CN115385679B - 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法 - Google Patents

一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN115385679B
CN115385679B CN202211052094.8A CN202211052094A CN115385679B CN 115385679 B CN115385679 B CN 115385679B CN 202211052094 A CN202211052094 A CN 202211052094A CN 115385679 B CN115385679 B CN 115385679B
Authority
CN
China
Prior art keywords
equal
less
ferromagnetic resonance
remanence ratio
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211052094.8A
Other languages
English (en)
Other versions
CN115385679A (zh
Inventor
黄小忠
鲜聪
王殿杰
孔伟
廖杨
任仕晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202211052094.8A priority Critical patent/CN115385679B/zh
Publication of CN115385679A publication Critical patent/CN115385679A/zh
Application granted granted Critical
Publication of CN115385679B publication Critical patent/CN115385679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法,属于微波与磁性材料技术领域,其化学式为:LaxCaySr1‑x‑yFe12‑z‑f‑g‑δCozAlfMngO19,其中0.05≤x≤0.2,0.04≤y≤0.16,0.05≤z≤0.2,0.1≤f≤0.25,0.04≤g≤0.16,δ为缺铁量,0≤δ≤0.2,还公开了上述材料的制备方法;本发明的材料兼具高剩磁比、高矫顽力和低铁磁共振线宽特性,剩磁比>0.92@1T,剩磁比>0.88@2T,矫顽力>4150 Oe,铁磁共振线宽<451 Oe,并且兼具较好的永磁性能;饱和磁化强度4πMs>4671 Gs,最大磁能积>4.15 MGOe,各向异性常数K1>3.86×106 erg/cm3;本发明的材料可用于设计自偏置环行器和隔离器,有效减小器件设计尺寸,满足器件平面化、小型化需求。

Description

一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制 备方法
技术领域
本发明涉及微波与磁性材料技术领域,尤其涉及一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法。
背景技术
随着电子信息技术的快速发展,空间雷达已成为应用在航空航天技术和战略预警体系的核心装备。有源相控阵(AESA)技术使雷达的功能和性能获得极大的扩展和提高并逐渐成为新型雷达的标准配置。其中收发(T/R)组件是有源相控阵雷达的核心元件,且每一部相控阵雷达需配备数以万计的T/R组件。同时,低温共烧陶瓷(LTCC)技术已普及,T/R组件中大部分的微波电路都可集成在多层陶瓷芯片中,使其呈现出小型化、集成化和平面化的发展趋势。但由于 T/R 组件中铁氧体元器件(环行器/隔离器等)无法利用 LTCC 技术制备,使其成为 T/R 模块实现小型化和平面化进程的主要障碍。
六角(磁铅石)M型锶铁氧体(SrFe12O19)易磁化方向与六角晶轴(c轴)方向平行,具有高度的c轴取向,其各向异性常数K 1 和各向异性场H a 分别高达3.7×105J/m3和19.6KOe。高的各向异性在铁氧体内部产生很强的“内场”使磁矩在无外加偏置磁场或偏置磁场很小的情况下与微波/毫米波发生铁磁共振。利用这一特性可以实现铁氧体环行器的小型化、平面化,进而减小环行器的体积和重量(例如自偏置环行器),实现整机的系统化集成。并且大的各向异性场使SrFe12O19六角铁氧体铁磁共振频率较高,可适用于高频段器件的应用。
同时随着相关技术的发展,对广泛应用于环行器、隔离器等微波器件的铁氧体材料要求越来越高,进而研发具有优异性能、器件适用的铁氧体材料成为该领域重要技术方向之一。稀土离子La3+部分取代Sr2+,可起到稳定磁铅石晶体结构的作用;稀土离子La3+、Co2+的联合取代可以增大矫顽力Hc而又不影响剩磁Br,从而显著提高最大磁能积(BH) max ,并且还可扩展烧结温度的范围。生产中常常要求B r H c 双高,但是为了提高剩磁就需要提高烧结温度、增加密度,这便会导致晶粒粗大、矫顽力下降。Ca2+的引入有利于激活生成铁氧体的固相反应,可有效提高SrM的磁能积;Al3+的引入可以增大磁晶各向异性常数和单畴临界尺寸,并能抑制晶粒生长;同时采用适当添加剂,可以达到双高的目的,提升产品等级。有益的添加剂、助溶剂和离子代换一直是材料研究者的重点课题。
目前鲜有兼具优良永磁和微波特性的六角铁氧体材料,而仅有单一高剩磁性能的微波铁氧体或是单一高矫顽力锶铁氧体等的报道,比如中国专利CN 101372417 A 所公开的高比饱和磁化强度和高矫顽力锶铁氧体磁粉比饱和磁化强度为71~75emu/g,矫顽力为5.5~6.5kOe,但没有后续烧结后的性能报道;CN 113248246 A所公开的高磁锶铁氧体B r 高于4290Gs,H cb 高于4045 Oe,H cj 高于4640 Oe,(BH)max高于4.45 MGOe,但剩磁比未提及;CN112500148 A所公开的高矫顽力锶铁氧体磁性材料的B r 为4200Gs左右,H cj 为4020 Oe左右,剩磁比、饱和磁化强度和最大磁能积等未提及;CN 113277842 A、CN 113416898 A所述方法制备的锶铁氧体剩磁Br分别为4700Gs和4300Gs左右,其矫顽力H cb 分别为5100 Oe和4000 Oe左右,但剩磁比等性能未研究;而CN 113990658 A所述的高剩磁比低孔隙率六角铁氧体厚膜施加磁场为8000 Oe时,剩磁比可以达到0.9左右,剩磁在3000Gs左右,矫顽力在3500 Oe左右,剩磁和矫顽力较低,且制备方法难以产业化;CN 113860864 A所述的高剩磁比高各向异性场SrM微波铁氧体材料各向异性场高于21kOe,最高可达29kOe,工作频率大于60GHz,但剩磁比较低,仅有0.8左右;CN 113072369 A所述的高剩磁比的U型六角钡铁氧体材料剩磁比在1.2T时可达0.9左右,铁磁共振线宽小于300 Oe,但其内禀矫顽力H cj 仅为1150 Oe左右。
因此,如果能开发出兼具高剩磁比、高矫顽力和低铁磁共振线宽的锶铁氧体材料,对微波环行器隔离器的小型化、集成化是大有裨益的。
发明内容
如前所述的,常见的磁铅石型高剩磁、大矫顽力锶铁氧体主要用于永磁,由于铁磁共振线宽较大微波方向关注较少。为解决难以兼具高剩磁比、高矫顽力及低铁磁共振线宽的问题,本发明提供了一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法,其化学式为: LaxCaySr1-x-yFe12-z-f-g-δCozAlfMngO19,其中0.05≤x≤0.2, 0.04≤y≤0.16,0.05≤z≤0.2,0.1≤f≤0.25,0.04≤g≤0.16,δ为缺铁量,0≤δ≤0.2。
本发明在稀土离子La3+、Co3+联合取代的基础上稳定了磁铅石晶体结构,同时增大矫顽力和饱和磁化强度而又不影响剩磁Br;从而显著提高最大磁能积(BH)max。基于La3+、Co3+联合取代进一步通过Ca2+的引入激活生成铁氧体的固相反应,可有效提高SrM的磁能积;Al3 +的引入增大了磁晶各向异性常数、矫顽力和单畴临界尺寸,并能抑制晶粒生长;Mn3+的引入对于Fe2+有缓冲作用,能够调控Fe2+从而改善损耗特性,并且Mn可作为铁氧体材料的助烧剂,故适量添加有助于促进固相反应,提高材料密度,降低铁磁共振线宽至500 Oe以下。
本发明通过对磁铅石结构中Sr2+和Fe3+进行La、Co、Ca、Al和Mn离子联合取代,同时添加适当的添加剂(0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素)使得样品兼具高剩磁比、高矫顽力和低铁磁共振线宽的特征,尤其是Mn2+的取代明显降低了铁磁共振线宽,羧甲基纤维素由于含有多个亲水基的羧基糖类是一种很好的分散剂,可提高样品的取向度,明显增加了样品剩磁比,这能够减小器件的设计尺寸,有益于微波铁氧体器件的小型化、轻量化,同时锶铁氧体具有高居里温度Tc和高的各向异性常数K1,有益于器件在变温下的稳定性。
本发明的目的之二,在于提供上述的一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料的制备方法,采用的技术方案为:包括以下步骤:
(1)根据化学式: LaxCaySr1-x-yFe12-z-f-g-δCozAlfMngO19,其中0.05≤x≤0.2, 0.04≤y≤0.16,0.05≤z≤0.2,0.1≤f≤0.25,0.04≤g≤0.16,δ为缺铁量,0≤δ≤0.2,计算并称取各原材料,所述原料为Co2O3、La2O3、SrCO3、CaCO3、Al(OH)3、MnCO3、Fe2O3
(2)原料第一次湿法球磨,将步骤(1)称取的原材料用行星球磨机进行第一次混合湿法球磨4-6h,转速为180-220rpm;
(3)预烧,将步骤(2)得到的浆料烘干过40目筛后进行粉料预烧,预烧温度为1250~1310℃,保温4~6 h;
(4)第二次湿法球磨,将步骤(3)得到的预烧后的粉料,加入添加剂0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素后进行第二次湿法球磨20h~30h,得到预烧料的浆料;
(5)静置,将步骤(4)得到的浆料静置0.5-1h去除多余水分;
(6)成型,将步骤(5)去除多余水分之后得到的浆料进行湿压磁场成型,得到生坯;
(7)烧结,将步骤(6)得到的生坯进行烧结,烧结温度为1150~1200℃,保温1h以上,即得。
作为优选的技术方案,步骤(1)中原材料的纯度为分析纯,化学式LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19中,y=0.12,f=0.2,g=0.12,δ=0.1。作为优选的技术方案,步骤(4)中添加剂配方为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素,二次球磨采用锆球和玛瑙球混合的方式。
作为优选的技术方案,步骤(6)中成型方式为湿压磁场成型,其外加磁场电流为90%,合膜保压压力为6-8Mpa。
与现有技术相比,本发明的优点在于:本发明基于La、Co等离子联合取代的基础上,引入了Mn2+降低了材料的铁磁共振线宽,添加剂Cr2O3进一步提高了材料的矫顽力,羧甲基纤维素明显提高了材料的剩磁比,最终得到兼具高剩磁比、高矫顽力和低铁磁共振线宽特性的锶铁氧体,并且具有其它优良的永磁性能,包括较高的饱和磁化强度4πM s 、较大的最大磁能积(BH) max 、较大的各向异性常数K 1 ;饱和磁化强度4πMs>4671 Gs,最大磁能积>4.15MGOe,各向异性常数K1>3.86×106 erg/cm3;并具有稳定的工艺路线和工艺参数,本发明高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料可有效降低微波环行器、隔离器器件设计尺寸,满足器件小型化和集成化需求。
附图说明
图1中x=0、0.05、0.1、0.15和0.2分别为实施例1~5的铁氧体材料的物相分析XRD结果图;
图2中a、b、c、d和e分别为实施例1~5的铁氧体材料的SEM结果图;
图3中a、b、c、d和e分别为实施例1~5的铁氧体材料的VSM测试结果图。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0,y=0.12,z=0,f=0.2,g=0.12,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;
制备方法为:包括以下步骤:
(1)根据化学式: LaxCaySr1-x-yFe12-z-f-g-δCozAlfMngO19,其中x=0,y=0.12,z=0,f=0.2,g=0.12,δ为缺铁量,δ=0.1,计算并称取各原材料,所述原料为分析纯的Co2O3、La2O3、SrCO3、CaCO3、Al(OH)3、MnCO3、Fe2O3
(2)原料第一次湿法球磨,将步骤(1)称取的原材料用行星球磨机进行第一次混合湿法球磨4h,转速为180rpm;
(3)预烧,将步骤(2)得到的浆料烘干过40目筛后进行粉料预烧,预烧温度为1290℃,保温5h;
(4)第二次湿法球磨,将步骤(3)得到的预烧后的粉料,加入添加剂0.1wt%SiO2+0.3wt%H3BO3+0.3%wtCr2O3+0.4wt%葡萄糖酸钙+0.5wt%羧甲基纤维素后进行第二次湿法球磨23h(采用锆球和玛瑙球混合的方式),得到预烧料的浆料;
(5)静置,将步骤(4)得到的浆料静置0.5-1h去除多余水分;
(6)成型,将步骤(5)去除多余水分之后得到的浆料进行湿压磁场成型,其外加磁场电流为90%(约1.3T),合膜保压压力为6Mpa,得到生坯;
(7)烧结,将步骤(6)得到的生坯进行烧结,烧结温度为1160℃,保温1.5h,即得。
实施例2
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,z=0.05,f=0.2,g=0.12,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
实施例3
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.1,y=0.12,z=0.1,f=0.2,g=0.12,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
实施例4
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.15,y=0.12, z=0.15,f=0.2,g=0.12,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
实施例5
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.2,y=0.12,z=0.2,f=0.2,g=0.12,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对上述实施例1~5中的锶铁氧体材料进行密度、XRD、SEM及磁滞回线(VSM)测试表征,物相表征采用日本理学公司DMAX1400型X射线衍射仪(XRD);材料的断面显微结构表征采用Tescan vega3扫描电子显微镜(SEM);密度ρ测量采用阿基米德排水法;材料的磁性能表征采用Lake Shore 8600 型振动样品磁强计(VSM),包括:饱和磁化强度 4πM s 、剩磁 4πM r 和矫顽力 H c ;铁磁共振线宽采用10 MHz~67 GHz共面波导测试系统进行测量,各向异性场通过铁磁共振线宽测试结果计算得到,各向异性常数K 1 由公式H a =2K 1 /M s 推导。
结果如图1、图2和图3所示。
图1为样品沿着ab面内切割、打磨后进行的XRD测试图。从图1可以看出,当La、Co取代量为0-0.2时,烧结后所有样品的衍射峰与标准的六角M型锶铁氧体粉末PDF卡片(PDF#80-1198)对比,无其它杂相,样品都为SrFe12O19相。且(00l)方向的衍射峰最强,说明样品取向方向为c方向。
图2为SrFe12O19不同La、Co取代量的SEM图。从图2可以看出,样品中均有少量气孔的存在,晶粒大小较均匀且多分布于2-3um。晶粒呈片状六角结构并沿c轴取向,沿c轴堆叠主要是由于外加磁场成型所致。
图3为将样品垂直于c轴的方向切割成矩形薄片进行磁性能测试的VSM图。从图3可以看出,磁场取向样品的易磁化轴(B∥c)矫顽力分别为4150、4350、4700、4800和5000 Oe,矫顽力随La、Co掺杂量增加而增大。2T下剩磁比分别为89%、89%、89%、88%、89%。
性能测试结果见表1
表1实施例磁性能测试结果
从表1可以看出,本发明通过磁场成型技术制备了高剩磁比、高矫顽力、低铁磁共振线宽的SrM六角铁氧体;磁性能测试表明SrM铁氧体具有明显的各向异性,1T和2T下易磁化轴剩磁比Mr/Ms分别都在0.92和0.88以上,矫顽力H cb ≥4150 Oe,铁磁共振线宽△H<451Oe,并且具有其它优良的磁性能,饱和磁化强度4πM s≥4671 Gs,最大磁能积(BH)max>4.15MGOe,各向异性常数K 1 >3.86×106 erg/cm3;对比实施例1~5可知,La、Co掺杂配合添加剂的加入可以显著提高SrM六角铁氧体的矫顽力H c 和各向异性常数K 1 且可以保证样品高的剩磁比和低的铁磁共振线宽。
对比例1
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-δCozO19,其中x=0.05,y=0,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例2
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-δCozO19,其中x=0.05,y=0.04,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例3
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-δCozO19,其中x=0.05,y=0.08,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例4
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-δCozO19,其中x=0.05,y=0.12,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例5
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-δCozO19,其中x=0.05,y=0.16,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例6
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCa0.08Sr1-x-yFe12-z-f-δCozAlfO19,其中x=0.05,y=0.12,f=0.1,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例7
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCa0.08Sr1-x-yFe12-z-f-δCozAlfO19,其中x=0.05,y=0.12,f=0.15,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例8
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCa0.08Sr1-x-yFe12-z-f-δCozAlfO19,其中x=0.05,y=0.12,f=0.2,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例9
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCa0.08Sr1-x-yFe12-z-f-δCozAlfO19,其中x=0.05,y=0.12,f=0.25,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例10
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.04,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例11
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.08,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例12
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.16,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例13
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例14
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0.05,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例15
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0.15,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例16
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0.2,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例17
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素;其制备方法与实施例1相同。
对比例18
一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其化学式为LaxCaySr1-x- yFe12-z-f-g-δCozAlfMngO19,其中x=0.05,y=0.12,f=0.2,g=0.12,z=0.05,δ为缺铁量,δ=0.1,二次料添加剂为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙,其制备方法与实施例1相同。
表2对比例磁性能测试结果
从表2可以看出,Ca2+的引入(对比例1-5)可以增大密度和最大磁能积等性能,在Ca2+取代量为0.12时综合磁性能最佳;Al3+的引入(对比例6-9)可以明显增大矫顽力,当取代量为0.2时剩磁比等性能较好;Mn2+的引入(对比例10-12)可以明显降低铁磁共振线宽且可以保证样品较高的剩磁比,当取代量为0.12时(实施例2),样品的铁磁共振线宽等性能较好;缺铁量的增加(对比例13-16)会导致样品剩磁,最大磁能积等的降低,缺铁量在0.1时(实施例2),样品磁性能较好;通过实施例2和对比例17对比可知,添加剂Cr2O3的加入可以进一步增大矫顽力;实施例2和对比例18对比可知,添加剂羧甲基纤维素可以明显提高剩磁比,这主要是由于羧甲基纤维素含有多个亲水基的羧基糖类,可用作分散剂从而提高样品的取向度等性能。
上述实施例和对比例对本发明的技术方案、有益效果做了进一步详细说明,但是不能认定本发明的具体实施只局限于这些说明。对于本发明所述技术领域的普通技术人员,在不脱离本构思前提下,所做的任何修改、等同替换、改进等,都应当视为属于本发明的保护范围。

Claims (5)

1.一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料,其特征在于:其化学式为:LaxCaySr1-x-yFe12-z-f-g-δCozAlfMngO19,其中0.05≤x≤0.2, 0.04≤y≤0.16,0.05≤z≤0.2,0.1≤f≤0.25,0.04≤g≤0.16,δ为缺铁量,0≤δ≤0.2;所述铁氧体材料的制备方法包括配料、第一次湿法球磨、预烧、第二次湿法球磨、成型、烧结步骤,其中,在所述第二次湿法球磨时,还加入添加剂0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素。
2.权利要求1所述的一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料的制备方法,其特征在于:包括以下步骤:
(1)根据化学式: LaxCaySr1-x-yFe12-z-f-g-δCozAlfMngO19,其中0.05≤x≤0.2,0.04≤y≤0.16,0.05≤z≤0.2,0.1≤f≤0.25,0.04≤g≤0.16,δ为缺铁量,0≤δ≤0.2,计算并称取各原材料,所述原料为Co2O3、La2O3、SrCO3、CaCO3、Al(OH)3、MnCO3、Fe2O3
(2)原料第一次湿法球磨,将步骤(1)称取的原材料用行星球磨机进行第一次混合湿法球磨4-6h,转速为180-220rpm;
(3)预烧,将步骤(2)得到的浆料烘干过40目筛后进行粉料预烧,预烧温度为1250~1310℃,保温4~6 h;
(4)第二次湿法球磨,将步骤(3)得到的预烧后的粉料,加入添加剂0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素后进行第二次湿法球磨20h~30h,得到预烧料的浆料;
(5)静置,将步骤(4)得到的浆料静置0.5-1h去除多余水分;
(6)成型,将步骤(5)去除多余水分之后得到的浆料进行湿压磁场成型,得到生坯;
(7)烧结,将步骤(6)得到的生坯进行烧结,烧结温度为1150~1200℃,保温1h以上,即得。
3.根据权利要求2所述的方法,其特征在于,步骤(1)中原材料的纯度为分析纯。
4.根据权利要求2所述的方法,其特征在于,步骤(4)中添加剂配方为0.3wt%SiO2+0.4wt%H3BO3+0.6%wtCr2O3+0.8wt%葡萄糖酸钙+0.5wt%羧甲基纤维素,二次球磨采用锆球和玛瑙球混合的方式。
5.根据权利要求2所述的方法,其特征在于,步骤(6)中成型方式为湿压磁场成型,其外加磁场电流为90%,合膜保压压力为6-8Mpa。
CN202211052094.8A 2022-08-30 2022-08-30 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法 Active CN115385679B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211052094.8A CN115385679B (zh) 2022-08-30 2022-08-30 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211052094.8A CN115385679B (zh) 2022-08-30 2022-08-30 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115385679A CN115385679A (zh) 2022-11-25
CN115385679B true CN115385679B (zh) 2023-08-11

Family

ID=84123763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211052094.8A Active CN115385679B (zh) 2022-08-30 2022-08-30 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115385679B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813322A (zh) * 2023-06-27 2023-09-29 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高介电常数旋矩铁氧体材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977312A (en) * 1956-05-16 1961-03-28 Philips Corp Ferromagnetic material
EP0300310A2 (de) * 1987-07-23 1989-01-25 Bayer Ag Verfahren zur Herstellung feinteiliger magnetischer Hexaferritpigmente
JP2006093196A (ja) * 2004-09-21 2006-04-06 Tdk Corp フェライト磁性材料
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
CN104496443A (zh) * 2014-01-22 2015-04-08 安徽大学 一种高磁能积m型钙系永磁铁氧体材料及其制备方法
CN105060870A (zh) * 2015-07-22 2015-11-18 华南理工大学 一种高矫顽力六角锶铁氧体的制备方法
CN107382303A (zh) * 2017-09-18 2017-11-24 马鞍山高科磁性材料有限公司 一种高性能永磁铁氧体磁体的制备方法及磁体
CN108569899A (zh) * 2018-04-20 2018-09-25 横店集团东磁股份有限公司 一种低氧化亚铁永磁铁氧体及其制备方法
CN111362687A (zh) * 2019-12-17 2020-07-03 横店集团东磁股份有限公司 一种永磁铁氧体及其制备方法
CN111995385A (zh) * 2020-07-29 2020-11-27 横店集团东磁股份有限公司 一种径向与轴向收缩一致性高的永磁铁氧体材料及其制备方法
CN113860864A (zh) * 2021-10-11 2021-12-31 电子科技大学 高剩磁比高各向异性场SrM微波铁氧体材料及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488416B2 (ja) * 1999-07-07 2004-01-19 Tdk株式会社 フェライト磁石の製造方法
EP1667176B1 (en) * 2003-09-12 2016-03-23 Hitachi Metals, Ltd. Ferrite sintered magnet
EP1675134A3 (en) * 2004-12-24 2007-01-24 Hengdian Group EMEGC Magnetics Co Ltd Sintered magnet and method for production thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977312A (en) * 1956-05-16 1961-03-28 Philips Corp Ferromagnetic material
EP0300310A2 (de) * 1987-07-23 1989-01-25 Bayer Ag Verfahren zur Herstellung feinteiliger magnetischer Hexaferritpigmente
JP2006093196A (ja) * 2004-09-21 2006-04-06 Tdk Corp フェライト磁性材料
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
CN104496443A (zh) * 2014-01-22 2015-04-08 安徽大学 一种高磁能积m型钙系永磁铁氧体材料及其制备方法
CN105060870A (zh) * 2015-07-22 2015-11-18 华南理工大学 一种高矫顽力六角锶铁氧体的制备方法
CN107382303A (zh) * 2017-09-18 2017-11-24 马鞍山高科磁性材料有限公司 一种高性能永磁铁氧体磁体的制备方法及磁体
CN108569899A (zh) * 2018-04-20 2018-09-25 横店集团东磁股份有限公司 一种低氧化亚铁永磁铁氧体及其制备方法
CN111362687A (zh) * 2019-12-17 2020-07-03 横店集团东磁股份有限公司 一种永磁铁氧体及其制备方法
CN111995385A (zh) * 2020-07-29 2020-11-27 横店集团东磁股份有限公司 一种径向与轴向收缩一致性高的永磁铁氧体材料及其制备方法
CN113860864A (zh) * 2021-10-11 2021-12-31 电子科技大学 高剩磁比高各向异性场SrM微波铁氧体材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Liu, Fujian等.High-temperature hydrothermal synthesis of crystalline mesoporous TiO2 with superior photo catalytic activities.《Applied surface science》.2012,第第258卷卷(第第19期期),第7448-7454页. *

Also Published As

Publication number Publication date
CN115385679A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
JP6685643B2 (ja) 同調可能な共振器システム、同調可能な共振器システムを含むフィルタリングシステム、および同調可能な共振器システムを形成する方法
Harris et al. The self-biased circulator: Ferrite materials design and process considerations
EP2851354B1 (en) Materials, devices and methods related to below-resonance radio-frequency circulators and isolators
Li et al. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
CN115385679B (zh) 一种高剩磁比高矫顽力低铁磁共振线宽锶铁氧体材料及其制备方法
Liu et al. Textured M-type barium hexaferrite Ba (ZnSn) xFe12− 2xO19 with c-axis anisotropy and high squareness ratio
Li et al. Equal permeability and permittivity in a low temperature co-fired In-doped Mg-Cd ferrite
CN111732427B (zh) 自偏置环行器用低铁磁共振线宽六角铁氧体材料及其制备方法
CN116217217A (zh) 自偏置六角铁氧体旋磁材料及其制备方法
Wang et al. Crystallographically textured Zn2W-type barium hexaferrite for microwave and millimeter wave applications
US20240018051A1 (en) Copper oxide doped ni-co-zn ferrite for very high frequency and ultra high frequency applications and process methodology
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
Cruickshank Microwave material applications: Device miniaturization and integration
Lei et al. Mn-substituted Co2Z ferrite ceramics with impedance matching for ultra-high frequency miniaturization antennas
Liu et al. Microstructure and Magnetic Properties of Textured Barium W-Type Hexaferrite with Rare-Earth La3+ Substitution
Li et al. C-Axis-Oriented Ba (ZnHf) x Fe12− x O19 M-Type Barium Hexaferrite with a High Squareness Ratio
Kuo et al. Structure and magnetic properties of Mn and Al doped magnesium ferrite
Huang et al. Enhanced microwave absorption property of rare earth Sm-La co-doped barium ferrite ceramics
Harris et al. Goodenough–Kanamori–Anderson Rules of Superexchange Applied to Ferrite Systems
CN116514535B (zh) 高介电低线宽石榴石铁氧体材料及制备方法和微带环行器
Wang et al. Enhanced efficiency C-axis textured M-type barium ferrite for realization of self-biased circulators
Quanyuan Highly oriented SrM tape hexaferrite
Liu et al. Enhanced Magnetic Properties of Sr0. 7ce0. 3fe11. 7zn0. 3o19 by Adjusting the Pre-Sintered Temperatures
CN116947475B (zh) 一种自偏置环行器用高性能复合铁氧体的制备方法
CN117125972A (zh) 高功率低损耗NiCuZn微波铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant