CN115400615B - 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用 - Google Patents

一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用 Download PDF

Info

Publication number
CN115400615B
CN115400615B CN202211141312.5A CN202211141312A CN115400615B CN 115400615 B CN115400615 B CN 115400615B CN 202211141312 A CN202211141312 A CN 202211141312A CN 115400615 B CN115400615 B CN 115400615B
Authority
CN
China
Prior art keywords
psg
membrane
cufc
copper
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211141312.5A
Other languages
English (en)
Other versions
CN115400615A (zh
Inventor
晋冠平
徐欢喜
张旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202211141312.5A priority Critical patent/CN115400615B/zh
Publication of CN115400615A publication Critical patent/CN115400615A/zh
Application granted granted Critical
Publication of CN115400615B publication Critical patent/CN115400615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用。本发明采用相转化技术、原位浸泡吸附耦合共沉淀技术,制备了对Rb+具有选择性分离性能的CuFC/PSG复合膜。本发明将CuFC/PSG复合膜用于制备膜分离系统(RCP),先将盐湖卤水通入RCP,其上的CuFC/PSG可选择性吸附Rb+,饱和后,再将铵盐溶液通入RCP,经离子交换快速脱附Rb+,重复操作后可达到分离回收盐湖卤水中铷的目的。

Description

一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其 应用
技术领域
本发明涉及一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用。
背景技术
稀贵碱金属铷具有优异的光电化学活性,广泛应用于医药、工业催化和航空等高科技领域,具有较高工业和国民经济价值。我国青海察尔汗盐湖卤水中富含低浓度铷(5-80mg/L),如能分离出其中的铷,将可降低我国相关领域对进口铷产品的依赖程度,提升盐湖企业的生产竞争力,利于盐湖产业的建设和发展。
吸附法和膜法是工业常用的铷分离方法,前者工艺简单(李政霖等,CN112742343A;邱凤仙等,CN109174049A),后者环境友好(Yu C,et al,Separation andPurification Technology,2021,255:117727)。亚铁氰化铜(CuFC)的晶格笼尺寸和铷(铯)水合离子尺寸匹配度适中,可快速选择性吸附/脱附Rb+(Kim YK,et al,ChemicalEngineering Journal,2017,313:1042;)。但游离的CuFC在水中易流失,难回收和重复利用。另一方面,铷和铯为同族碱性金属,理化性质相似。研究显示:将亚铁氰化钴固定在聚偏氟乙烯膜,或中空纤维膜中可应用于放射性铯废水处理(丁士元等,CN108499375B和CN108187509B);将亚铁氰化镍电沉积在导电基体上可形成铯离子交换膜(郝小刚等,CN12623550C和CN102718292B)。此类复合膜将吸附剂和膜材料有机地结合在一起,赋予膜分离选择性,具有可操作性强,环境友好的优点,是未来盐湖卤水中铷分离的发展方向。
上述国内外研究为盐湖铷分离提供了依据。但是,我国察尔汗盐湖地处高海拔强紫外线照射地区,温差大,需要性能更加优越和稳定的功能复合膜材料。聚砜类膜材料为半透膜,其分子主链中含有硬段苯环、软段醚键及稳定的砜键,具有优良的耐紫外光(老化、氧化、酸碱、水解)性,及良好的机械强度。磺化聚砜类膜材料(PS)可在保留原材料优点的基础上,兼具优良的亲水性,已广泛应用在水净化、脱盐、质子交换、物质分离与纯化等领域中(马苗,水处理技术,2011,37,4:14;Wang F,et al,Journal of Membrane Science,2002,197:231;Smitha B,et al,International Journal of hydrogen Energy,2008,33:4138)。但是,此类膜材料的抗污染能力、选择性、亲水性和机械强度仍有待提高。氧化石墨烯(GO)为二维多孔结构,其片层富含羟基和羧基亲水基团,以及大π键。这些特性使GO对重金属离子(Beni ED,Chemosphere,2022,292:133448)和苯环类有机物(Zhang XR,et al,Chemical Engineering Journal,2022,440:135794)均具有良好的吸附性能。如将氧化石墨烯和亚铁氰化铜两者同时引入磺化聚砜类膜,将有望形成性能优良的铷离子膜分离材料。
发明内容
本发明提供了一种对铷离子(Rb+)具有选择性吸附性能的磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备方法及其应用。本发明采用相转化技术、原位浸泡吸附耦合共沉淀技术,制备了对Rb+具有选择性分离性能的CuFC/PSG复合膜。本发明将CuFC/PSG复合膜用于制备膜分离系统(RCP),先将盐湖卤水通入RCP,其上的CuFC/PSG可选择性吸附Rb+,饱和后,再将铵盐溶液通入RCP,经离子交换快速脱附Rb+,重复操作后可达到分离回收盐湖卤水中铷的目的。
本发明中,磺化聚砜的制备方法参见文献:Smitha B,et al,InternationalJournal of hydrogen Energy,2008,33:4138中的方法(形成机制见图1):
将聚砜、三甲基氯硅烷、氯磺酸和三氯甲烷分别用无水氯化钙干燥。将18g聚砜溶于160mL三氯甲烷中,将8.8g三甲基氯硅烷和9.5g氯磺酸分别用40mL三氯甲烷稀释(聚砜:三甲基氯硅烷:氯磺酸摩尔比=1:2:2),在三口烧瓶中先加入聚砜的三氯甲烷溶液,再依次缓慢滴加三甲基氯硅烷和氯磺酸溶液后(三氯甲烷为溶剂),将整个装置密封在35℃下反应12h;其后,用甲醇/甲醇钠溶液调整溶液为碱性后,反应1h,将析出的白色颗粒过滤,用甲醇、去离子水洗涤至中性,干燥后,可得磺化聚砜(PS)。
本发明磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备方法,包括如下步骤:
步骤1:磺化聚砜/氧化石墨烯复合膜(PSG)的制备
在氧化石墨烯(GO)悬浮液中加入偶联剂,超声分散均匀,然后加入磺化聚砜,搅拌分散均匀后,获得混合物A;将混合物A置于玻璃板上,采用膜制备器延展成膜后,迅速置于膜清洗液中,洗涤后,获得尺寸为100×100mm的(平均质量0.8g)磺化聚砜/氧化石墨烯复合膜片(PSG)。
步骤1中,所述GO悬浮液,溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二甲基丙酰胺中的一种,GO的质量浓度为0.02-0.5%;
步骤1中,所述偶联剂为单烷氧基焦磷酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、钛酸四丁酯、三异硬脂酸钛酸异丙酯中的一种。
步骤1中,GO悬浮液与偶联剂的体积比为200:1-50:1。
步骤1中,所述磺化聚砜和GO悬浮液中GO的质量比为1200:1-200:1。
步骤1中,所述膜清洗液为10-50%乙醇、10-50%丙酮、10-50%甲醇、二次蒸馏水中的一种。
所述氧化石墨烯(GO)的制备方法参见文献(W.S.Hummers,et al,Journal of TheAmerican Chemical Society,1958,80:1339)。
步骤2:磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备
将步骤1制备的PSG膜片置于无机铜盐水溶液中,一定pH、时间和温度下,螯合吸附铜离子;取出PSG膜片,用二次水清洗后,再置于亚铁氰化钾水溶液中,一定pH、时间和温度下,原位共沉淀反应生成亚铁氰化铜;重复上述方法,交替浸泡于无机铜盐水溶液以及亚铁氰化钾水溶液中反应,即可获得磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)。
步骤2中,所述无机铜盐水溶液为氯化铜、硝酸铜、硫酸铜中的一种,浓度为0.05-0.5mol/L;PSG膜片和无机铜盐水溶液的质量比为1:100-1:300。
步骤2中,螯合吸附铜离子时,体系pH调控为3-8,用0.1mol/L盐酸或氨水调节;螯合吸附铜离子的时间为3-12h,温度为15-45℃。
步骤2中,原位共沉淀反应生成亚铁氰化铜时,体系pH调控为3-7(用0.1mol/L盐酸或氨水调节),反应时间为3-12h,反应温度为15-45℃。
步骤2中,所述PSG膜片交替浸泡时,亚铁氰化钾水溶液与无机铜盐水溶液的摩尔浓度比为3:1-1:1。
步骤2中,以依次浸泡于无机铜盐水溶液以及亚铁氰化钾水溶液中反应记为一次,共交替浸泡1-5次。
本发明制备得到的磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的应用,是以所述CuFC/PSG复合膜分离盐湖卤水中铷。具体方法是:
膜分离系统采用常规结构,具体是由隔板、螺栓、蠕动泵和膜片组成。按照串联的方法依次组装CuFC/PSG膜片,形成Rb+的膜分离系统,通过蠕动泵,使卤水从一头流入,再从另外一头流出,CuFC/PSG膜片数量为5-25片,每片面积为100mm×100mm(平均质量0.8g),实际组装成膜堆后,每片的有效面积为18cm2
所述膜片的总有效面积(cm2)与稀释后卤水处理水体积(mL)之间的比例关系是1:1-1:5。
将一定数量的CuFC/PSG膜片用于组装Rb+的膜分离系统,一定吸附条件下,将预处理后的盐湖卤水泵入分离系统,直至Rb+的动态吸附达到饱和;排空吸附Rb+后的盐湖卤水,通入二次水清洗膜表面简单吸附的杂质,然后将脱附液泵入Rb+的膜分离系统进行动态脱附处理,经离子交换,可脱附CuFC/PSG复合膜片上的Rb+;将上述Rb+吸附/脱附步骤整体重复操作2次后,分别于同一脱附液中脱附铷,可获得铷净化液。
盐湖卤水的预处理过程:将盐湖卤水抽真空过滤后,加水稀释至1-15倍体积后待用。
所述吸附条件为:pH 4-8,用盐酸或氨水调节;温度25℃,蠕动泵流速为20-100mL/min,吸附时间为3-8h。
所述Rb+的动态吸附达到饱和,是采用ICP等离子色谱检测,当进出卤水中,Rb+离子浓度相差<5%时,表示CuFC/PSG对Rb+的吸附达到饱和。
所述通入二次水清洗膜表面简单吸附的杂质的时间为20-60分钟。
所述脱附液为酸和铵盐的混合溶液,脱附液总浓度为0.5-2mol/L,酸和铵盐的摩尔比为0:1-1:10(即可以单独采用铵盐,酸的下限可以为0,但是铵盐的下限不能为0)。所述酸为盐酸或硝酸,所述铵盐为氯化铵或硝酸铵。
所述脱附条件为:温度25℃,蠕动泵流速为20-100mL/min;脱附时间为3-8h。
所述脱附处理时,每隔1h取脱附液0.5mL,通过ICP测定Rb+含量,当连续两个样品中Rb+含量相差<5%时,即代表脱附达到终点,表明CuFC/PSG复合膜对Rb+的脱附完成。
所述获得铷净化液的具体方式是:取1个卤水样品,将上述Rb+吸附/脱附步骤整体重复操作1-3次后,分别于同一脱附液中脱附铷。
与现有技术相比,本发明的有益效果体现在:
1、本发明采用相转化技术、原位浸泡吸附耦合共沉淀技术,制备了对铷离子具有优良选择性分离性能的磺化聚砜/石墨烯/亚铁氰化物复合膜(CuFC/PSG)。
2、为保护膜材料在高海拔地区下使用时的稳定性,采用了抗老化耐紫外线照射、抗氧化、耐酸碱、不易水解的磺化聚砜(PS)用作膜材料;本发明在PS中引入了氧化石墨烯,既可加强膜的机械性能,也增加了膜的亲水性(为后期负载功能亚铁氰化铜吸附剂提供固定位点),形成的磺化聚砜/石墨烯复合膜(PSG)具有孔结构,为铷离子膜分离传质提供了3D立体的通道。
3、本发明将PSG交替浸入无机铜盐溶液和亚铁氰化钾中,原位共沉积生成CuFC/PSG复合膜,完好地保存了其3D结构。形成的CuFC/PSG复合膜在保留原有磺化聚砜一系列优良性能的基础上,对铷离子具有选择性吸附性能,为盐湖卤水中铷分离提供了必要条件。
4、本发明将铷离子功能吸附剂负载在膜上,通过吸附和离子交换脱附法回收铷,循环往复,可获得铷净化液。该技术可操作性强,可连续使用,环境友好,具有较强的工业化应用前景。
附图说明
图1为磺化聚砜形成机制。以氯磺酸和三甲基氯硅烷为复合磺化剂,先通过后磺化法将-SO3Si(CH3)3基团和苯环上的H发生取代反应,接枝到苯环上。采用甲醇/甲醇钠调节溶液pH,在碱性条件下,钠离子可置换出-Si(CH3)3,同时使合成的磺化聚砜(PS)析出。实施例1。
图2为聚砜(a)与磺化聚砜(b)的氢核磁共振(1H-NMR)图。曲线a中可见聚砜分子结构中,各H的化学位置。曲线b中,由于聚砜中苯环上1′H被磺酸基取代,使苯环上与磺酸基相邻H由2′位移到2″,在δ7.7ppm处分裂出一个新峰,表明了磺化聚砜已经形成。实施例1。
图3为CuFC/PSG的场发射扫描电镜图。CuFC/PSG复合膜为3D-多级孔结构。孔的尺寸在3-11μm,膜的内(a)和外(b)表面均匀地负载着立方体的亚铁氰化铜。实施例3。
图4为CuFC/PSG吸附Rb+前(a)、后(b)及脱附后(c)的X-晶体衍射曲图(XRD)。曲线a中,17.8°、25.2°、36.0°、40.2°和44.3°处的衍射峰,分别对应于CuFC/PSG上的CuFC的200、220、400、420和422面(KimY,etal,Chemical Engineering Journal,2017:1042),由席勒方程可计算出CuFC的尺寸为16±5nm。对比a、b和c三条曲线可见:所有衍射峰位置均没有明显变化,这表明CuFC/PSG吸附Rb+前和后,以及脱附Rb+后,其上CuFC的晶体结构稳定。实施例3。
图5为CuFC/PSG吸附Rb+前(a)、吸附后(b)、脱附后(c)以及GO(氧化石墨烯,d)的红外光谱曲线。由曲线d可见,单一的氧化石墨烯(GO)上,3427cm-1处为-OH特征吸收峰,1734cm-1处为C=O拉伸振动吸收峰,1627cm-1处为C=C伸缩振动吸收峰(Sivaselvam S,etal,Chemosphere,2021,275:130061)。曲线a中,2967cm-1为甲基上的C-H伸缩振动吸收峰,2103cm-1处为不稳定的C≡C或累计=C=C的伸缩震动吸收峰,1650~1450cm-1处为磺化聚砜中苯环骨架上C=C的伸缩振动吸收峰,1250cm-1和1078cm-1处分别为O=S=O的不对称和对称拉震动伸吸收峰,1013cm-1和701cm-1处分别为磺酸基团中S=O和S-O的拉伸震动吸收峰(乔宗文等,应用化学,2021,38,06:668),568cm-1处为亚铁氰化铜上的Fe-CN的变形震动吸收峰(KimY,et al,Chemical Engineering Journal,2017:1042)。由于GO在CuFC/PSG中含量较少,仅在其上观察到3427cm-1和1734cm-1处的峰。这说明了磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)已经形成。进一步观察可见,CuFC/PSG吸附Rb+前(a)和后(b)相比较,两者的红外特征峰一致,Rb+脱附后(c),除了不稳定的C≡C或累计=C=C的伸缩震动峰明显减弱外,上述其它特征峰(磺化聚砜和亚铁氰化铜)均稳定存在。表明该材料在Rb+分离过程中,结构稳定。实施例2。
图6是CuFC/PSG的元素分布图(EDS),通过元素分布含量可估算出负载在PSG上CuFC量为2.39g/m2。吸附剂m的计算方法:通过EDS元素摩尔比算得材料的平均原子质量:
M=(M1×W1+M2×W2+…+Mn×Wn)/n;
其中,M为材料的平均原子质量,M1、M2…Mn,W1、W2…Wn为各个元素的原子质量和其元素占比;
其中m为膜片质量,Wcu为EDS测得的Cu元素摩尔比,MCuFC为亚铁氰化铜钾的相对分子质量。
通过称重法进一步验证,负载在PSG上CuFC量为2.44g/m2。吸附剂m的计算方法:
其中,w为每平方米CuFC的负载量,g/m2;mCuFC为负载CuFC的膜片质量,g;m0为未负载CuFC的纯膜片质量,g;S为膜片面积,m2。两种计算方法结果基本一致。实施例2。
图7A为CuFC/PSG吸附Rb+前总X-光电子能谱图;由图可见复合膜中存在Cu、Fe、S、O和C元素,这和CuFC/PSG的组成一致。图7B为CuFC/PSG吸附Rb+前(a)、后(b)及脱附后(c)的X-光电子能谱。图7B中,吸附Rb+前(a),在109eV-113eV区间,均没有Rb的峰出现,吸附Rb+后(b),位于110.3eV(Rb 3d5/3)和111.7eV(Rb 3d3/2)处Rb的特征峰清晰可见(KimY,etal,Chemical Engineering Journal,2017:1042;Lu TT,etal,Journal of CleanerProduction,2020,277:124092);脱附后(c),Rb的特征峰明显下降。表明本发明的技术可以应用于铷脱附。实施例2。
具体实施方式
实施例1:
1、磺化聚砜/氧化石墨烯复合膜(PSG)的制备
在50mLN,N-二甲基甲酰胺中,加入0.02gGO,混匀后形成约0.04%的GO悬浮液,在其中加入1mL单烷氧基焦磷酸酯,6g磺化聚砜,搅拌均匀后,获得混合物A。将A置于玻璃板上,采用膜制备器延展成膜后,迅速置于10%乙醇中清洗,洗涤后,可得获得尺寸为100mm×100mm(平均质量0.8g)的磺化聚砜/氧化石墨烯复合膜片(PSG)。
2、磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备
将24片PSG膜(约19.2g)置于1500mL 0.2 mol/L氯化铜水溶液中,调整pH为5,在20℃下螯合吸附铜离子4h;取出PSG膜片,用二次水清洗后,再置于1500mL亚铁氰化钾0.3mol/L水溶液中,调整pH为4,在20℃下原位进行共沉淀反应4h,生成亚铁氰化铜;交替浸泡反应4次,可获得磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)。
3、利用CuFC/PSG复合膜分离盐湖卤水中铷
将24片CuFC/PSG膜片(18cm2×24=432cm2)用于组装Rb+的膜分离系统。吸附条件为:溶液pH 5,温度25℃,蠕动泵流速为40mL/min,吸附时间为4h;将过滤后的盐湖卤水200mL用水稀释4倍后泵入分离系统。通过ICP等离子色谱检测,当进出卤水中,Rb+离子浓度相差<5%时,表明CuFC/PSG对Rb+的吸附达到饱和。
其后,通入二次水清洗膜20分钟后开始脱附。脱附液为200mL 2mol/L氯化铵。脱附条件为:温度25℃,蠕动泵流速为50mL/min,脱附时间为6h。脱附处理时,每隔1h取脱附液0.5mL,通过ICP测定Rb+含量,当连续两个样品中Rb+含量相差<5%时,即代表脱附达到终点,表明CuFC/PSG复合膜对Rb+的脱附完成。
将上述Rb+吸附/脱附步骤整体重复操作2次后,分别于同一脱附液中脱附铷,可获得铷净化液。
实施例2:
1、磺化聚砜/氧化石墨烯复合膜(PSG)的制备
在100mLN,N-二甲基乙酰胺中,加入0.1g GO,混匀后形成约0.1%的GO悬浮液,在其中加入1mL钛酸四丁酯及三异硬脂酸钛酸异丙酯,7g磺化聚砜,搅拌均匀后,获得混合物A。将A置于玻璃板上,采用膜制备器延展成膜后,迅速置于二次水中清洗,洗涤后,可得获得尺寸为100×100mm(平均质量0.8g)的磺化聚砜/氧化石墨烯复合膜片(PSG)。
2、磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备
将20片PSG膜(约16g)置于1200mL 0.3mol/L硝酸铜水溶液中,调整pH为4,在25℃下螯合吸附铜离子6h;取出PSG膜片,用二次水清洗后,再置于1000mL亚铁氰化钾0.4mol/L水溶液中,调整pH为6,在25℃下原位进行共沉淀反应5h,生成亚铁氰化铜,交替浸泡反应3次,可获得磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)。
3、利用CuFC/PSG复合膜分离盐湖卤水中铷
将20片CuFC/PSG膜片(18cm2×20=360cm2)用于组装Rb+的膜分离系统。吸附条件为:溶液pH 6,温度25℃,蠕动泵流速为80mL/min,吸附时间为6h;将过滤后的盐湖卤水200mL用水稀释8倍后泵入分离系统。通过ICP等离子色谱检测,当进出卤水中,Rb+离子浓度相差<5%时,表明CuFC/PSG对Rb+的吸附达到饱和。
其后,通入二次水清洗膜30分钟后开始脱附。脱附液为200mL 0.1mol/L硝酸+1mol/L氯化铵。脱附条件为:温度25℃,蠕动泵流速为60mL/min,脱附时间为5h。脱附处理时,每隔1h取脱附液0.5mL,通过ICP测定Rb+含量,当连续两个样品中Rb+含量相差<5%时,即代表脱附达到终点,表明CuFC/PSG复合膜对Rb+脱附完成。
将上述Rb+吸附/脱附步骤整体重复操作3次后,分别于同一脱附液中脱附铷,可获得铷净化液。
实施例3:
1、磺化聚砜/氧化石墨烯复合膜(PSG)的制备
在200mLN,N-二甲基丙酰胺中,加入0.12g GO,混匀后形成约0.06%的GO悬浮液,在其中加入3mL异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯,6g磺化聚砜,搅拌均匀后,获得混合物A。将A置于玻璃板上,采用膜制备器延展成膜后,迅速置于20%丙酮中清洗,洗涤后,可得获得尺寸为100×100mm(平均质量0.8g)的磺化聚砜/氧化石墨烯复合膜片(PSG)。
2、磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)的制备
将8片PSG膜(约6.4g)置于800mL 0.4mol/L氯化铜水溶液中,调整pH为5.6,在40℃下螯合吸附铜离子10h;取出PSG膜片,用二次水清洗后,再置于800mL亚铁氰化钾0.6mol/L水溶液中,调整pH为4.5,在30℃下原位进行共沉淀反应8h,生成亚铁氰化铜,交替浸泡反应2次,可获得磺化聚砜/石墨烯/亚铁氰化铜复合膜(CuFC/PSG)。
3、利用CuFC/PSG复合膜分离盐湖卤水中铷
将8片CuFC/PSG膜片(18cm2×8=144cm2)用于组装Rb+的膜分离系统。吸附条件为:溶液pH 7,温度25℃,蠕动泵流速为60mL/min,吸附时间为4h;将过滤后的盐湖卤水200mL用水稀释3倍后泵入分离系统。通过ICP等离子色谱检测,当进出卤水中,Rb+离子浓度相差<5%时,表明CuFC/PSG对Rb+的吸附达到饱和。
其后,通入二次水清洗膜40分钟后开始脱附。脱附液为200mL 0.5mol/L盐酸+0.5mol/L硝酸铵。脱附条件为:温度25℃,蠕动泵流速为60mL/min,脱附时间为3h。脱附处理时,每隔1h取脱附液0.5mL,通过ICP测定Rb+含量,当连续两个样品中Rb+含量相差<5%时,即代表脱附达到终点,表明CuFC/PSG复合膜对Rb+的脱附完成。
将上述Rb+吸附/脱附步骤整体重复操作3次后,分别于同一脱附液中脱附铷,可获得铷净化液。
盐湖卤水处理效果:
由表1可见,经本发明方法处理后的Rb净化液中,Rb+浓度均大于原有浓度的1.5倍,回收率均大于73%。由表2可见,经本发明方法处理后,净化液中干扰离子和铷离子浓度的比值,和原卤水中的比值相比,均显著下降。其中,Li+和Rb+的浓度比值均较小,Na+和Rb+的浓度比值从>61到<0.8,Mg2+和Rb+的浓度比值从>927到<17,K+和Rb+比从>255到<10.9。这表明采用本发明膜分离系统:可显著降低Li+和Na+对Rb+分离的干扰,有效降低Mg2+和K+对Rb+分离的干扰。铷净化液中,杂质离子浓度显著下降,Rb+升高,说明本发明的材料和分离技术可有效地分离盐湖卤水中铷。
表1经本发明方法处理后Rb净化液组成
a*连续3次操作后平均回收率。
表2经本发明方法处理前和后Rb净化液中各离子和Rb+的浓度比

Claims (5)

1.一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法,其特征在于包括如下步骤:
步骤1:磺化聚砜/氧化石墨烯复合膜的制备
在GO悬浮液中加入偶联剂,超声分散均匀,然后加入磺化聚砜,搅拌分散均匀后,获得混合物A;将混合物A置于玻璃板上,延展成膜后迅速置于膜清洗液中,洗涤后,获得PSG复合膜片;
步骤2:磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备
将步骤1制备的PSG膜片置于无机铜盐水溶液中,一定pH、时间和温度下,螯合吸附铜离子;取出PSG膜片,用二次水清洗后,再置于亚铁氰化钾水溶液中,一定pH、时间和温度下,原位共沉淀反应生成亚铁氰化铜;重复上述方法,交替浸泡于无机铜盐水溶液以及亚铁氰化钾水溶液中反应,即可获得CuFC/PSG复合膜;
步骤1中,所述偶联剂为单烷氧基焦磷酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、钛酸四丁酯、三异硬脂酸钛酸异丙酯中的一种;
步骤1中,GO悬浮液的质量浓度为0.02-0.5%;GO悬浮液与偶联剂的体积比为200:1-50:1;所述磺化聚砜和GO悬浮液中GO的质量比为1200:1-200:1;
步骤2中,所述无机铜盐水溶液为氯化铜、硝酸铜、硫酸铜中的一种,浓度为0.05-0.5mol/L;PSG膜片和无机铜盐水溶液的质量比为1:100-1:300;
步骤2中,螯合吸附铜离子时,体系pH调控为3-8,螯合吸附铜离子的时间为3-12 h,温度为15-45℃;
步骤2中,原位共沉淀反应生成亚铁氰化铜时,体系pH调控为3-7,反应时间为3-12 h,反应温度为15-45℃。
2.根据权利要求1所述的制备方法,其特征在于:
步骤2中,所述PSG膜片交替浸泡时,亚铁氰化钾水溶液与无机铜盐水溶液的摩尔浓度比为3:1-1:1。
3.根据权利要求1-2中任一项制备方法制备获得的磺化聚砜/石墨烯/亚铁氰化铜复合膜的应用,其特征在于:
采用膜分离系统,按照串联的方式依次组装CuFC/PSG复合膜片,以CuFC/PSG复合膜分离盐湖卤水中铷;
具体是在一定吸附条件下,将预处理后的盐湖卤水泵入分离系统,直至Rb+的动态吸附达到饱和;排空吸附Rb+后的盐湖卤水,通入二次水清洗膜表面简单吸附的杂质,然后将脱附液泵入Rb+的膜分离系统进行动态脱附处理,经离子交换,可脱附CuFC/PSG复合膜片上的Rb+;重复上述吸附、脱附步骤,分别于同一脱附液中脱附铷,可获得铷净化液。
4.根据权利要求3所述的应用,其特征在于:
CuFC/PSG复合膜片的总有效面积与原卤水处理水体积之间的比例关系是10:1-3:1。
5.根据权利要求3所述的应用,其特征在于:
所述吸附条件为:温度25℃,pH 4-8,蠕动泵流速为20-100 mL/min,吸附时间为3-8 h;
所述脱附条件为:温度25℃,蠕动泵流速为20-100 mL/min,脱附时间为3-8 h。
CN202211141312.5A 2022-09-20 2022-09-20 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用 Active CN115400615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211141312.5A CN115400615B (zh) 2022-09-20 2022-09-20 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211141312.5A CN115400615B (zh) 2022-09-20 2022-09-20 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115400615A CN115400615A (zh) 2022-11-29
CN115400615B true CN115400615B (zh) 2024-04-12

Family

ID=84166287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211141312.5A Active CN115400615B (zh) 2022-09-20 2022-09-20 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115400615B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606198A1 (en) * 1991-08-17 1994-07-20 The Dow Chemical Company Microporous hollow fiber or film membrane of poly(phenylene sulfide) (pps)
CN1094332A (zh) * 1993-04-20 1994-11-02 云南轻工专科学校筹建处 卤水中铷的富集提取
KR20180104576A (ko) * 2017-03-13 2018-09-21 한국과학기술원 스트론튬과 세슘을 동시에 흡착하는 헥사시아노금속염이 도입된 하이드로겔의 제조방법
CN113509910A (zh) * 2020-11-25 2021-10-19 中国科学院青海盐湖研究所 一种用于液体铷铯资源提取的金属铁氰化物吸附剂颗粒制备方法
CN114262034A (zh) * 2021-12-31 2022-04-01 合肥工业大学 一种利用聚乙烯醇/壳聚糖/石墨烯/亚铁氰化镍铜复合物分离盐湖卤水中铷的方法
CN114471155A (zh) * 2021-12-13 2022-05-13 南京工业大学 一种基于氧化石墨烯的纳滤膜及其制备方法、应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606198A1 (en) * 1991-08-17 1994-07-20 The Dow Chemical Company Microporous hollow fiber or film membrane of poly(phenylene sulfide) (pps)
CN1094332A (zh) * 1993-04-20 1994-11-02 云南轻工专科学校筹建处 卤水中铷的富集提取
KR20180104576A (ko) * 2017-03-13 2018-09-21 한국과학기술원 스트론튬과 세슘을 동시에 흡착하는 헥사시아노금속염이 도입된 하이드로겔의 제조방법
CN113509910A (zh) * 2020-11-25 2021-10-19 中国科学院青海盐湖研究所 一种用于液体铷铯资源提取的金属铁氰化物吸附剂颗粒制备方法
CN114471155A (zh) * 2021-12-13 2022-05-13 南京工业大学 一种基于氧化石墨烯的纳滤膜及其制备方法、应用
CN114262034A (zh) * 2021-12-31 2022-04-01 合肥工业大学 一种利用聚乙烯醇/壳聚糖/石墨烯/亚铁氰化镍铜复合物分离盐湖卤水中铷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王莹莹 ; 王斌 ; 黄月文 ; 谢海宁 ; .聚苯乙烯/还原氧化石墨烯核壳微球的制备及表征.精细化工.2018,(第02期), *
聚苯乙烯/还原氧化石墨烯核壳微球的制备及表征;王莹莹;王斌;黄月文;谢海宁;;精细化工(第02期) *

Also Published As

Publication number Publication date
CN115400615A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
Liang et al. Ultrafast water‐selective permeation through graphene oxide membrane with water transport promoters
US11311843B2 (en) Precise fabrication of activated-hydrophilic-hydrophobic MXenes-based multidimensional nanosystems for efficient and prompt water purification from petroleum wastes and desalination process under ambient conditions
CN106902655B (zh) 一种巯基功能化聚合物分离膜的制备方法及应用
CN109647231B (zh) 一种氧化石墨烯/mof复合膜及其制备方法与应用
CN110975655A (zh) 一种新型RGO/MXene复合膜及其制备方法
CN106987018B (zh) 一种酚醛树脂-石墨烯气凝胶及其制备、应用
CN110026092B (zh) 一种用于重金属截留的纳米复合膜及制备方法
Rahighi et al. Two-dimensional materials in enhancement of membrane-based lithium recovery from metallic-ions-rich wastewaters: A review
CN115106105B (zh) 一种三元异质结光催化膜的制备方法及应用
CN103599763A (zh) 一种氨基功能化有序介孔碳材料、制备方法及其应用
Fan et al. Nickel (II) ion-intercalated MXene membranes for enhanced H 2/CO 2 separation
Qu et al. Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation
CN114262034B (zh) 一种利用聚乙烯醇/壳聚糖/石墨烯/亚铁氰化镍铜复合物分离盐湖卤水中铷的方法
Liang et al. 2D vertical heterostructure membranes for lanthanide separation
CN115400615B (zh) 一种磺化聚砜/石墨烯/亚铁氰化铜复合膜的制备方法及其应用
CN115138220A (zh) 一种阴离子型共价有机框架膜及其制备和应用
Huang et al. MXene‐based membranes for drinking water production
Zhang et al. Remediation of uranium (VI)-containing wastewater based on a novel graphene oxide/hydroxyapatite membrane
Ying et al. Developmental progress of electrodialysis technologies and membrane materials for extraction of lithium from salt lake brines
CN115041027B (zh) 一种双重调控的二维MXene复合膜及其制备方法
CN116407950A (zh) 一种改性陶瓷膜及其制备方法和应用
Yao et al. Ultra-hydrophilic nanofiltration membranes fabricated via punching in the HTO nanosheets
US20140087071A1 (en) Ion-exchange manganese oxide lithium adsorbent using porous structure and method for preparing the same
KR20170142661A (ko) 리튬흡착제 및 그의 제조방법
CN116943446A (zh) 一种复合纳滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant