CN114853473B - 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法 - Google Patents

一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法 Download PDF

Info

Publication number
CN114853473B
CN114853473B CN202210428685.4A CN202210428685A CN114853473B CN 114853473 B CN114853473 B CN 114853473B CN 202210428685 A CN202210428685 A CN 202210428685A CN 114853473 B CN114853473 B CN 114853473B
Authority
CN
China
Prior art keywords
xre
powder
sio
rare earth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210428685.4A
Other languages
English (en)
Other versions
CN114853473A (zh
Inventor
王超
何昱萱
李刘媛
吴玉胜
王赫
王占杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Hunan Aviation Powerplant Research Institute AECC
Original Assignee
Shenyang University of Technology
Hunan Aviation Powerplant Research Institute AECC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology, Hunan Aviation Powerplant Research Institute AECC filed Critical Shenyang University of Technology
Priority to CN202210428685.4A priority Critical patent/CN114853473B/zh
Publication of CN114853473A publication Critical patent/CN114853473A/zh
Application granted granted Critical
Publication of CN114853473B publication Critical patent/CN114853473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

一种耐高温CMAS腐蚀的稀土硅酸盐的陶瓷与制备方法,该陶瓷为高熵稀土单硅酸盐和高熵稀土双硅酸盐复合的复相陶瓷结构。通过固相反应法将RE2O3和SiO2分别合成单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,然后将单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体按一定比例进行复合,形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体,再将粉体压片后无压烧结形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体;该结构的高熵稀土硅酸盐陶瓷具有良好的耐高温CMAS腐蚀能力等优异的性能。

Description

一种耐高温CMAS腐蚀的稀土硅酸盐陶瓷与制备方法
技术领域
本发明属于环境障涂层材料的制备技术领域,涉及一种高熵稀土单硅酸盐和高熵稀土双硅酸盐复合的复相陶瓷的结构设计及制备方法。
背景技术
SiC陶瓷基复合材料(CMCs),是以SiC陶瓷为基体,C或SiC纤维增强的复合材料。SiC-CMCs具备密度低、耐高温、力学性能优异、抗氧化等特点,将其应用于航空发动机如燃烧室,涡轮等,可达到结构减重、燃烧效率提高的效果,实现高推重比发展,SiC-CMCs因此得到研究者的广泛关注。
SiC-CMCs在干燥氧化气氛中,表面能形成致密、抗氧化的SiO2保护层。但在航空发动机燃气环境中,SiO2保护层会与水蒸气反应生成挥发性Si(OH)4,造成氧化膜失效及复合材料的挥发与损伤,降低结构部件的力学性能与服役可靠性。
因此,需要在SiC-CMCs表面涂覆一层环境障涂层(EBCs),可以将SiC-CMCs与燃烧室腐蚀环境隔离开,提高基体材料的高温稳定性,延长服役寿命。稀土硅酸盐陶瓷具有优异的抗氧化性、耐高温水汽腐蚀性能,以及与SiC基陶瓷相匹配的热膨胀系数和良好的化学相容性等优点,成为目前SiC基陶瓷表面EBCs的热门材料。但是,单组元稀土硅酸盐在长时间、高温环境中结构稳定性较差,稀土双硅酸盐易发生晶型转变、晶粒异常长大等现象,而稀土单硅酸盐易与SiO2反应生成稀土双硅酸盐,并存在热膨胀系数较大,与基体不匹配的问题。与此同时,在沙漠或火山附近,沙子或者火山灰常常会被吸入飞机发动机内,该类物质主要成分为A12O3-MgO-CaO-SiO2(CMAS),其熔点较低,会在叶片等热端部件表面熔融,从而不断与表面稀土硅酸盐涂层发生反应而导致涂层失效。
“高熵”是21世纪提出的新材料设计理论,是由四种或多种组分构成的固溶体材料,其特点可以概括为四种效应:热力学的高熵效应、结构的晶格畸变效应、动力学的迟滞扩散效应、性能上的“鸡尾酒”效应。近年来,一些研究人员对高熵稀土硅酸盐展开了一系列工作,研究发现,与单组元稀土硅酸盐相比,高熵稀土硅酸盐不仅表现出优异的高温结构稳定性,而且具有较低的热导率、与SiC基陶瓷相匹配的热膨胀系数、良好的耐高温水汽腐蚀和高温CMAS腐蚀能力。与单组元稀土硅酸盐相比,尽管高熵稀土硅酸盐具有优异的耐高温CMAS腐蚀能力,但在长时间、高温CMAS腐蚀后其反应层厚度仍然较厚,约为300μm,并伴有应力裂纹和气泡缺陷产生。这对只有几十至几百微米厚的EBCs来说仍然是灾难性的,腐蚀能力差,限制了EBCs在高温下的应用。因此,现有的涂层均无法满足高温极端环境下的使用要求。
发明内容
发明目的
本发明针对高熵稀土硅酸盐在长时间、高温CMAS腐蚀后其反应层厚,并伴有应力裂纹和气泡缺陷,且腐蚀能力差,提供了一种耐高温CMAS腐蚀的高熵稀土硅酸盐的复相结构陶瓷与制备方法。
技术方案
一种耐高温CMAS腐蚀的稀土硅酸盐陶瓷,其特征在于:该陶瓷结构为高熵稀土单硅酸盐(xRE1/x)2SiO5和高熵稀土双硅酸盐(xRE1/x)2Si2O7形成的复合相陶瓷,其中,(xRE1/x)2SiO5与(xRE1/x)2Si2O7的质量比为1/3~3/1;其中的RE为稀土元素,x为组元数。
一种如上所述的耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法,其特征在于:步骤如下:
步骤1,高熵稀土单、双硅酸盐粉体制备:首先,将RE2O3、SiO2粉体按照摩尔比1:1的比例在球磨机中湿球磨混合24 h。之后将所得浆液放入烘箱,在80 ℃下干燥10 h。然后将干燥后粉体在1450~1550 ℃温度下煅烧2 h,再经过球磨破碎10 h,合成出单相高熵稀土单硅酸盐(xRE1/x)2SiO5粉体;将RE2O3、SiO2粉体按照摩尔比1:2的比例在球磨机中湿球磨混合24 h。之后将所得浆液放入烘箱,在80 ℃下干燥10 h。然后,将混合粉体在1450~1550 ℃温度下煅烧2 h,经过球磨破碎10 h,合成出单相高熵稀土双硅酸盐(xRE1/x)2Si2O7粉体;
步骤2,(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体制备:将步骤1制备好的单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体;
步骤3,试样烧结:将得到的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体压制成陶瓷块体,随后采用无压烧结,在1600~1700 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体。
优选的,步骤1所述的RE2O3中RE为稀土元素,x为2~6组元。
优选的,步骤2所述(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体中,(xRE1/x)2SiO5和(xRE1/x)2Si2O7的质量比为1/3~3/1。
优选的,步骤3所述致密的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体的相对密度为96%~98%。
优点及效果
与现有方法相比,本发明具有如下优点:(1)该方法具有工艺简单,成本低、可以大批量生产等优点;(2)高熵稀土单硅酸盐能够与SiO2发生反应,消除了高熵稀土双硅酸盐晶界处的SiO2相,净化了晶界,抑制高温CMAS熔体的渗入,显著提高了材料耐高温CMAS腐蚀能力;(3)由于“高熵稳定效应”和复相陶瓷结构特征,极大改善耐高温CMAS腐蚀能力。
附图说明
图1为本发明(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷的表面形貌;
图2为本发明(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷的截面形貌。
具体实施方式
下面结合附图对本发明做进一步的说明:
一种耐高温CMAS腐蚀的稀土硅酸盐陶瓷,该陶瓷结构为高熵稀土单硅酸盐(xRE1/x)2SiO5和高熵稀土双硅酸盐(xRE1/x)2Si2O7形成的复合相陶瓷,其中,(xRE1/x)2SiO5与(xRE1/x)2Si2O7的质量比为1/3~3/1;其中的RE为稀土元素,x为组元数。
一种耐高温CMAS腐蚀的稀土硅酸盐的制备方法,制备步骤为:首先,通过固相反应法将RE2O3和SiO2合成单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,然后将单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体进行复合形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体,(参见图1、图2)再将粉体压片无压烧结后形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体;该结构的陶瓷具有良好的耐高温CMAS腐蚀能力等优异性能。
实施例1
本实施例是选取了Y、Yb元素,制备二组元高熵(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相陶瓷,包括以下步骤:
步骤1,高熵稀土单、双硅酸盐粉体制备:将RE2O3(RE为稀土元素)、SiO2分别按摩尔比1:1和1:2比例进行混合。将混合粉体在球磨机中湿球磨混合24 h,之后将所得浆液放入烘箱,在80 ℃下干燥10 h,然后将干燥后的粉体在1450 ℃温度下煅烧2 h,再经过球磨破碎10h,分别合成出单相高熵稀土单硅酸盐(2RE1/2)2SiO5粉体和单相高熵稀土双硅酸盐(2RE1/2)2Si2O7粉体。
步骤2,(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相粉体制备:将步骤1制备好的单相粉体,按(2RE1/2)2SiO5:(2RE1/2)2Si2O7的质量比为1:1比例在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相粉体。
步骤3,试样烧结:将得到的(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相粉体压制陶瓷块体,采用无压烧结,在1700 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相陶瓷块体。
本实施例制备的(2RE1/2)2Si2O7/(2RE1/2)2SiO5复相陶瓷结构致密,相对密度达到96.6 %,在1400 ℃下经CMAS腐蚀48 h后,反应层厚度仅为150μm,与单组元稀土硅酸盐相比,耐腐蚀性能得到了显著提高。
实施例2
本实施例是选取了Y、Yb、Er元素,制备三组元高熵(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相陶瓷,包括以下步骤:
步骤1,高熵稀土单、双硅酸盐粉体制备:将RE2O3(RE为稀土元素)、SiO2分别按摩尔比1:1和1:2比例进行混合。将混合粉体在球磨机中湿球磨混合24 h,之后将所得浆液放入烘箱,在80 ℃下干燥10 h,然后将干燥后的粉体在1500 ℃温度下保温2 h,再经过球磨破碎10h,分别合成出单相高熵稀土单硅酸盐(3RE1/3)2SiO5粉体和单相高熵稀土双硅酸盐(3RE1/3)2Si2O7粉体。
步骤2,(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相粉体制备:将步骤1制备好的单相粉体,按(3RE1/3)2SiO5:(3RE1/3)2Si2O7的质量比为1:3比例在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相粉体。
步骤3,试样烧结:将得到的(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相粉体压制成陶瓷块体,采用无压烧结,在1650 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相陶瓷块体。
本实施例制备的(3RE1/3)2Si2O7/(3RE1/3)2SiO5复相陶瓷结构致密,相对密度达到97.1 %,在1500 ℃下经CMAS腐蚀48 h后,反应层厚度仅为95μm,耐腐蚀性能得到了显著提高。
实施例3
结合图1-2,本实施例是选取了Y、Yb、Er、Sc元素,制备四组元高熵(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相陶瓷,包括以下步骤:
步骤1,高熵稀土单、双硅酸盐粉体制备:将RE2O3(RE为稀土元素)、SiO2分别按摩尔比1:1和1:2比例进行混合。将混合粉体在球磨机中湿球磨混合24 h,之后将所得浆液放入烘箱,在80 ℃下干燥10 h,然后将干燥后的粉体在1500 ℃温度下保温2 h,再经过球磨破碎10h,分别合成出单相高熵稀土单硅酸盐(4RE1/4)2SiO5粉体和单相高熵稀土双硅酸盐(4RE1/4)2Si2O7粉体。
步骤2,(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相粉体制备:将步骤1制备好的单相粉体,按(4RE1/4)2SiO5:(4RE1/4)2Si2O7的质量比为1:3比例在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相粉体。
步骤3,试样烧结:将得到的(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相粉体压制陶瓷块体,采用无压烧结,在1600 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相陶瓷块体。
本实施例制备的(4RE1/4)2Si2O7/(4RE1/4)2SiO5复相陶瓷结构致密,相对密度达到98%,在1500 ℃下经CMAS腐蚀48 h后,反应层厚度仅为60μm,耐腐蚀性能得到了显著提高。
实施例4
本实施例是选取了Y、Yb、Er、Sc、Tm、Lu元素,制备六组元高熵(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相陶瓷,包括以下步骤:
步骤1,高熵稀土单、双硅酸盐粉体制备:将RE2O3(RE为稀土元素)、SiO2分别按摩尔比1:1和1:2比例进行混合。将混合粉体在球磨机中湿球磨混合24 h,之后将所得浆液放入烘箱,在80 ℃下干燥10 h,然后将干燥后的粉体在1550 ℃温度下保温2 h,再经过球磨破碎10h,分别合成出单相高熵稀土单硅酸盐(6RE1/6)2SiO5粉体和单相高熵稀土双硅酸盐(6RE1/6)2Si2O7粉体。
步骤2,(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相粉体制备:将将步骤1制备好的单相粉体,按(6RE1/6)2SiO5:(6RE1/6)2Si2O7的质量比为3:1比例在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相粉体。
步骤3,试样烧结:将得到的(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相粉体压制成陶瓷块体,采用无压烧结,在1700 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相陶瓷块体。
本实施例制备的(6RE1/6)2Si2O7/(6RE1/6)2SiO5复相陶瓷结构致密,相对密度达到96.8 %,在1500 ℃下经CMAS腐蚀48 h后,反应层厚度仅为50 μm,耐腐蚀性能得到了显著提高。
需要说明的是:高熵稀土单、双硅酸盐粉体制备中,RE2O3、SiO2之间的比例关系是公知技术,本领域技术人员知晓它们在何种比例下,能够制备出高熵稀土单、双硅酸盐粉体。
在步骤2的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体制备中,(xRE1/x)2SiO5与(xRE1/x)2Si2O7可以为任意合理的比例混合,都能实现本发明的目的,但最优选为(xRE1/x)2SiO5与(xRE1/x)2Si2O7的质量比为1/3~3/1。
本发明的方法通过固相反应法将RE2O3和SiO2合成单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,然后将单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体进行复合形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体,再将粉体压片无压烧结后形成(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体。所制备(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷具有良好的耐高温CMAS腐蚀能力等优异性能。
本发明制备了一种高熵稀土单/双硅酸盐复相陶瓷,来提高其耐高温CMAS腐蚀能力。一方面,高熵稀土硅酸盐具有高熵稳定效应,在高温CMAS熔体中,硅酸盐晶粒的溶解度较低,能够提高材料本征耐高温CMAS腐蚀的能力。在腐蚀过程中,高熵稀土硅酸盐为“溶解析出再沉淀”机制,高熵稀土硅酸盐溶解在CMAS中,并与CMAS反应生成磷灰石,形成反应层,与单组元稀土硅酸盐相比,构型熵的增加减缓了陶瓷在CMAS中的溶解,从而降低了反应层的厚度,增强了耐高温腐蚀性能。另一方面,将(xRE1/x)2Si2O7和(xRE1/x)2SiO5复合后,能够改变陶瓷的晶粒尺寸和晶界结构,从而改善其耐腐蚀能力。在CMAS熔体中(xRE1/x)2Si2O7晶粒的溶解速率较高,当大部分(xRE1/x)2Si2O7在反应前沿溶解后,(xRE1/x)2SiO5晶粒暴露出来,增大了在界面凹陷处(xRE1/x)2SiO5晶粒与CMAS熔体的接触面积,导致局部磷灰石相数量增多,从而形成更加致密的磷灰石阻挡层,能够阻止熔体的渗入。

Claims (5)

1.一种耐高温CMAS腐蚀的稀土硅酸盐陶瓷,其特征在于:该陶瓷结构为高熵稀土单硅酸盐(xRE1/x)2SiO5和高熵稀土双硅酸盐(xRE1/x)2Si2O7形成的复合相陶瓷,其中,(xRE1/x)2SiO5与(xRE1/x)2Si2O7的质量比为1/3~3/1;其中的RE为稀土元素,x为组元数;
该耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法按如下步骤进行:
步骤1,高熵稀土单、双硅酸盐粉体制备:首先,将RE2O3、SiO2粉体按照摩尔比1:1的比例在球磨机中湿球磨混合24 h;之后将所得浆液放入烘箱,在80 ℃下干燥10 h;然后将干燥后粉体在1450~1550 ℃温度下煅烧2 h,再经过球磨破碎10 h,合成出单相高熵稀土单硅酸盐(xRE1/x)2SiO5粉体;将RE2O3、SiO2粉体按照摩尔比1:2的比例在球磨机中湿球磨混合24 h;之后将所得浆液放入烘箱,在80 ℃下干燥10 h;然后,将混合粉体在1450~1550 ℃温度下煅烧2 h,经过球磨破碎10 h,合成出单相高熵稀土双硅酸盐(xRE1/x)2Si2O7粉体;
步骤2,(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体制备:将步骤1制备好的单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体;
步骤3,试样烧结:将得到的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体压制成陶瓷块体,随后采用无压烧结,在1600~1700 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体;
步骤1所述的RE2O3中RE为稀土元素,x为2~6组元。
2.一种如权利要求1所述的耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法,其特征在于:步骤如下:
步骤1,高熵稀土单、双硅酸盐粉体制备:首先,将RE2O3、SiO2粉体按照摩尔比1:1的比例在球磨机中湿球磨混合24 h;之后将所得浆液放入烘箱,在80 ℃下干燥10 h;然后将干燥后粉体在1450~1550 ℃温度下煅烧2 h,再经过球磨破碎10 h,合成出单相高熵稀土单硅酸盐(xRE1/x)2SiO5粉体;将RE2O3、SiO2粉体按照摩尔比1:2的比例在球磨机中湿球磨混合24 h;之后将所得浆液放入烘箱,在80 ℃下干燥10 h;然后,将混合粉体在1450~1550 ℃温度下煅烧2 h,经过球磨破碎10 h,合成出单相高熵稀土双硅酸盐(xRE1/x)2Si2O7粉体;
步骤2,(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体制备:将步骤1制备好的单相(xRE1/x)2SiO5粉体和单相(xRE1/x)2Si2O7粉体,在球磨机中湿球磨混合24 h,然后将所得浆液放入烘箱,在80 ℃下干燥10 h,再过200目筛获得(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体;
步骤3,试样烧结:将得到的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体压制成陶瓷块体,随后采用无压烧结,在1600~1700 ℃下保温10 h,升温速率5 ℃/min,制备成致密的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体。
3.根据权利要求2所述的耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法,其特征在于:步骤1所述的RE2O3中RE为稀土元素,x为2~6组元。
4.根据权利要求2所述的耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法,其特征在于:步骤2所述(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相粉体中,(xRE1/x)2SiO5和(xRE1/x)2Si2O7的质量比为1/3~3/1。
5.根据权利要求2所述的耐高温CMAS腐蚀的稀土硅酸盐陶瓷的制备方法,其特征在于:步骤3所述致密的(xRE1/x)2SiO5/(xRE1/x)2Si2O7复相陶瓷块体的相对密度为96%~98%。
CN202210428685.4A 2022-04-22 2022-04-22 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法 Active CN114853473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210428685.4A CN114853473B (zh) 2022-04-22 2022-04-22 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210428685.4A CN114853473B (zh) 2022-04-22 2022-04-22 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法

Publications (2)

Publication Number Publication Date
CN114853473A CN114853473A (zh) 2022-08-05
CN114853473B true CN114853473B (zh) 2023-01-20

Family

ID=82633654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210428685.4A Active CN114853473B (zh) 2022-04-22 2022-04-22 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法

Country Status (1)

Country Link
CN (1) CN114853473B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283256A (zh) * 2023-03-15 2023-06-23 南京工业大学 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299948A (ja) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology 希土類シリケート高温水蒸気腐食防止用皮膜及びその製造方法
JP2005097007A (ja) * 2003-09-22 2005-04-14 National Institute Of Advanced Industrial & Technology 高温耐腐食層を有する非酸化物セラミックス構造体及びその製造方法
CN110983233A (zh) * 2019-12-25 2020-04-10 西安鑫垚陶瓷复合材料有限公司 一种多层结构稀土硅酸盐环境屏障涂层及其制备方法
CN111056826A (zh) * 2019-11-29 2020-04-24 中国科学院金属研究所 具有超高温稳定性的γ型高熵稀土双硅酸盐及其制备方法
KR20210061608A (ko) * 2019-11-20 2021-05-28 한국생산기술연구원 용사 코팅용 고엔트로피 세라믹 분말의 제조 방법 및 이를 이용한 용사 코팅막의 제조 방법
CN113024232A (zh) * 2021-03-17 2021-06-25 中山大学 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法
CN113831115A (zh) * 2021-09-10 2021-12-24 中国科学院金属研究所 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004299948A (ja) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology 希土類シリケート高温水蒸気腐食防止用皮膜及びその製造方法
JP2005097007A (ja) * 2003-09-22 2005-04-14 National Institute Of Advanced Industrial & Technology 高温耐腐食層を有する非酸化物セラミックス構造体及びその製造方法
KR20210061608A (ko) * 2019-11-20 2021-05-28 한국생산기술연구원 용사 코팅용 고엔트로피 세라믹 분말의 제조 방법 및 이를 이용한 용사 코팅막의 제조 방법
CN111056826A (zh) * 2019-11-29 2020-04-24 中国科学院金属研究所 具有超高温稳定性的γ型高熵稀土双硅酸盐及其制备方法
CN110983233A (zh) * 2019-12-25 2020-04-10 西安鑫垚陶瓷复合材料有限公司 一种多层结构稀土硅酸盐环境屏障涂层及其制备方法
CN113024232A (zh) * 2021-03-17 2021-06-25 中山大学 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法
CN113831115A (zh) * 2021-09-10 2021-12-24 中国科学院金属研究所 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
稀土对陶瓷涂层的改性作用研究现状及发展趋势;程西云等;《润滑与密封》;20060115(第01期);第154-158页 *

Also Published As

Publication number Publication date
CN114853473A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
EP2970015B1 (en) Silicon carbide ceramic matrix composites containing a rare earth compound
CN110272278B (zh) 热障涂层用高熵陶瓷粉体及其制备方法
JP6462011B2 (ja) コーティング部材及びコーティング部材の製造方法
US11059751B2 (en) Coated member, coating material, and method of manufacturing coated member
CN111233446A (zh) 一种用于陶瓷基复合材料基体的硅酸铪环境障涂层及其制备方法
CN111056827B (zh) 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法
CN104891990A (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN114853473B (zh) 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法
JP2010070451A (ja) 希土類リン酸塩結合セラミック
CN111471998A (zh) 一种Yb改性防CMAS复合结构热障涂层及其制备方法
CN113024232B (zh) 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法
CN115403382B (zh) 一种热障涂层用高熵钇酸盐陶瓷材料及其制备方法和应用
CN110198920B (zh) 包含基材和环境阻隔件的部件
CN114920559A (zh) 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用
CN115368134B (zh) 一种抗熔盐腐蚀的高熵氧化物陶瓷材料及其制备方法
CN115925417B (zh) 一种低热导抗cmas腐蚀高熵锆酸盐陶瓷材料及其制备方法与应用
CN116789465A (zh) 一种兼顾自愈合与抗腐蚀的四元Si-Y-B-Yb涂层制备方法
CN114853494A (zh) 一种具有自修复能力的复合陶瓷粉末及其制备方法和应用
CN110803924A (zh) 一种低热导率、高相稳定性的锆酸锶基复合陶瓷热障涂层材料及其制备方法和应用
Zhou et al. Effects of Co2O3 Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
JP2003226581A (ja) 耐食性セラミックス及びその製造方法並びにガスタービン用部品
CN115974540B (zh) 一种稀土掺杂堇青石陶瓷材料及其制备方法
KR20230102124A (ko) A2b2o7 및 a3b′o7 플루오라이트 구조 세라믹스의 양이온 치환을 통한 고엔트로피 a5b2b′o14 단일상 소재 제조 방법
CN117886620A (zh) 一种SiCf/SiC陶瓷基复合材料自愈合的环境障涂层的制备方法
CN116143530A (zh) 镱掺杂锆铈酸钐热障涂层材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant