CN115475413A - 一种用于油水分离的超亲水铜网及其制备方法 - Google Patents

一种用于油水分离的超亲水铜网及其制备方法 Download PDF

Info

Publication number
CN115475413A
CN115475413A CN202211012563.3A CN202211012563A CN115475413A CN 115475413 A CN115475413 A CN 115475413A CN 202211012563 A CN202211012563 A CN 202211012563A CN 115475413 A CN115475413 A CN 115475413A
Authority
CN
China
Prior art keywords
oil
copper mesh
water separation
water
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211012563.3A
Other languages
English (en)
Other versions
CN115475413B (zh
Inventor
李坤泉
周佳乐
吴文剑
苏晓竞
王佳星
吴旭庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202211012563.3A priority Critical patent/CN115475413B/zh
Publication of CN115475413A publication Critical patent/CN115475413A/zh
Application granted granted Critical
Publication of CN115475413B publication Critical patent/CN115475413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Abstract

本发明涉及油水分离材料领域,特别是涉及一种用于油水分离的超亲水铜网的制备方法,本发明用于油水分离的超亲水铜网通过在铜网表面接枝改性硅烷偶联剂和亲水丙磺酸盐化合物获得。将经过洗涤和等离子处理后的铜网置于硅烷偶联剂乙醇溶液中进行接枝改性,在铜网表面涂覆含乙烯基或巯基的硅烷偶联剂涂层,随后将改性后的铜网浸入含有光引发剂、交联剂和丙磺酸盐化合物的溶液中,取出后在紫外灯下进行光固化,获得稳定的用于油水分离的超亲水铜网。本方法工艺简单,亲水的磺酸盐基团通过化学接枝的方式固定在铜网表面,所制备的用于油水分离的超亲水铜网具有优异的稳定性,在摩擦和长期储存后仍然具有超亲水性能。该铜网可有效分离油水混合物,而且可以多次循环使用,有望应用于海洋原油泄漏与工业油污水域处理领域。

Description

一种用于油水分离的超亲水铜网及其制备方法
技术领域
本发明涉及油水分离材料领域,特别是涉及一种用于油水分离的超亲水铜网及其制备方法。
背景技术
随着科学技术和人类工业的发展,石油化工、纺织和原油泄漏等产生的含油污水对人类健康和生态系统造成了极大的污染和破坏。因此,如何开发高效的油水分离材料解决上述问题已经受到人们的密切关注。研究发现,采用油水分离的方式,不仅能将含油污染物回收利用,还可以减少污水的排放。特别是通过对分离膜表面润湿性的调控,制备具有特殊功能的薄膜可以实现油水的分离。常见的油水分离材料有超疏水超亲油和超亲水两种,与超疏水超亲油分离网分离油相相比,超亲水油水分离网分离水相可以防止材料被油相污染,特别解决高粘度的油无法分离的问题,因此具有更好的应用前景。
现有技术公开了一种油水分离网膜及其制备方法与应用,他们通过合成同时含有聚乙二醇亲水链、二甲基氨乙基疏水链以及贻贝仿生邻苯二酚基团的共聚物,并通过一系列改性制备获得了用于油水分离的超亲水铜网,但是该方法获得的亲水接触角约为10°,同时制备过程较繁琐。为了提高亲水性和简化工艺,现有技术提供一种改性金属及其制备方法,他们主要通过在金属或金属滤网的表面原位直接氟化反应形成金属氟化物层,使金属或金属滤网具有超亲水性和水下超疏油性能,并将其应用于油水分离,制备方法简单易行,成本低廉,但是需要在高温或高压下进行。现有技术为了解决工艺繁琐的问题,采用简单的激光、碱溶液或电解液刻蚀的方式,在铜网表面构筑多层次微纳米结构制备超亲水油水分离网,但是该方法会腐蚀铜网,导致其性能下降。为了提高其稳定性,现有技术通过浸渍法在铜网表面涂覆有机或有机/无机复合涂层制备超亲水油水分离网,但是通过涂覆的方式会导致使用过程中涂层的脱落,特别是亲水材料容易在水中溶解,因此稳定性仍有待提高。另一方案通过在改性不锈钢网表面涂覆聚乙烯醇/硅酸钠涂层制备超亲水油水分离网,他们发现,表面亲水材料的流失会使其失去亲水性,从而表面容易被油污染,进而降低油水分离效率和分离速度。
因此,如何提高超亲水油水分离网的稳定性,保持油水分离效率和分离速度一直是该领域研究的难点。
发明内容
为解决上述技术问题,本发明提供一种高稳定性的用于油水分离的超亲水铜网。
本发明提供一种用于油水分离的超亲水铜网的制备方法,制备工艺简单,且可多次循环使用。
本发明采用如下技术方案:
一种用于油水分离的超亲水铜网的制备方法,包括如下步骤:将铜网用去离子水和无水乙醇超声清洗,烘干后将其进行等离子处理60~500s,随后将处理后的铜网浸入混合有硅烷偶联剂的乙醇水溶液中,在30~70℃下反应6~48h,干燥后将获得的改性铜网浸入混合有磺酸盐、引发剂、交联剂的乙醇水溶液中,取出后置于光固化箱中进行固化交联,得到用于油水分离的超亲水铜网。
对上述技术方案的进一步改进为,所述铜网的目数为100~800目。
对上述技术方案的进一步改进为,所述乙醇水溶液中乙醇与水的质量比为1:99~20:80。
对上述技术方案的进一步改进为,所述硅烷偶联剂为γ-巯丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷、γ-巯丙基甲基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基(β-甲氧基乙氧基)硅烷中的一种。
对上述技术方案的进一步改进为,所述硅烷偶联剂的浓度为0.1~2.0wt%。
对上述技术方案的进一步改进为,所述磺酸盐为乙烯基磺酸钠、烯丙基磺酸钠、苯乙烯磺酸钠、甲基烯丙基磺酸钠、烯丙氧基丙磺酸钠、对甲基烯丙氧基丙磺酸钠、十二烷基烯丙基琥珀酸酯磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠中的一种。
对上述技术方案的进一步改进为,所述引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-2-甲基苯丙酮、酮类夺氢型液态光引发剂中的一种。
对上述技术方案的进一步改进为,所述交联剂为二乙烯基苯、三羟甲基丙烷三丙烯酸酯、己二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯中的一种。
对上述技术方案的进一步改进为,所述磺酸盐的浓度为0.1~5.0wt%;所述引发剂的浓度为0.3~1.5wt%;所述交联剂的浓度为0.5~2.5wt%。
本发明的有益效果为:
(1)所制备的超亲水油水分离网具有较高的分离效率和分离速度;
(2)通过化学接枝的方式将亲水单体固定在铜网表面,所制备的超亲水油水分离网具有优异的稳定性,多次循环使用后表面润湿性和分离效率、分离速度不下降,且能多次循环使用;
(3)制备工艺简单,反应条件温和,不需要特殊的仪器设备。
附图说明
图1为本发明的实施例1的改性前的铜网表面的扫描电镜图;
图2为本发明的实施例1的硅烷偶联剂改性后的铜网的扫描电镜图。
具体实施方式
为更好的理解本发明,下面结合实施例对本发明作进一步的说明,但是本发明的实施方式不限于此。
一种用于油水分离的超亲水铜网的制备方法,包括如下步骤:将铜网用去离子水和无水乙醇超声清洗,烘干后将其进行等离子处理60~500s,随后将处理后的铜网浸入混合有硅烷偶联剂的乙醇水溶液中,在30~70℃下反应6~48h,干燥后将获得的改性铜网浸入混合有磺酸盐、引发剂、交联剂的乙醇水溶液中,取出后置于光固化箱中进行固化交联,得到用于油水分离的超亲水铜网。
进一步地,所述铜网的目数为100~800目。
进一步地,所述乙醇水溶液中乙醇与水的质量比为1:99~20:80。
进一步地,所述硅烷偶联剂为γ-巯丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷、γ-巯丙基甲基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基(β-甲氧基乙氧基)硅烷中的一种。
进一步地,所述硅烷偶联剂的浓度为0.1~2.0wt%。
进一步地,所述磺酸盐为乙烯基磺酸钠、烯丙基磺酸钠、苯乙烯磺酸钠、甲基烯丙基磺酸钠、烯丙氧基丙磺酸钠、对甲基烯丙氧基丙磺酸钠、十二烷基烯丙基琥珀酸酯磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠中的一种。
进一步地,所述引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-2-甲基苯丙酮、酮类夺氢型液态光引发剂中的一种。
进一步地,所述交联剂为二乙烯基苯、三羟甲基丙烷三丙烯酸酯、己二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯中的一种。
进一步地,所述磺酸盐的浓度为0.1~5.0wt%;所述引发剂的浓度为0.3~1.5wt%;所述交联剂的浓度为0.5~2.5wt%。
一种用于油水分离的超亲水铜网,所述用于油水分离的超亲水铜网使用如上述的制备方法制得。
进一步地,所述用于油水分离的超亲水铜网在海洋原油泄漏与工业油污水处理领域的应用。
进一步地,所述工业油为正己烷、石油醚、矿物油、原油、甲苯、二甲苯、丙酮、柴油、汽油、煤油、泵油和润滑油中的一种或几种的混合物。
实施例1
将200目数的铜网用去离子水和无水乙醇在超声仪中清洗10min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理200s,随后将处理后的铜网浸入装有浓度为0.5wt%的γ-巯丙基三甲氧基硅烷的乙醇水溶液(90份乙醇和10份水)的三口瓶中,置于50℃水浴锅中反应24h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥30min,然后将获得的改性铜网浸入浓度为2.0wt%的2-丙烯酰胺基-2-甲基丙磺酸钠、引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦浓度为0.8wt%、交联剂三羟甲基丙烷三丙烯酸酯浓度为1.0wt%的乙醇水溶液中,浸泡10min后,取出后置于光固化箱中进行固化交联10s,得到用于油水分离的超亲水铜网,其接触角接近于0°。
图1和图2为本实施例中改性前后的铜网表面的扫描电镜(SEM)照片。由图1可知,未处理的铜网表面光滑,而处理后的铜网表面呈现多层次的凹凸结构,说明硅烷偶联剂成功对铜网表面进行了改性接枝。
实施例2
将400目数的铜网用去离子水和无水乙醇在超声仪中清洗5min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理60s,随后将处理后的铜网浸入装有浓度为2.0wt%的γ-甲基丙烯酰氧基丙基三甲氧基硅烷的乙醇水溶液(80份乙醇和20份水)的三口瓶中,置于70℃水浴锅中反应6h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥20min,然后将获得的改性铜网浸入浓度为3.0wt%的乙烯基磺酸钠、引发剂苯基双(2,4,6-三甲基苯甲酰基)氧化膦浓度为1.0wt%、交联剂己二醇二甲基丙烯酸酯浓度为0.5wt%的乙醇水溶液中,浸泡5min后,取出后置于光固化箱中进行固化交联30s,得到用于油水分离的超亲水铜网。所得用于油水分离的超亲水铜网对水的接触角接近于0°。
实施例3
将800目数的铜网用去离子水和无水乙醇在超声仪中清洗15min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理500s,随后将处理后的铜网浸入装有浓度为0.1wt%的γ-巯丙基三甲氧基硅烷的乙醇水溶液(99份乙醇和1份水)的三口瓶中,置于30℃水浴锅中反应48h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥20min,然后将获得的改性铜网浸入浓度为0.1wt%的十二烷基烯丙基琥珀酸酯磺酸钠、引发剂2-羟基-2-甲基苯丙酮浓度为0.3wt%、交联剂二乙烯基苯浓度为0.5wt%的乙醇水溶液中,浸泡2min后,取出后置于光固化箱中进行固化交联15s,得到用于油水分离的超亲水铜网。所得用于油水分离的超亲水铜网对水的接触角接近于0°。
实施例4
将100目数的铜网用去离子水和无水乙醇在超声仪中清洗5min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理240s,随后将处理后的铜网浸入装有浓度为0.8wt%的γ-巯丙基三乙氧基硅烷的乙醇水溶液(90份乙醇和10份水)的三口瓶中,置于60℃水浴锅中反应28h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥20min,然后将获得的改性铜网浸入浓度为1.2wt%的甲基烯丙基磺酸钠、引发剂酮类夺氢型液态光引发剂浓度为0.9wt%、交联剂聚乙二醇二甲基丙烯酸酯浓度为0.4wt%的乙醇水溶液中,浸泡4min后,取出后置于光固化箱中进行固化交联25s,得到用于油水分离的超亲水铜网。所得用于油水分离的超亲水铜网对水的接触角接近于0°。
实施例5
将200目数的铜网用去离子水和无水乙醇在超声仪中清洗8min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理360s,随后将处理后的铜网浸入装有浓度为0.5wt%的γ-巯丙基甲基二甲氧基硅烷的乙醇水溶液(85份乙醇和15份水)的三口瓶中,置于50℃水浴锅中反应28h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥15min,然后将获得的改性铜网浸入浓度为5.0wt%的苯乙烯磺酸钠、引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦浓度为1.5wt%、交联剂聚乙二醇二甲基丙烯酸酯浓度为2.5wt%的乙醇水溶液中,浸泡1min后,取出后置于光固化箱中进行固化交联5s,得到用于油水分离的超亲水铜网。所得用于油水分离的超亲水铜网对水的接触角接近于0°。
实施例6
将100目数的铜网用去离子水和无水乙醇在超声仪中清洗12min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理200s,随后将处理后的铜网浸入装有浓度为1.2wt%的乙烯基(β-甲氧基乙氧基)硅烷的乙醇水溶液(95份乙醇和5份水)的三口瓶中,置于30℃水浴锅中反应36h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥8min,然后将获得的改性铜网浸入浓度为1.6wt%的烯丙基磺酸钠、引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦浓度为0.4wt%、交联剂三羟甲基丙烷三丙烯酸酯浓度为0.5wt%的乙醇水溶液中,浸泡3min后,取出后置于光固化箱中进行固化交联12s,得到用于油水分离的超亲水铜网。所得用于油水分离的超亲水铜网对水的接触角接近于0°。
对比例1
将200目数的铜网用去离子水和无水乙醇在超声仪中清洗10min后,移至鼓风烘箱中进行干燥,随后将铜网浸入装有浓度为0.5wt%的γ-巯丙基三甲氧基硅烷的乙醇水溶液(90份乙醇和10份水)的三口瓶中,置于50℃水浴锅中反应24h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥30min,然后将获得的改性铜网浸入浓度为2.0wt%的2-丙烯酰胺基-2-甲基丙磺酸钠、引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦浓度为0.8wt%、交联剂三羟甲基丙烷三丙烯酸酯浓度为1.0wt%的乙醇水溶液中,浸泡10min后,取出后置于光固化箱中进行固化交联10s,得到亲水铜网。所得亲水铜网对水的接触角接近于48°。
对比例2
将200目数的铜网用去离子水和无水乙醇在超声仪中清洗10min后,移至鼓风烘箱中进行干燥,烘干后将其进行等离子处理200s,随后将处理后的铜网浸入装有浓度为0.5wt%的γ-巯丙基三甲氧基硅烷的乙醇水溶液(90份乙醇和10份水)的三口瓶中,置于50℃水浴锅中反应2h,取出后用乙醇水溶液反复清洗三次后,置于烘箱中干燥30min,然后将获得的改性铜网浸入浓度为2.0wt%的2-丙烯酰胺基-2-甲基丙磺酸钠、引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦浓度为0.8wt%、交联剂三羟甲基丙烷三丙烯酸酯浓度为1.0wt%的乙醇水溶液中,浸泡10min后,取出后置于光固化箱中进行固化交联10s,得到用于油水分离的超亲水铜网。所得亲水铜网对水的接触角接近于0°。
测试方法
(1)油水分离测试
进行如下油水分离实验,将用于油水分离的超亲水铜网预先用水润湿后,将20g正己烷与20g蒸馏水混合液倾倒在铜网表面,观察正己烷与水能否实现分离。
(2)耐磨性测试
以磨砂纸(1200目)为磨损面,超亲水表面为被磨损面,在12.5kPa的压强下,以3cm/s的速度拉被测样品,测试距离为15cm,重复测试10次后,测试表面对水的接触角。
(3)稳定性测试
将超亲水表面浸入pH=7的去离子水中,浸泡72h后,测试表面对水的接触角。
表1实施例和对比例性能测试结果
接触角/° 稳定性测试 耐磨性 能否油水分离
实施例1
实施例2 10°
实施例3 12° 16°
实施例4
实施例5
实施例6
对比例1 48° 78° 67°
对比例2 52° 37°
从表1的实施例和对比例的性能测试可以看出,实施例1-6中,获得的用于油水分离的超亲水铜网接触角为0°,能有效分离油水混合物,且稳定性和耐磨性较好。
与实施例1对比,尽管对比例1-2都可以分离油水混合物,但是对比例1接触角较大,亲水性差,且稳定性和耐磨差;虽然对比例2具有超亲水性能,接触角接近于0°,但是稳定性和耐磨性也较差。因此,本发明得到的用于油水分离的超亲水铜网具有稳定的超亲水性能,且兼具良好的耐磨性,能有效分离油水混合物。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种用于油水分离的超亲水铜网的制备方法,其特征在于,包括如下步骤:将铜网用去离子水和无水乙醇超声清洗,烘干后将其进行等离子处理60~500s,随后将处理后的铜网浸入混合有硅烷偶联剂的乙醇水溶液中,在30~70℃下反应6~48h,干燥后将获得的改性铜网浸入混合有磺酸盐、引发剂、交联剂的乙醇水溶液中,取出后置于光固化箱中进行固化交联,得到用于油水分离的超亲水铜网。
2.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述铜网的目数为100~800目。
3.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述乙醇水溶液中乙醇与水的质量比为1:99~20:80。
4.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述硅烷偶联剂为γ-巯丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷、γ-巯丙基甲基二甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基(β-甲氧基乙氧基)硅烷中的一种。
5.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述硅烷偶联剂的浓度为0.1~2.0wt%。
6.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述磺酸盐为乙烯基磺酸钠、烯丙基磺酸钠、苯乙烯磺酸钠、甲基烯丙基磺酸钠、烯丙氧基丙磺酸钠、对甲基烯丙氧基丙磺酸钠、十二烷基烯丙基琥珀酸酯磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠中的一种。
7.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述引发剂2,4,6(三甲基苯甲酰基)二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、2-羟基-2-甲基苯丙酮、酮类夺氢型液态光引发剂中的一种。
8.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述交联剂为二乙烯基苯、三羟甲基丙烷三丙烯酸酯、己二醇二甲基丙烯酸酯、聚乙二醇二甲基丙烯酸酯中的一种。
9.根据权利要求1所述的用于油水分离的超亲水铜网的制备方法,其特征在于,所述磺酸盐的浓度为0.1~5.0wt%;所述引发剂的浓度为0.3~1.5wt%;所述交联剂的浓度为0.5~2.5wt%。
10.一种用于油水分离的超亲水铜网,其特征在于,所述用于油水分离的超亲水铜网使用如权利要求1-9任一项所述的制备方法制得。
CN202211012563.3A 2022-08-23 2022-08-23 一种用于油水分离的超亲水铜网及其制备方法 Active CN115475413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211012563.3A CN115475413B (zh) 2022-08-23 2022-08-23 一种用于油水分离的超亲水铜网及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211012563.3A CN115475413B (zh) 2022-08-23 2022-08-23 一种用于油水分离的超亲水铜网及其制备方法

Publications (2)

Publication Number Publication Date
CN115475413A true CN115475413A (zh) 2022-12-16
CN115475413B CN115475413B (zh) 2023-08-04

Family

ID=84420941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211012563.3A Active CN115475413B (zh) 2022-08-23 2022-08-23 一种用于油水分离的超亲水铜网及其制备方法

Country Status (1)

Country Link
CN (1) CN115475413B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148359A1 (en) * 2011-04-28 2012-11-01 National University Of Singapore A highly hydrophilic and highly oleophobic membrane for oil-water separation
CN105536296A (zh) * 2016-01-25 2016-05-04 华南理工大学 用于油水分离的超疏水/超亲油铜网及其制备方法与应用
CN105712638A (zh) * 2015-12-07 2016-06-29 华南理工大学 玻璃用紫外光固化聚丙烯酸酯超亲水涂层及其制备方法
CN106519753A (zh) * 2016-10-26 2017-03-22 华南理工大学 一种基于金属铁制品的超疏水涂层及其制备方法
JP2017196597A (ja) * 2016-04-28 2017-11-02 旭化成株式会社 親水性物質を疎水性物質から分離する方法及び装置
US20180178144A1 (en) * 2016-12-27 2018-06-28 Soochow University Material used for rapid separation of oil and water and preparation method and application thereof
CN108905296A (zh) * 2018-07-13 2018-11-30 福建农林大学 一种具有高稳定性可生物降解的双网络油水分离网膜的制备方法
CN109603208A (zh) * 2019-01-09 2019-04-12 常熟理工学院 一种用于油水分离的网及其制备方法
CN110004710A (zh) * 2019-03-26 2019-07-12 华南理工大学 超亲水水下超疏油和超亲油油下超疏水织物及其制备方法与应用
US20210129089A1 (en) * 2019-11-01 2021-05-06 Ypf Tecnología S.A. Super-hydrophilic membranes based on copper(i) iodide deposits on metal meshes
CN113265879A (zh) * 2021-04-29 2021-08-17 东莞理工学院 一种多重交联超亲水织物及其制备方法
US20220118380A1 (en) * 2020-10-21 2022-04-21 POSTECH Research and Business Development Foundation Super-hydrophilic surface treatment method of filtration medium, super-hydrophilic filter for oil-water separation and method of fabricating the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148359A1 (en) * 2011-04-28 2012-11-01 National University Of Singapore A highly hydrophilic and highly oleophobic membrane for oil-water separation
CN105712638A (zh) * 2015-12-07 2016-06-29 华南理工大学 玻璃用紫外光固化聚丙烯酸酯超亲水涂层及其制备方法
CN105536296A (zh) * 2016-01-25 2016-05-04 华南理工大学 用于油水分离的超疏水/超亲油铜网及其制备方法与应用
JP2017196597A (ja) * 2016-04-28 2017-11-02 旭化成株式会社 親水性物質を疎水性物質から分離する方法及び装置
CN106519753A (zh) * 2016-10-26 2017-03-22 华南理工大学 一种基于金属铁制品的超疏水涂层及其制备方法
US20180178144A1 (en) * 2016-12-27 2018-06-28 Soochow University Material used for rapid separation of oil and water and preparation method and application thereof
CN108905296A (zh) * 2018-07-13 2018-11-30 福建农林大学 一种具有高稳定性可生物降解的双网络油水分离网膜的制备方法
CN109603208A (zh) * 2019-01-09 2019-04-12 常熟理工学院 一种用于油水分离的网及其制备方法
CN110004710A (zh) * 2019-03-26 2019-07-12 华南理工大学 超亲水水下超疏油和超亲油油下超疏水织物及其制备方法与应用
US20210129089A1 (en) * 2019-11-01 2021-05-06 Ypf Tecnología S.A. Super-hydrophilic membranes based on copper(i) iodide deposits on metal meshes
US20220118380A1 (en) * 2020-10-21 2022-04-21 POSTECH Research and Business Development Foundation Super-hydrophilic surface treatment method of filtration medium, super-hydrophilic filter for oil-water separation and method of fabricating the same
CN113265879A (zh) * 2021-04-29 2021-08-17 东莞理工学院 一种多重交联超亲水织物及其制备方法

Also Published As

Publication number Publication date
CN115475413B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
Sam et al. Surface engineering materials of superhydrophobic sponges for oil/water separation: A review
Chen et al. Nature-inspired hierarchical protrusion structure construction for washable and wear-resistant superhydrophobic textiles with self-cleaning ability
Huang et al. Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability
Chen et al. UV-cured fluoride-free polyurethane functionalized textile with pH-induced switchable superhydrophobicity and underwater superoleophobicity for controllable oil/water separation
Zhai et al. Durable super-hydrophobic PDMS@ SiO2@ WS2 sponge for efficient oil/water separation in complex marine environment
CN109261127B (zh) 一种无选择性疏油亲水材料及其制备方法和应用
CN107011534B (zh) 一种超疏水超亲油三聚氰胺泡沫及其制备方法与应用
CN109806780B (zh) 一种线性聚二甲基硅烷修饰油水分离膜的制备方法及其制备的油水分离膜
Wang et al. Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation
CN110004710B (zh) 超亲水水下超疏油和超亲油油下超疏水织物及其制备方法与应用
He et al. Facile preparation of robust superhydrophobic/superoleophilic TiO2-decorated polyvinyl alcohol sponge for efficient oil/water separation
Xue et al. Hierarchical superhydrophobic polydimethylsiloxane/copper terephthalate/polyurethane sponge for highly efficient oil/water separation
Jin et al. Mussel-inspired and in situ polymerization-modified commercial sponge for efficient crude oil and organic solvent adsorption
CN109011701B (zh) 一种具有pH响应性油水分离材料及其制备方法与应用
Wu et al. Fabrication of highly underwater oleophobic textiles through poly (vinyl alcohol) crosslinking for oil/water separation: the effect of surface wettability and textile type
Dong et al. Shish–kebab-structured UHMWPE coating for efficient and cost-effective oil–water separation
CN105536554A (zh) 一种基于液体表面张力差异分离有机混合液体的分离膜的制备方法和应用
CN108339410A (zh) 一种聚离子液体修饰的三维结构网膜及制备方法和应用
CN115475413A (zh) 一种用于油水分离的超亲水铜网及其制备方法
Zhang et al. Superhydrophilic sandwich structure aerogel membrane for emulsion separation and heavy metal ion removal
CN113321846A (zh) 一种可处理粘性原油的超疏水光热吸附材料及其制备方法
Yang et al. Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation
Cao et al. Facile preparation of cotton fabric modified with iron oxide nanoparticles with durable superhydrophobicity for oil/water separation
CN111841514B (zh) 高性能水下超疏油性回收泡沫及其制备方法
KR20200118942A (ko) 마이크로-나노 복합 구조를 갖는 고분자 소재, 이를 포함하는 장치, 및 상기 고분자 소재의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant