CN115448353B - 一种超小粒径二氧化铈的制备及其脱硫应用 - Google Patents

一种超小粒径二氧化铈的制备及其脱硫应用 Download PDF

Info

Publication number
CN115448353B
CN115448353B CN202211075996.3A CN202211075996A CN115448353B CN 115448353 B CN115448353 B CN 115448353B CN 202211075996 A CN202211075996 A CN 202211075996A CN 115448353 B CN115448353 B CN 115448353B
Authority
CN
China
Prior art keywords
particle size
ultra
catalyst
small particle
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211075996.3A
Other languages
English (en)
Other versions
CN115448353A (zh
Inventor
江莉龙
郑小海
王世萍
詹瑛瑛
曹彦宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan Innovation Laboratory
Fuzhou University
Original Assignee
Qingyuan Innovation Laboratory
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingyuan Innovation Laboratory, Fuzhou University filed Critical Qingyuan Innovation Laboratory
Priority to CN202211075996.3A priority Critical patent/CN115448353B/zh
Publication of CN115448353A publication Critical patent/CN115448353A/zh
Application granted granted Critical
Publication of CN115448353B publication Critical patent/CN115448353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超小粒径二氧化铈的制备及其脱硫应用。该方法以铈盐为原料,氨水为pH调节剂,添加柠檬酸和硅烷偶联剂,合成具有超小粒径的二氧化铈。H2O2的添加可加速原料单元的快速消耗和CeO2的结晶过程,避免持续的晶粒长大。更重要的是,硅烷偶联剂与CeO2的配位作用可延缓催化剂颗粒尺寸的增大,降低CeO2纳米颗粒的团聚程度。所制备CeO2催化剂的粒径大小为4~9 nm,催化剂的超小粒径纳米颗粒可降低反应气和反应底物的传质阻力,促进H2S和硝基苯与催化剂活性位点的充分接触,有效地促进反应的进行,使催化剂在H2S选择性催化还原硝基苯制苯胺的反应中表现出良好的催化活性。

Description

一种超小粒径二氧化铈的制备及其脱硫应用
技术领域
本发明涉及一种环境催化剂的制备技术及其应用领域,具体涉及一种超小粒径二氧化铈的制备方法及其在H2S还原硝基苯制苯胺方面的应用。
背景技术
硫化氢(H2S)具有极强的腐蚀性和毒性,广泛存在于煤化工、天然气炼制和炼油等多种化学工艺的伴生气中。因此,高效深度脱除H2S对大气污染防治和保障安全生产具有重要意义。传统的H2S脱除技术是Claus工艺,该工艺可以从含硫的气体中回收硫单质(2H2S +SO2 ⇆ 3S + 2H2O)。然而由于热力学平衡的限制,仍然有大约5%的H2S残留在排放的尾气中。此外,Claus工艺存在流程长和运行成本高的问题,限制了该工艺的应用。因此,需要发展更高效、工艺更简单的H2S脱除技术才能满足环保需求。
胺是重要的化工原料和合成中间体,其通过进一步转化可以衍生出一系列具有特殊性能的化合物,在制药、印染和精细化工等领域应用广泛。但是,传统的H2还原硝基苯制备苯胺需要使用高压,且H2易燃易爆,具有潜在的危险性。因此,将还原性气体H2S取代H2用于催化硝基苯制备苯胺既可制备得到高值产物苯胺,又能实现硫的资源化利用。反应式为:3H2S + C6H5-NO2 → C6H5-NH2 + 3S + 2H2O。
目前,催化还原硝基苯制苯胺的催化剂主要为贵重金属体系(Pt、Pd、Ru、Au)。这些负载型金属氧化物催化剂可高效催化硝基苯加氢制苯胺,但是贵金属价格昂贵,限制了该工艺的应用。
CeO2作为一种良好的储氧材料,由于其含有氧空位、可控的表面酸碱性以及Ce3+和Ce4+之间的氧化还原能力被广泛应用。但是,现有的CeO2的粒径尺寸普遍较大(20~50 nm),难以用于H2S还原硝基苯制苯胺的反应中,基于此,本发明提供了一种超小粒径二氧化铈的制备及其脱硫应用。具有超小粒径的二氧化铈充分利用超小粒径的纳米颗粒可降低反应气和反应底物的传质阻力,促进H2S和硝基苯与催化剂活性位点的充分接触,有效地促进反应的进行。
发明内容
本发明的目的在于针对现有技术的不足,提供一种超小粒径二氧化铈的制备方法及其应用,解决现有技术中H2S与硝基苯反应转化率低的问题。超小粒径的CeO2表面丰富的氧空位有利于H2S的吸附与解离,可促进H2S进一步催化转化。另外,原料组分从催化剂表面扩散到内部,即内扩散,是需要耗能的,粒径越小,孔道越短,能耗越小,能扩散进入催化剂孔道的分子越多。超小粒径的催化剂有利于活性位点的暴露和反应组分与活性位点的充分接触,提高H2S与硝基苯的反应速率。因此,通过调控制备超小粒径CeO2可高效地催化硝基苯和H2S制苯胺,具有潜在的应用价值。
为实现上述目的,本发明通过下述技术方案实现:
一种超小粒径二氧化铈的制备方法,包括以下步骤:
(1)将摩尔比为4:1铈盐和一定量的柠檬酸,溶于无水乙醇和蒸馏水的混合溶液中配成铈的前驱体;
(2)往步骤(1)铈的前驱体中滴加氨水和三乙醇胺的混合溶液,在一定温度下搅拌20分钟;
(3)接着在步骤(2)的反应体系中滴加硅烷偶联剂和H2O2溶液,并持续搅拌2小时;
(4)将步骤(3)得到的沉淀过滤、洗涤并置于烘箱中烘干,经500 ℃温度焙烧后得到最终产物为具有超小粒径的二氧化铈。
优选地,所述步骤(1)中铈盐为氯化铈或硝酸铈,无水乙醇和蒸馏水的体积比例为1:3~3:1。
优选地,所述步骤(2)中氨水的浓度为25wt%~28wt%。
优选地,所述步骤(2)中所述氨水和三乙醇胺的添加体积比例为4:1~3:2,搅拌温度为40~60 ℃。
优选地,所述步骤(3)中所述硅烷偶联剂为3-氨基丙基三乙氧基硅烷(KH550)或γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)。
优选地,所述步骤(3)中所述H2O2溶液的浓度为0.5 wt%。
优选地,所述步骤(4)中所述的干燥温度为80 ℃,焙烧温度为500 ℃,焙烧时间为2~3 h。
优选地,最终产物具有超小粒径二氧化铈为研磨后的粉末。
一种上述制备方法制备具有超小粒径二氧化铈的应用:用于H2S还原硝基苯制苯胺。
优选地,所述用于H2S还原硝基苯的反应温度为130 ℃。
优选地,所述具有超小粒径二氧化铈的催化剂用量为0.1 g;H2S的体积百分浓度为5%,N2为平衡气;原料气流速为25 mL•min-1;反应底物成分为:4 mL硝基苯,34 mL N,N-二甲基乙酰胺,1 g K2CO3溶于2 mL水。
本发明具有如下的优点和有益效果:
1、本发明所制得的超小粒径二氧化铈粒径可调性强,超小粒径有利于活性组分的暴露和反应气的扩散,且原材料价格低廉、制备过程简易,具有广阔的应用前景;
2、本发明合成的超小粒径二氧化铈,粒径大小为4~9 nm,所合成的样品具有丰富的氧空位,在H2S还原硝基苯制苯胺具有良好的活性和选择性;
3、本发明以铈盐为原料,氨水为pH调节剂,添加柠檬酸和硅烷偶联剂,合成具有超小粒径的二氧化铈。该催化剂通过简单的沉淀法制备,相比水热法工艺更加简单,可重复性强。H2O2的添加可加速原料单元的快速消耗和CeO2的结晶过程,避免持续的晶粒长大。更重要的是,硅烷偶联剂与CeO2的配位作用可延缓催化剂颗粒尺寸的增大,降低CeO2纳米颗粒的团聚程度。催化剂二氧化铈的超小粒径纳米颗粒可降低反应气和反应底物的传质阻力,促进H2S和硝基苯与催化剂活性位点的充分接触,有效地促进反应的进行,使催化剂在H2S选择性催化还原硝基苯制苯胺的反应中表现出良好的催化活性。
附图说明
图1为本发明实施例1~2和对比例1~2制备的二氧化铈的X射线粉末衍射谱图;
图2为本发明实施例1(图A)、实施例2(图B),对比例1(图C)和对比例2(图D)制备的二氧化铈的扫描电镜图;
图3为本发明实施例1制备的二氧化铈的透射电镜图;
图4为本发明实施例1~2和对比例1~2制备的二氧化铈的电子顺磁共振波谱(EPR)谱图;
图5为本发明实施例1~2和对比例1~2制备的二氧化铈的程序升温还原(H2-TPR)谱图;
图6为本发明实施例1~2和对比例1~2制备的二氧化铈在H2S还原硝基苯制苯胺的活性图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作详细的说明,所阐述的实例是对本发明的进一步的说明,而不是对本发明内容的限制。
实施例1
一种具有超小粒径二氧化铈的制备方法:称取4.09 g(11.0 mmol)的CeCl3·7H2O和0.5 g柠檬酸,溶于45 mL无水乙醇和15 mL蒸馏水配成的混合溶液中。配置20 mL氨水(浓度为25wt%)和5 mL三乙醇胺配成的混合溶液,并往上述铈前驱体溶液中滴加该混合溶液,在60 ℃下搅拌20分钟。接着在沉淀液中滴加0.5 g的3-氨基丙基三乙氧基硅烷(KH550),再滴加H2O2溶液(浓度0.5wt%)直到沉淀变成黄色,并在60 ℃下持续搅拌2小时。最后,将得到的沉淀过滤、洗涤并置于80 ℃烘箱中烘干,经500 ℃温度焙烧2小时后得到最终产物为具有超小粒径的二氧化铈,并命名为CeO2-KH550。
实施例2
一种具有超小粒径二氧化铈的制备方法:称取4.77 g(11.0 mmol)的Ce(NO3)3·6H2O和0.5 g柠檬酸,溶于30 mL无水乙醇和30 mL蒸馏水配成的混合溶液中。配置15 mL氨水(浓度为25wt%)和10 mL三乙醇胺配成的混合溶液,并往上述铈前驱体溶液中滴加该混合溶液,在50 ℃下搅拌20分钟。接着在沉淀液中滴加0.5 g的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570),再滴加H2O2溶液(浓度0.5 wt%)直到沉淀变成黄色,并在50 ℃下持续搅拌2小时。最后,将得到的沉淀过滤、洗涤并置于80 ℃烘箱中烘干,经500 ℃温度焙烧3小时后得到最终产物为具有超小粒径的二氧化铈,并命名为CeO2-KH570。
对比例1(未添加硅烷偶联剂)
一种二氧化铈的制备方法:称取4.09 g(11.0 mmol)的CeCl3·7H2O和0.5 g柠檬酸,溶于45 mL无水乙醇和15 mL蒸馏水配成的混合溶液中。配置20 mL氨水(浓度为25wt%)和5 mL三乙醇胺配成的混合溶液,并往上述铈前驱体溶液中滴加该混合溶液,在60 ℃下搅拌20分钟。往该混合溶液中滴加H2O2溶液(浓度0.5 wt%)直到沉淀变成黄色,并在60 ℃下持续搅拌2小时。最后,将得到的沉淀过滤、洗涤并置于80 ℃烘箱中烘干,经500 ℃温度焙烧2小时后得到最终产物为二氧化铈,并命名为CeO2-1。
对比例2(未添加H2O2溶液)
一种二氧化铈的制备方法:称取4.77 g(11.0 mmol)的Ce(NO3)3·6H2O和0.5 g柠檬酸,溶于30 mL无水乙醇和30 mL蒸馏水配成的混合溶液中。配置15 mL氨水(浓度为25wt%)和10 mL三乙醇胺配成的混合溶液,并往上述铈前驱体溶液中滴加该混合溶液,在50℃下搅拌20分钟。接着在沉淀液中滴加0.5 g的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570),并在50 ℃下持续搅拌2小时。最后,将得到的沉淀过滤、洗涤并置于80 ℃烘箱中烘干,经500 ℃温度焙烧3小时后得到最终产物为二氧化铈,并命名为CeO2-2。
X射线粉末衍射(XRD):样品的物相表征采用Panalytical公司的 X’ pert pro粉末衍射仪进行测定,探测器为X’celerator,铜靶(Cu Kα,λ = 0.154 nm)为激发射线源,工作电压为45 KV,工作电流为40 mA。
通过S-4800场发射扫描电子显微镜观察催化剂的形貌。分析室的真空度小于2.7×10–6 Pa,扫描电压与电流分别为5 kV和7 μA。将样品粉末粘到导电胶上进行喷金后观察。
场发射透射电镜(TEM):样品的TEM图像在Tecnai G2 F20型透射电子显微镜(TEM)上进行观察,加速电压为200 KV。
H2-TPR探究样品的还原性能可通过AutoChem 2920II型化学吸附仪分析。将100mg催化剂装入U型石英管,在氩气(30 mL/min)下经300 ℃预处理50分钟。降到室温后在10%H2/Ar气氛下升温至900 °C(10 ℃/min)进行还原过程,通过TCD检测器记录还原信号。
样品的缺陷或氧空位信息可以通过E-500电子顺磁共振仪(Bruker)获得。在室温下进行测试,测试频率为100 kHz。样品置于石英试管后,要保持试管竖直,并保证仪器的工作环境稳定以及空气流通。
图1为本发明实施例1~2和对比例1~2制备的二氧化铈的X射线粉末衍射谱图。从图中可以看出,四个样品均在28.7、33.2、47.4、56.4、59.2、69.3、76.5和79.1°的位置出现了八个衍射峰,其分别归属于CeO2 (JCPDS 34-0394)的(111)、(200)、(220)、(311)、(222)、(400)、(331)和(420)八个晶面,说明制备的样品均为二氧化铈。
图2为本发明实施例1~2和对比例1~2制备的二氧化铈的SEM图。从图中可以看出,4个样品均为纳米颗粒堆积的形貌特征。且4个样品对应的催化剂粒径大小分别为:CeO2-KH550(4~9 nm),CeO2-KH570(6~10 nm),CeO2-1(16~25 nm),CeO2-2(10~15 nm),说明硅烷偶联剂和H2O2的添加有利于形成超小粒径催化剂。
图3样品CeO2-KH550的TEM图证实催化剂确实添加硅烷偶联剂的CeO2催化剂具有超小粒径,粒径大小为4~9 nm。
图4为本发明实施例1~2和对比例1~2制备的CeO2催化剂的EPR谱图。从图中可以看出,4个样品均有一定量的氧空位。通过计算可知,4个样品的氧空位浓度分别为:CeO2-KH550(1.21 × 1021 cm–3),CeO2-KH570(0.98 × 1021 cm–3),CeO2-1(0.48 × 1021 cm–3),CeO2-2(0.76 × 1021 cm–3)。CeO2-KH550表面丰富的氧空位可促进H2S与硝基苯的吸附与进一步的转化。
图5为本发明实施例1~2和对比例1~2制备的二氧化铈的H2-TPR谱图。4个样品均在450–550 ℃和700–800 ℃出现两个脱附峰,分别对应于表面氧和体相氧的还原。通过峰位置比较可知,CeO2-KH550的氧化还原能力最强,还原性能的提高可促进H2S还原硝基苯反应的进行。
H2S还原硝基苯制苯胺性能测试:上述实施例1~2和对比例1~2制备的二氧化铈破碎并研磨成粉末用于H2S还原硝基苯的评价。测试条件如下:催化剂用量为0.1 g;H2S的体积百分浓度为5%,N2为平衡气;原料气流速为25 mL•min-1;反应底物成分为:4 mL硝基苯,34mL N,N-二甲基乙酰胺,1 g K2CO3溶于2 mL水。
图6为本发明实施例1~2和对比例1~2制备的CeO2在H2S还原硝基苯反应中的活性结果图。由图可知,添加硅烷偶联剂后的超小粒径CeO2催化剂具有更高的硝基苯转化率和苯胺收率。4个样品的苯胺收率分别为:CeO2-KH550(32.9%),CeO2-KH570(30.4%),CeO2-1(22.7%),CeO2-2(24.6%)。另外,CeO2-KH550高于CeO2-KH570的催化活性是由于其具有更多的氧空位。
综上可知,由本发明制备的超小粒径CeO2在H2S还原硝基苯制苯胺反应中具有不同的催化性能,其中CeO2-KH550样品的催化活性最高,具有巨大的应用潜力。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种超小粒径二氧化铈的应用,其特征在于:所述超小粒径二氧化铈作为催化剂用于H2S还原硝基苯制苯胺;
所述超小粒径二氧化铈的制备方法,包括以下步骤:
(1)将摩尔比为4:1的铈盐和柠檬酸,溶于无水乙醇和蒸馏水的混合溶液中配成铈的前驱体;
(2)往步骤(1)铈的前驱体中滴加氨水和三乙醇胺的混合溶液,在一定温度下搅拌20分钟;
(3)接着在步骤(2)的反应体系中滴加硅烷偶联剂和H2O2溶液,并持续搅拌2小时;
(4)将步骤(3)得到的沉淀过滤、洗涤并置于烘箱中烘干,经500 ℃温度焙烧后得到具有超小粒径的二氧化铈。
2.根据权利要求1所述的应用,其特征在于:步骤(1)中所述铈盐为氯化铈或硝酸铈,无水乙醇和蒸馏水的体积比为1:3~3:1。
3.根据权利要求1所述的应用,其特征在于:步骤(2)中所述氨水的浓度为25wt%~28wt%。
4.根据权利要求1所述的应用,其特征在于:步骤(2)中所述氨水和三乙醇胺的添加体积比例为6:1~3:2,搅拌温度为40~60 ℃。
5.根据权利要求1所述的应用,其特征在于:步骤(3)中所述硅烷偶联剂为3-氨基丙基三乙氧基硅烷KH550或γ-甲基丙烯酰氧基丙基三甲氧基硅烷KH570。
6.根据权利要求1所述的应用,其特征在于:步骤(3)中所述H2O2溶液的浓度为0.5 wt%。
7.根据权利要求1所述的应用,其特征在于:步骤(4)中所述的干燥温度为80 ℃,焙烧时间为2~4 h。
8.根据权利要求1所述的应用,其特征在于:H2S还原硝基苯制苯胺时,反应温度为130℃。
9.根据权利要求1所述的应用,其特征在于:H2S还原硝基苯制苯胺时,原料气组分为:体积百分比5% H2S,N2为平衡气,原料气流速为25 mL•min-1;催化剂用量为100 mg;反应底物成分为:4 mL硝基苯,34 mL N,N-二甲基乙酰胺,1 g K2CO3溶于2 mL水。
CN202211075996.3A 2022-09-05 2022-09-05 一种超小粒径二氧化铈的制备及其脱硫应用 Active CN115448353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211075996.3A CN115448353B (zh) 2022-09-05 2022-09-05 一种超小粒径二氧化铈的制备及其脱硫应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211075996.3A CN115448353B (zh) 2022-09-05 2022-09-05 一种超小粒径二氧化铈的制备及其脱硫应用

Publications (2)

Publication Number Publication Date
CN115448353A CN115448353A (zh) 2022-12-09
CN115448353B true CN115448353B (zh) 2023-08-08

Family

ID=84301244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211075996.3A Active CN115448353B (zh) 2022-09-05 2022-09-05 一种超小粒径二氧化铈的制备及其脱硫应用

Country Status (1)

Country Link
CN (1) CN115448353B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977503A (ja) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd 金属酸化物または水酸化物ゾルの製造方法
CN1371867A (zh) * 2001-02-27 2002-10-02 日产化学工业株式会社 结晶性二氧化铈溶胶及其制造方法
CN103896321A (zh) * 2012-12-28 2014-07-02 上海新安纳电子科技有限公司 一种氧化铈复合颗粒及其制备方法和应用
CN111434379A (zh) * 2019-01-11 2020-07-21 北京化工大学 一种油溶性单分散纳米二氧化铈催化剂、制备方法及应用
CN113428888A (zh) * 2020-03-23 2021-09-24 厦门稀土材料研究所 一种高分散氧化铈纳米溶胶及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977503A (ja) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd 金属酸化物または水酸化物ゾルの製造方法
CN1371867A (zh) * 2001-02-27 2002-10-02 日产化学工业株式会社 结晶性二氧化铈溶胶及其制造方法
CN103896321A (zh) * 2012-12-28 2014-07-02 上海新安纳电子科技有限公司 一种氧化铈复合颗粒及其制备方法和应用
CN111434379A (zh) * 2019-01-11 2020-07-21 北京化工大学 一种油溶性单分散纳米二氧化铈催化剂、制备方法及应用
CN113428888A (zh) * 2020-03-23 2021-09-24 厦门稀土材料研究所 一种高分散氧化铈纳米溶胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ultrasmall CeO2 Nanoparticles with Rich Oxygen Defects as Novel Catalysts for Efficient Glycolysis of Polyethylene Terephthalate";Ling-Xia Yun et al.;《ACS Sustainable Chemistry & Engineering》;第第10卷卷;第5278-5287页 *

Also Published As

Publication number Publication date
CN115448353A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Zhu et al. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies
CN112221528B (zh) 一种单原子催化剂及其制备方法与应用
KR102100522B1 (ko) 수소의 제조를 위한 금속성 황화물에 기반한 복합 광촉매
CN110327920A (zh) 一种单原子催化剂及其制备方法和应用
CN112619648B (zh) 一种用于有机硫水解脱除的铜钴基催化剂及其制备方法
CN113275011B (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
Feng et al. Synthesis and characterization of the flower-like LaxCe1− xO1. 5+ δ catalyst for low-temperature oxidative coupling of methane
Khanderi et al. Binary [Cu 2 O/MWCNT] and ternary [Cu 2 O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation
CN112007641A (zh) 一种高分散的Ru/ABOx负载型催化剂及其制备方法和应用
CN113694929B (zh) 负载型单原子铜基金属氧化物催化剂及制备方法和应用
CN115448353B (zh) 一种超小粒径二氧化铈的制备及其脱硫应用
CN114917932B (zh) 一种用于co2光还原合成co和h2的催化剂、制备方法及应用
CN113600194B (zh) 一种含不同价态钴的纳米光催化剂、制备方法及其应用
CN116174000A (zh) 一种低缺陷钙钛矿型钽基氧氮化物光催化剂的制备方法及其应用
EP2590765B1 (en) Metal nanoparticles
CN114471580B (zh) 一种负载型镍镓催化剂的合成及其应用方法
CN112569988A (zh) 含沉淀型ε/ε’碳化铁和θ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN115445618B (zh) 一种铜修饰TiO2纳米片的合成及其应用
CN113083301B (zh) 一种金-氧化铋催化剂及其制备方法和应用
CN112275285B (zh) 一种促进co2加氢生成co的催化剂及其制备方法
CN114920623B (zh) 一种co2加氢制备甲醇的方法
Li et al. Interfacial hydrogen bond effect between CeO2 and g-C3N4 boosts conversion to adipic acid from aerobic oxidation of cyclohexane
CN118022779A (zh) 一种二硫化钼/氧化锆复合催化剂及其制备与应用
CN112569977A (zh) 含沉淀型χ碳化铁和θ碳化铁的组合物及制备方法、催化剂和应用及费托合成的方法
CN118289828A (zh) 一种花状Co3O4催化剂的制备方法及其在低浓度甲烷催化氧化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant