样品至室温;
步骤403、对冷却的样品进行打磨处理,打磨处理后,SiC-Si3N4陶瓷复合材料导热片制备完成。
5.根据权利要求1所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤5包含:
步骤501、在冰水混浴的条件下,向三口烧瓶中依次按顺序加入3g的NaNO3,6g的石墨粉和150mL的浓硫酸,石墨粉的细度为8000目;
步骤502、在磁力搅拌器在300-400r/min的速度下,对混合液进行搅拌,直至混液转变为黑色,再向其缓慢地加入18g的KMnO4颗粒;
步骤503、水浴温度为30-40℃的恒温,磁力搅拌器持续搅拌混液至少30min。
6.根据权利要求5所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤5还包含:步骤504、在敞开的条件下,向混液中加入150m去离子水,在85-95℃的条件下保温,利用磁力搅拌器持续搅拌最少15min;
步骤505、待混液冷却,通过滤纸过滤,去除不溶物;
步骤506、将氧化处理后的石墨液体导入至蒸馏水中,对反应物进行稀释;向混液中加入15mL浓度为30%的双氧水,边加边搅拌。
7.根据权利要求6所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤5还包含:
步骤507、将烧杯在室温下静置6-8h,直至氧化石墨沉淀在烧杯底部,去除上层清液,余下的沉淀物用10%盐酸和蒸馏水依次各离心至少3遍;将离心产物进行干燥,氧化石墨烯制备完成。
8.根据权利要求1所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤6包含:
步骤601、称取100g环氧树脂和90g脲醛树脂,将二者混合均匀后,边搅拌边缓慢滴加1.2g环氧树脂促进剂和5g塑化剂,随后加入一定量硅烷偶联剂改性后的10μm氮化硅和氧化石墨烯混合填料;
添加后氮化硅占混合物总质量的45%,氧化石墨烯分别占混合物总质量的8%。
9.根据权利要求8所述的一种氮化硅陶瓷覆铜板及其制备工艺,其特征在于:步骤6还包含:
步骤602、研磨30min后,在干燥箱中60℃加热4h,140℃加热6h固化,得到固化后的氧化石墨烯基导热胶黏剂。
10.一种氮化硅陶瓷覆铜板,其特征在于,由权利要求1至9中任一项方法制备而成,其包括:两个平行设置的铜板基体,及通过导热胶黏剂粘连在两个铜板基体之间SiC-Si3N4复合陶瓷板基体。
CN202211242099.7A 2022-10-11 2022-10-11 一种氮化硅陶瓷覆铜板及其制备工艺 Pending CN115483112A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211242099.7A CN115483112A (zh) 2022-10-11 2022-10-11 一种氮化硅陶瓷覆铜板及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211242099.7A CN115483112A (zh) 2022-10-11 2022-10-11 一种氮化硅陶瓷覆铜板及其制备工艺

Publications (1)

Publication Number Publication Date
CN115483112A true CN115483112A (zh) 2022-12-16

Family

ID=84394931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211242099.7A Pending CN115483112A (zh) 2022-10-11 2022-10-11 一种氮化硅陶瓷覆铜板及其制备工艺

Country Status (1)

Country Link
CN (1) CN115483112A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117336944A (zh) * 2023-09-27 2024-01-02 东莞市鸿亿导热材料有限公司 一种高散热性石墨烯陶瓷铜板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117336944A (zh) * 2023-09-27 2024-01-02 东莞市鸿亿导热材料有限公司 一种高散热性石墨烯陶瓷铜板及其制备方法
CN117336944B (zh) * 2023-09-27 2024-04-12 东莞市鸿亿导热材料有限公司 一种高散热性石墨烯陶瓷铜板及其制备方法

Similar Documents

Publication Publication Date Title
CN109913185B (zh) 一种含导热膜的多层结构导热复合材料及其制备方法
WO2016078432A1 (zh) 改性氧化铝复合材料、覆铜基板及其制备方法
CN111500019A (zh) 一种基于BN-Al2O3改性的高导热绝缘环氧树脂材料及其制法
CN115483112A (zh) 一种氮化硅陶瓷覆铜板及其制备工艺
CN115028460B (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN108863396B (zh) 一种氮化硅基连续功能梯度陶瓷球及其制备方法和应用
CN113493676B (zh) 一种缩合型双组份有机硅灌封胶及其制备方法
CN109337409B (zh) 一种改性六方氮化硼粉体及其制备方法和应用
CN108866456B (zh) 一种不锈钢纤维增强铝合金复合材料及其制备方法
CN111018540A (zh) 一种基于低温热压烧结的高强度氮化硼陶瓷复合材料
CN108659457A (zh) 一种氮化硼包覆磺化石墨烯-环氧树脂复合材料及其制备方法
CN103204682B (zh) 一种高导热氮化铝陶瓷散热基片及其制备方法
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
CN115259889B (zh) 一种多孔碳化硅陶瓷及其制备方法和应用、铝碳化硅复合材料
CN110452415B (zh) 一种高分散石墨烯增强双马树脂基复合材料的制备方法
CN115417402B (zh) 一种石墨烯复合膜材料的制备方法
CN1392219A (zh) 高热导性复合材料及其制备方法
CN115557783B (zh) 一种低膨胀低介电常数低损耗的低温共烧材料及其制备方法
JPS6226355B2 (zh)
CN114195538A (zh) 一种致密六方氮化硼陶瓷材料的制备方法
CN111961299B (zh) 一种用于微波基片的陶瓷填充ptfe基复合材料及其制备方法和应用
CN114316868A (zh) 一种导热胶及其制备方法和用途
CN113831145A (zh) 一种抗氧化的纤维增强硅硼氮复合材料及其制备方法和应用
CN113121243B (zh) 高亮度led光源用基板及其制备方法
CN113307646A (zh) 一种高导热高纯石墨基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination