CN115368134A - 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 - Google Patents
一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN115368134A CN115368134A CN202211038839.5A CN202211038839A CN115368134A CN 115368134 A CN115368134 A CN 115368134A CN 202211038839 A CN202211038839 A CN 202211038839A CN 115368134 A CN115368134 A CN 115368134A
- Authority
- CN
- China
- Prior art keywords
- molten salt
- ceramic material
- oxide ceramic
- entropy
- entropy oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9669—Resistance against chemicals, e.g. against molten glass or molten salts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种抗熔盐腐蚀的高熵氧化物陶瓷材料,该高熵氧化物陶瓷材料呈致密块体,其在Na2SO4+V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度<30μm。同时,本发明还公开了该高熵氧化物陶瓷材料的制备方法。本发明高熵陶瓷材料在不同质量混合后的硫酸钠(Na2SO4)和五氧化二钒(V2O5)腐蚀熔盐体系中,经高温腐蚀后,其陶瓷表面腐蚀深度未超过30μm,更未出现腐蚀层剥落的现象,从而表现出更好的抗熔盐腐蚀能力。
Description
技术领域
本发明涉及热障涂层材料制备及其应用领域,尤其涉及一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法。
背景技术
热障涂层(TBC)被广泛应用于航空发动机和燃气轮机(“两机”)的热端部件,旨在提供对高温合金基体的热防护,改善发动机的持久性和能量效率。随着发动机的推重比的增高和“两机”服役环境的越来越苛刻,对热障涂层材料的综合性能提出了更高要求。
新型热障陶瓷材料除了具有低热导率、高热膨胀系数(TEC)和优异的机械性能外,耐热腐蚀性对热障涂层的性能和寿命起着至关重要的作用,这是由于高温热腐蚀是热障陶瓷材料失效的一种重要因素,如熔盐腐蚀等。各类热障陶瓷涂层材料在苛刻环境长时间服役过程中,低质量的燃料中通常含有Na、V、S 等杂质,服役环境气氛中也通常含有Na,这些杂质就会形成Na2SO4和V2O5 附着在热障陶瓷涂层上,在高温的作用下形成的Na2SO4 +V2O5混合熔盐就会与热障陶瓷发生反应,引发材料的体积膨胀和相变,继而相变应力和腐蚀产物的形成将导致热障陶瓷涂层开裂甚至剥落。
近几年,具有多种主元素的高熵氧化物陶瓷因其独特的性能引起了广泛关注,如优异的抗烧结性和热稳定性、较高的断裂韧性、较低的热导率以及良好的耐热腐蚀性能,这些优异的综合性能归因于热力学的高熵效应、结构的晶格畸变效应、动力学的迟滞扩散效应以及性能上的“鸡尾酒”效应。而高熵氧化物陶瓷作为一种潜在的热障涂层材料,独特的高熵构型赋予了此类材料更好的耐高温熔盐腐蚀性能。
因此,研发一种能够抗混合熔盐(Na2SO4+V2O5)腐蚀的高熵氧化物陶瓷材料势在必行。
发明内容
本发明所要解决的技术问题是提供一种性能优异的抗熔盐腐蚀的高熵氧化物陶瓷材料。
本发明所要解决的另一个技术问题是提供该抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法。
为解决上述问题,本发明所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料,其特征在于:该高熵氧化物陶瓷材料呈致密块体,其在Na2SO4+V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度<30μm。
所述高熵氧化物陶瓷材料由CeO2、La2O3、Nd2O3、Sm2O3、Nb2O5和Gd2O3制得;其显微硬度值>9.6GPa,具有A2B2Ox型萤石结构,其中:A由La、Nd、Sm、Nb和Gd五种元素组成,B为四价的Ce元素,7.0<x≤7.4。
所述Nb元素的价态为五价,其摩尔百分比占所述A总摩尔量的10~20%,其余四种元素保持相同的摩尔比。
所述Na2SO4+V2O5的混合熔盐按质量百分数计为y wt% Na2SO4+(100-y)wt%V2O5,且y=0,20,44,60,100。
如上所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴按质量分数计,将9.7~10.8%的La2O3、10.0~11.2%的Nd2O3、10.4~11.5%的Sm2O3、3.9~7.9%的Nb2O5、10.8~12.0%的Gd2O3和50.6~51.2%的CeO2原始粉末采用行星式球磨机进行球磨,混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中预烧,即得预烧粉末;
⑵所述预烧粉末经球磨、过筛,即得粉末粒径小于2μm的高熵构型粉体材料;
⑶所述高熵构型粉体材料压制成生胚后,放入马弗炉中进行无压烧结,即得致密的高熵陶瓷块体。
所述步骤⑴与所述步骤⑵中球磨的条件是指球磨介质为无水乙醇或丙酮,转速为400 r/min,球磨时间为24h。
所述步骤⑴中预烧的条件是指温度为1300℃,时间为5h,升温速率为5℃/min。
所述步骤⑶中压制条件是指压强为7MPa,保压时间为5 min。
所述步骤⑶中无压烧结的条件是指烧结温度为1480 ℃,烧结时间20h,升温速率2℃/min。
本发明与现有技术相比具有以下优点:
1、本发明将耐腐蚀性能优异的Nb元素引入,加之陶瓷材料独具的熵效应,极大地增强了该材料的抗Na2SO4+V2O5混合熔盐的腐蚀性能;同时结合高熵构型特殊效应,使其具有较高的显微硬度值,进而提高了材料的机械性能。
2、本发明高熵陶瓷材料在不同质量混合后的硫酸钠(Na2SO4)和五氧化二钒(V2O5)腐蚀熔盐体系中,经高温腐蚀后,其陶瓷表面腐蚀深度未超过30μm,更未出现腐蚀层剥落的现象,从而表现出更好的抗熔盐腐蚀能力。
3、本发明中高熵氧化物陶瓷材料的制备方法简单,在高性能热障涂层领域具有广阔的应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明制备的高熵陶瓷块体的X射线衍射图。
图2为本发明制备的高熵陶瓷块体在20 wt% Na2SO4+80wt%V2O5腐蚀(1000℃,10h)后的截面扫描电镜形貌图。
图3为本发明制备的高熵陶瓷块体在44 wt% Na2SO4+56wt%V2O5腐蚀(1000℃,10h)后的截面扫描电镜形貌图。
图4为本发明制备的高熵陶瓷块体在100%V2O5腐蚀(1000℃,10h)后的截面扫描电镜形貌图。
具体实施方式
一种抗熔盐腐蚀的高熵氧化物陶瓷材料,该高熵氧化物陶瓷材料呈致密块体,其在Na2SO4+V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度<30μm。Na2SO4+V2O5的混合熔盐按质量百分数计为y wt% Na2SO4+(100-y)wt%V2O5,且y=0,20,44,60,100。
其中:高熵氧化物陶瓷材料由CeO2、La2O3、Nd2O3、Sm2O3、Nb2O5和Gd2O3制得;其显微硬度值>9.6GPa,具有A2B2Ox型萤石结构,即:(La-Nd-Sm-Nb-Gd)2Ce2Ox,其中:A由La、Nd、Sm、Nb和Gd五种元素组成,B为四价的Ce元素,7.0<x≤7.4。Nb元素的价态为五价,其摩尔百分比占A总摩尔量的10~20%,其余四种元素保持相同的摩尔比。
该高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴按质量分数计,将9.7~10.8%的La2O3、10.0~11.2%的Nd2O3、10.4~11.5%的Sm2O3、3.9~7.9%的Nb2O5、10.8~12.0%的Gd2O3和50.6~51.2%的CeO2原始粉末采用行星式球磨机进行球磨,球磨介质为无水乙醇或丙酮,转速为400 r/min,球磨时间为24h。混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中1300℃预烧5h,升温速率为5℃/min,即得预烧粉末。
⑵预烧粉末在球磨介质为无水乙醇、转速为400r/min,球磨时间为24h的条件下球磨后过筛,即得粉末粒径小于2μm的高熵构型粉体材料。
⑶高熵构型粉体材料置于模具中,在压强为7MPa、保压时间为5 min的条件下压制成生胚后,放入马弗炉中进行无压烧结,烧结温度为1480 ℃,烧结时间20h,升温速率2℃/min,即得致密的高熵陶瓷块体(参见图1)。
本发明中La2O3、Nd2O3、Sm2O3、Nb2O5、Gd2O3和CeO2均为分析纯,纯度大于99.0%,且粉末粒径小于10μm。
实施例1 一种抗熔盐腐蚀的高熵氧化物陶瓷材料,该高熵氧化物陶瓷材料呈致密块体,显微硬度值为9.7 GPa,其在20 wt% Na2SO4+80wt%V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度约为26μm(参见图2)。
其中:高熵氧化物陶瓷材料为La0.2Nd0.2Sm0.2Nb0.2Gd0.2)2Ce2O7.4,其具有萤石结构,La、Nd、Sm、Nb和Gd五种元素的摩尔百分比均为20%。
该高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴将9.7g的La2O3、10.0g的Nd2O3、10.4g的Sm2O3、7.9g的Nb2O5、10.8g的Gd2O3和51.2g的CeO2原始粉末采用行星式球磨机进行球磨,球磨介质为无水乙醇或丙酮,转速为400 r/min,球磨时间为24h。混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中1300℃预烧5h,升温速率为5℃/min,即得预烧粉末。
⑵预烧粉末在球磨介质为无水乙醇、转速为400r/min,球磨时间为24h的条件下球磨后过筛,即得粉末粒径小于2μm的高熵构型粉体材料。
⑶高熵构型粉体材料置于模具中,在压强为7MPa、保压时间为5 min的条件下压制成生胚后,放入马弗炉中进行无压烧结,烧结温度为1480 ℃,烧结时间20h,升温速率2℃/min,即得致密的高熵陶瓷块体。
实施例2 一种抗熔盐腐蚀的高熵氧化物陶瓷材料,该高熵氧化物陶瓷材料呈致密块体,显微硬度值为9.8 GPa,其在44 wt% Na2SO4+56wt%V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度约16μm(参见图3)。
其中:高熵氧化物陶瓷材料为La0.225Nd0.225Sm0.225Nb0.100Gd0.225)2Ce2O7.1,其具有萤石结构,Nb元素的摩尔百分比为10.0%,La、Nd、Sm和Gd四种元素的摩尔百分比均为22.5%。
该高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴将10.8g的La2O3、11.2g的Nd2O3、11.5g的Sm2O3、3.9g的Nb2O5、12.0g的Gd2O3和50.6g的CeO2原始粉末采用行星式球磨机进行球磨,球磨介质为无水乙醇或丙酮,转速为400 r/min,球磨时间为24h。混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中1300℃预烧5h,升温速率为5℃/min,即得预烧粉末。
⑵预烧粉末在球磨介质为无水乙醇、转速为400r/min,球磨时间为24h的条件下球磨后过筛,即得粉末粒径小于2μm的高熵构型粉体材料。
⑶高熵构型粉体材料置于模具中,在压强为7MPa、保压时间为5 min的条件下压制成生胚后,放入马弗炉中进行无压烧结,烧结温度为1480 ℃,烧结时间20h,升温速率2℃/min,即得致密的高熵陶瓷块体。
实施例3 一种抗熔盐腐蚀的高熵氧化物陶瓷材料,该高熵氧化物陶瓷材料呈致密块体,显微硬度值为10.1 GPa,其在100wt%V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度约为11μm(参见图4)。
其中:高熵氧化物陶瓷材料为(La0.21Nd0.21Sm0.21Nb0.16Gd0.21)2Ce2O7.32,其具有萤石结构,Nb元素的摩尔百分比为16%,La、Nd、Sm和Gd四种元素的摩尔百分比均为21%。
该高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴将10.1g的La2O3、10.5g的Nd2O3、10.8g的Sm2O3、6.3g的Nb2O5、11.3g的Gd2O3和51.0g的CeO2原始粉末采用行星式球磨机进行球磨,球磨介质为无水乙醇或丙酮,转速为400 r/min,球磨时间为24h。混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中1300℃预烧5h,升温速率为5℃/min,即得预烧粉末。
⑵预烧粉末在球磨介质为无水乙醇、转速为400r/min,球磨时间为24h的条件下球磨后过筛,即得粉末粒径小于2μm的高熵构型粉体材料。
⑶高熵构型粉体材料置于模具中,在压强为7MPa、保压时间为5 min的条件下压制成生胚后,放入马弗炉中进行无压烧结,烧结温度为1480 ℃,烧结时间20h,升温速率2℃/min,即得致密的高熵陶瓷块体。
Claims (9)
1.一种抗熔盐腐蚀的高熵氧化物陶瓷材料,其特征在于:该高熵氧化物陶瓷材料呈致密块体,其在Na2SO4+V2O5的混合熔盐中,陶瓷表面经1000℃腐蚀10h的腐蚀深度<30μm。
2.如权利要求1所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料,其特征在于:所述高熵氧化物陶瓷材料由CeO2、La2O3、Nd2O3、Sm2O3、Nb2O5和Gd2O3制得;其显微硬度值>9.6GPa,具有A2B2Ox型萤石结构,其中:A由La、Nd、Sm、Nb和Gd五种元素组成,B为四价的Ce元素,7.0<x≤7.4。
3.如权利要求2所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料,其特征在于:所述Nb元素的价态为五价,其摩尔百分比占所述A总摩尔量的10~20%,其余四种元素保持相同的摩尔比。
4.如权利要求1所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料,其特征在于:所述Na2SO4+V2O5的混合熔盐按质量百分数计为y wt% Na2SO4+(100-y)wt%V2O5,且y=0,20,44,60,100。
5.如权利要求1或2或3所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,包括以下步骤:
⑴按质量分数计,将9.7~10.8%的La2O3、10.0~11.2%的Nd2O3、10.4~11.5%的Sm2O3、3.9~7.9%的Nb2O5、10.8~12.0%的Gd2O3和50.6~51.2%的CeO2原始粉末采用行星式球磨机进行球磨,混合均匀后得到浆料;该浆料经充分干燥并过筛后,装入氧化铝坩埚,并置于马弗炉中预烧,即得预烧粉末;
⑵所述预烧粉末经球磨、过筛,即得粉末粒径小于2μm的高熵构型粉体材料;
⑶所述高熵构型粉体材料压制成生胚后,放入马弗炉中进行无压烧结,即得致密的高熵陶瓷块体。
6.如权利要求5所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,其特征在于:所述步骤⑴与所述步骤⑵中球磨的条件是指球磨介质为无水乙醇或丙酮,转速为400r/min,球磨时间为24h。
7.如权利要求5所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,其特征在于:所述步骤⑴中预烧的条件是指温度为1300℃,时间为5h,升温速率为5℃/min。
8.如权利要求5所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,其特征在于:所述步骤⑶中压制条件是指压强为7MPa,保压时间为5 min。
9.如权利要求5所述的一种抗熔盐腐蚀的高熵氧化物陶瓷材料的制备方法,其特征在于:所述步骤⑶中无压烧结的条件是指烧结温度为1480℃,烧结时间20h,升温速率2℃/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211038839.5A CN115368134B (zh) | 2022-08-29 | 2022-08-29 | 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211038839.5A CN115368134B (zh) | 2022-08-29 | 2022-08-29 | 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115368134A true CN115368134A (zh) | 2022-11-22 |
CN115368134B CN115368134B (zh) | 2023-04-25 |
Family
ID=84070449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211038839.5A Active CN115368134B (zh) | 2022-08-29 | 2022-08-29 | 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115368134B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116462505A (zh) * | 2023-01-29 | 2023-07-21 | 昆明理工大学 | 一种高熵稀土钽酸盐氧离子绝缘体材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111763087A (zh) * | 2020-06-29 | 2020-10-13 | 西安交通大学 | 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法 |
WO2022067085A1 (en) * | 2020-09-24 | 2022-03-31 | William Marsh Rice University | Ultrafast flash joule heating synthesis methods and systems for performing same |
WO2022150304A1 (en) * | 2021-01-05 | 2022-07-14 | Oerlikon Metco (Us) Inc. | Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity |
CN114751744A (zh) * | 2021-01-19 | 2022-07-15 | 厦门稀土材料研究所 | 铈酸稀土基高熵陶瓷材料及其制备方法 |
CN114920559A (zh) * | 2022-06-07 | 2022-08-19 | 西北工业大学 | 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用 |
-
2022
- 2022-08-29 CN CN202211038839.5A patent/CN115368134B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111763087A (zh) * | 2020-06-29 | 2020-10-13 | 西安交通大学 | 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法 |
WO2022067085A1 (en) * | 2020-09-24 | 2022-03-31 | William Marsh Rice University | Ultrafast flash joule heating synthesis methods and systems for performing same |
WO2022150304A1 (en) * | 2021-01-05 | 2022-07-14 | Oerlikon Metco (Us) Inc. | Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity |
CN114751744A (zh) * | 2021-01-19 | 2022-07-15 | 厦门稀土材料研究所 | 铈酸稀土基高熵陶瓷材料及其制备方法 |
CN114920559A (zh) * | 2022-06-07 | 2022-08-19 | 西北工业大学 | 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116462505A (zh) * | 2023-01-29 | 2023-07-21 | 昆明理工大学 | 一种高熵稀土钽酸盐氧离子绝缘体材料及其制备方法 |
CN116462505B (zh) * | 2023-01-29 | 2024-04-12 | 昆明理工大学 | 一种高熵稀土钽酸盐氧离子绝缘体材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115368134B (zh) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2647453C (en) | Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body | |
EP2970015B1 (en) | Silicon carbide ceramic matrix composites containing a rare earth compound | |
CN113816751B (zh) | 一种四方相高熵热障涂层材料及其制备方法 | |
CN104891990B (zh) | 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法 | |
US7955707B2 (en) | High purity ceramic abradable coatings | |
JPWO2016129591A1 (ja) | コーティング部材及びコーティング部材の製造方法 | |
CN106884132A (zh) | 一种高温热障涂层材料 | |
CN111233446A (zh) | 一种用于陶瓷基复合材料基体的硅酸铪环境障涂层及其制备方法 | |
CN111471998A (zh) | 一种Yb改性防CMAS复合结构热障涂层及其制备方法 | |
JP2010070451A (ja) | 希土類リン酸塩結合セラミック | |
CN115368134B (zh) | 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法 | |
CN114315390A (zh) | 一种碳/碳复合材料表面宽温域长寿命抗氧化涂层及低温制备方法 | |
CN115057704A (zh) | 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用 | |
CN114988895A (zh) | 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法 | |
CN114853473B (zh) | 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法 | |
JP2010242223A (ja) | 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体 | |
CN115537808B (zh) | 一种陶瓷基复合材料表面沉积高熵合金涂层的方法 | |
RU2386513C9 (ru) | Высокотемпературный композиционный материал для уплотнительного покрытия | |
CN106518062A (zh) | 一种超低热导高温相稳定的钕铈复合锆酸盐热障涂层材料及其制备方法 | |
CN116676559A (zh) | 一种钆钐锆镨氧热障涂层材料及其制备方法 | |
CN114195515B (zh) | 一种氧化物颗粒优化钽酸镍陶瓷材料及其应用 | |
JP5320352B2 (ja) | 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体 | |
CN114368969A (zh) | TiSi2掺杂Gd2Zr2O7陶瓷材料、制备方法及热障涂层 | |
KR20230102124A (ko) | A2b2o7 및 a3b′o7 플루오라이트 구조 세라믹스의 양이온 치환을 통한 고엔트로피 a5b2b′o14 단일상 소재 제조 방법 | |
CN109485387B (zh) | 一种环境障涂层用空心球形bsas粉末的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |