CN111056827B - 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法 - Google Patents

高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法 Download PDF

Info

Publication number
CN111056827B
CN111056827B CN201911196373.XA CN201911196373A CN111056827B CN 111056827 B CN111056827 B CN 111056827B CN 201911196373 A CN201911196373 A CN 201911196373A CN 111056827 B CN111056827 B CN 111056827B
Authority
CN
China
Prior art keywords
rare earth
solid solution
earth silicate
oxide powder
silicate solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911196373.XA
Other languages
English (en)
Other versions
CN111056827A (zh
Inventor
王京阳
孙鲁超
罗颐秀
吴贞
杜铁峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201911196373.XA priority Critical patent/CN111056827B/zh
Publication of CN111056827A publication Critical patent/CN111056827A/zh
Application granted granted Critical
Publication of CN111056827B publication Critical patent/CN111056827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及极端环境用陶瓷材料领域,具体为一种具有优异高温相稳定性的多组元稀土硅酸盐固溶体陶瓷材料及其制备方法。该多组元稀土硅酸盐固溶体陶瓷材料的化学式为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7,其中REI、REII、REIII和REIV分别为稀土元素Y、Sc、Ho、Er、Tm、Yb和Lu中的一种。制备过程具体为:以对应的稀土氧化物粉和氧化硅粉为原料,经湿法混合,在空气气氛下无压烧结合成获得多组元稀土硅酸盐固溶体陶瓷材料;并可在通有保护气氛的热压炉内热压烧结,获得具有优异高温相稳定性能的多组元稀土硅酸盐固溶体陶瓷块体材料。本发明制备出具有高纯度、高致密度和优异高温相稳定性能的(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7陶瓷材料。

Description

高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法
技术领域
本发明涉及极端环境用热障/环境障涂层高温结构陶瓷领域,具体为一种具有优异高温相稳定性能的多组元稀土硅酸盐固溶体陶瓷材料(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7及其制备方法。
背景技术
随着航空发动机对更高推重比的追求,发动机热端部件面临的环境越来越苛刻。碳化硅纤维增强碳化硅陶瓷基复合材料(SiCf/SiCm)具有低密度、高强度、优异的耐温性和抗氧化性等特点,在发动机热结构部件方面具有广阔的应用前景。SiCf/SiCm陶瓷基复合材料在极端燃气环境中应用时,需要在其表面涂敷环境障涂层以大幅度提升发动机的长期服役稳定性。目前商业应用的环境障涂层为BSAS(1-xBaO-xSrO-Al2O3-2SiO2,0≤x≤1)。BSAS具有低的热膨胀系数和杨氏模量,表现出优异的抗裂性,使得涂层具有良好的耐用性,因此在低于1300℃的温度下BSAS仍是环境障涂层的首选材料。但是新型高推重发动机内部运行温度高于1400℃,此时BSAS会与陶瓷基体氧化生成的SiO2发生共晶反应,生成低熔点玻璃相而失去保护作用。因此探索研发新型耐高温热障/环境障一体化涂层材料是目前新一代发动机研发的关键技术之一。
近年来,一类名为“稀土硅酸盐”新材料(RE2Si2O7)由于具有低密度,低热膨胀系数、低热导率和较好的抗热震性能而备受关注,被认为是最具应用前景的硅基陶瓷热障/环境障一体化涂层候选材料之一(L.R.Turcer,et al.Towards multifunctional thermalenvironmental barrier coatings(TEBCs)based on rare-earth pyrosilicate solid-solution ceramics,Scripta Materialia 154(2018)111–117)。但是目前已知稀土硅酸盐材料RE2Si2O7具有多达7种晶型,除了β型Yb2Si2O7和Lu2Si2O7之外,其它RE2Si2O7材料均会随温度的变化发生多晶型转变,而多晶型之间的转变通常伴随着体积变化,将导致材料内部应力的产生,加速材料的失效(J.Felsche,Structure and Bonding,Vol.13,Springer,Berlin,1973)。因此目前针对稀土硅酸盐作为热障/环境障一体化涂层的应用研究发现,Yb2Si2O7或Lu2Si2O7两种材料是已知ER2Si2O7体系中综合性能最优的选择(H.B.Zhao,etal.Molten silicate reactions with plasma sprayed ytterbium silicate coatings,Surface&Coatings Technology 288(2016)151–162;L.R.Turcer,et al.Towardsmultifunctional thermal environmental barrier coatings(TEBCs)based on rare-earth pyrosilicate solid-solution ceramics,Scripta Materialia 154(2018)111–117)。但是Yb和Lu这两种稀土元素是已知稀土元素中密度最大的,这与未来新型发动机的减重设计要求有所冲突;且这两种元素(尤其是Lu元素)的储量和价格限制了其大规模应用。
已有研究发现:通过合理选择和设计稀土硅酸盐中稀土元素的种类和固溶量,可以在含稀土固溶体材料中实现性能的提升(A.J.Fernandez-Carrion,et at,Solidsolubility of Yb2Si2O7inβ-,γ-andδ-Y2Si2O7,J.Solid State Chem.184(2011)1882.),但是这种二元固溶的方法,能够固溶其他元素的比例有限,突破该“上限值”将导致材料发生β型向γ型或δ型晶型的转变。本发明采用了多组元等比例固溶的方法,并通过选取能够形成β型结构RE2Si2O7的稀土元素(Y、Sc、Ho、Er、Tm、Yb和Lu),获得了高温相结构稳定的β型(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7多组元稀土硅酸盐固溶体陶瓷材料。
发明内容
本发明的目的在于提供多组元稀土硅酸盐(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7固溶体陶瓷及其制备方法,制备出具有高纯度、高致密度和优异高温相稳定性能的(REI 0.25REII 0.25REIII 0.25 REIV 0.25)2Si2O7陶瓷材料。
本发明的技术方案如下:
一种高温相稳定多组元稀土硅酸盐固溶体陶瓷,多组元稀土硅酸盐固溶体化学式为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7,其中REI、REII、REIII和REIV分别为稀土元素Y、Sc、Ho、Er、Tm、Yb和Lu中的一种。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷,多组元稀土硅酸盐固溶体陶瓷材料为β型结构,且该结构在室温至2000℃范围内保持稳定。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,具体步骤如下:
1)以氧化钇粉、氧化钪粉、氧化钬粉、氧化铒粉、氧化铥粉、氧化镱粉、氧化镥粉中的四种,以及氧化硅粉为原料,使化学式(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7中(REI 0.25REII 0.25REIII 0.25REIV 0.25):Si:O的摩尔比为2:2:7,其中REI:REII:REIII:REIV的摩尔比=0.25:0.25:0.25:0.25;REI、REII、REIII和REIV分别为稀土元素Y、Sc、Ho、Er、Tm、Yb和Lu中的一种;多组元稀土硅酸盐固溶体陶瓷块体材料采用无压烧结合成-热压烧结两步法制备;
2)多组元稀土硅酸盐固溶体陶瓷粉体材料采用无压烧结合成方法制备:以乙醇为介质,将原始粉料进行球磨混合2~24小时形成浆料,浆料经烘干、过筛后所得粉末在马弗炉中无压烧结合成,升温速率为5~15℃/分钟,合成温度为1500~1650℃,合成时间为0.5~20小时,最后得到纯净多组元稀土硅酸盐固溶体陶瓷粉体材料;
3)将无压烧结合成的多组元稀土硅酸盐固溶体陶瓷粉体材料,经物理机械方法球磨2~24小时,经干燥、过筛后,采用石墨模具进行预冷压成型,施加压强为3~20MPa;在通有保护气氛的热压炉内进行热压烧结,升温速率为5~20℃/分钟,烧结温度为1750~2000℃、烧结时间为0.5~2小时、烧结压强为20~40MPa。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,氧化钇粉、氧化钪粉、氧化钬粉、氧化铒粉、氧化铥粉、氧化镱粉、氧化镥粉和氧化硅粉的纯度≥99.9wt%,原始粒度≤80目。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,物理机械方法混合采用在酒精介质下的球磨法。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,无压烧结合成采用常压在空气气氛下进行。
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,热压烧结采用的保护气氛为氩气或氦气。
本发明的设计思想是:
本发明利用稀土硅酸盐多型结构丰富的结构特性和稀土元素对水蒸汽、熔融盐等腐蚀介质存在本征惰性差异的成分特性,通过合理选择和设计稀土硅酸盐中稀土元素的种类和固溶量,制备高温相稳定的β型多组元稀土硅酸盐固溶体材料,并实现材料综合性能的优化和提升。
本发明的优点及有益效果是:
1.所制备的材料单相纯净,密度低。采用本发明制备的多组元稀土硅酸盐固溶体陶瓷材料是采用原位反应方法,将多种稀土元素等比例固溶到β型结构稀土硅酸盐(RE2Si2O7)的晶格中,不产生其它杂质相。同时,由于低密度稀土元素的选用,所获得的固溶体材料的密度相比于未掺杂的单组分材料Yb2Si2O7和Lu2Si2O7显著降低。
2.所制备的材料采用制备方法工艺简单且产品质量可控。本发明中多组元稀土硅酸盐固溶体陶瓷材料的制备方法采用高温无压烧结合成方法和高温热压烧结方法相结合的制备工艺,这两种制备方法均是成熟且稳定的陶瓷材料制备方法。粉体制备采用高温无压烧结合成方法,可以获得高质量单相材料;块体制备采用单相粉体二次热压烧结方法。采用两步法制备材料的优势在于,第一步无压烧结合成过程首先获得纯净粉体材料,有效缩短热压烧结过程的反应时间;第一步无压烧结合成生成β型固溶体材料后,其结构高温稳定性能极佳,热压烧结过程不发生其它反应或相变,有助于获得纯净致密的块体固溶体材料。
3.所制备的材料高温稳定性优异。对于稀土硅酸盐固溶体材料来说高温相稳定性是其能否作为新型航空发动机热端部件材料应用的关键。采用本发明制备的多组元稀土硅酸盐固溶体陶瓷材料,烧结温度达1750~2000℃。并且,得益于固溶体中不同半径稀土离子导致的晶格畸变,产生了类似于高构型熵化合物的效果,在经最高2000℃高温处理,仍保持β型结构,显示出良好的高温相稳定性,从而满足航空领域热障/环障涂层的应用需求。
4.热学性能优异。本发明中,多组元稀土硅酸盐固溶体陶瓷材料热膨胀系数与基体材料SiCf/SiCm的热膨胀系数接近,有助于改善环境障涂层与陶瓷基材的热应力匹配,提高涂层寿命;
5.耐高温水氧腐蚀性能优异。本发明中,多组元稀土硅酸盐固溶体陶瓷材料的耐高温水蒸气腐蚀性能优异。作为SiCf/SiCm陶瓷基复合材料的热障/环境障涂层材料,是否能抵抗高温水蒸气腐蚀的能力至为关键。所制备的多组元稀土硅酸盐固溶体陶瓷材料的耐高温水蒸气腐蚀性能明显优于目前商用的BSAS环境障涂层材料,且与其它热门热障/环境障涂层材料性能相当。
附图说明
图1为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7的X射线衍射图。
图2为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7经高温热处理后X射线衍射图。
图3为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7的热膨胀系数随温度变化曲线。
图4为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7的耐高温水蒸气测试曲线。
具体实施方式
下面,通过实施例进一步详述本发明。
实施例1
本实施例中,原料氧化钬、氧化铒、氧化铥、氧化镱和氧化硅粉末的原始粒度为200目,纯度≥99.9wt%。将氧化钬18.89克、氧化铒19.13克、氧化铥19.29克、氧化镱19.70克和氧化硅24.75克,用无水乙醇作为介质,将粉末放入氮化硅球磨罐中球磨8小时,干燥后的粉末在马弗炉中进行无压烧结合成。无压烧结工艺为:以5℃/min的速度升温至1650℃,保温1小时,形成多组元稀土硅酸盐固溶体陶瓷粉体材料,粉体平均粒径1~3μm。将无压烧结合成后的多组元稀土硅酸盐固溶体陶瓷粉体材料放入球磨罐中,在酒精介质下球磨2小时,随后干燥,并将干燥好的粉体装入石墨模具中进行室温冷压至3MPa成型,最后将冷压的模具放入石墨烧结炉中进行热压烧结。烧结气氛为氩气,以20℃/min的速度升温至1750℃同时在40MPa压力下保温0.5小时,之后随炉冷却。整个保温过程中的压强都维持在40MPa,整个热压烧结过程都是在氩气保护下进行。
如图1所示,获得的反应产物经X射线衍射分析为纯净的(Ho0.25Er0.25Tm0.25Yb0.25)2Si2O7
实施例2
本实施例中,原料氧化铒、氧化铥、氧化镱、氧化镥和氧化硅粉的原始粒度为100目,纯度≥99.9wt%。将氧化铒19.12克、氧化铥19.29克、氧化镱19.70克、氧化镥18.89克和氧化硅24.75克,用无水乙醇作为介质,将粉末放入氮化硅球磨罐中球磨24小时,干燥后的粉末在马弗炉中进行无压烧结合成。无压烧结工艺为:以15℃/min的速度升温至1500℃,保温20小时,形成多组元稀土硅酸盐固溶体陶瓷粉体材料,粉体平均粒径约为1.2μm。将无压烧结合成后的多组元稀土硅酸盐固溶体陶瓷粉体材料放入球磨罐中,在酒精介质下球磨24小时,随后干燥,并将干燥好的固溶体粉体装入石墨模具中进行室温冷压20MPa成型,最后将冷压的模具放入石墨烧结炉中进行热压烧结。烧结气氛为氩气,以5℃/min的速度升温至2000℃同时在20MPa压力下保温2小时,之后随炉冷却。整个保温过程中的压强都维持在20MPa,整个热压烧结过程都是在氩气保护下进行。
本实施例中,为测试材料的高温相稳定性,将获得的反应产物经1800℃和2000℃热处理1小时后,X射线衍射分析(图2)显现仍为纯净的β型(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7
比较例
本比较例中,分别将氧化镱39.41克和氧化硅6.01克(化学式为Yb2Si2O7)和氧化镥39.79克和氧化硅6.01克(化学式为Lu2Si2O7)按照实施例2所用工艺获得单相纯净的Yb2Si2O7和Lu2Si2O7陶瓷。首先,测量其中三种材料在473K到1673K温度范围内的热膨胀系数随温度变化曲线(图3),多组元稀土硅酸盐固溶体陶瓷材料与纯相Yb2Si2O7和Lu2Si2O7保持持平,与基体陶瓷相匹配,有助于涂层与陶瓷基材间热应力匹配,提高涂层寿命。为评价多组元稀土硅酸盐固溶体陶瓷材料作为环境障涂层应用时的耐高温水蒸气性能,将三种材料分别于1400℃,相对湿度90%的水蒸气环境下保温5h,同时原位记录材料在腐蚀过程随时间变化的失重情况(图4),同时与目前商用的环境障涂层材料BASA以及其它热门环境障涂层材料γ-Y2Si2O7对比,在整个实验过程中,多组元稀土硅酸盐固溶体陶瓷材料耐水蒸气腐蚀性能与Yb2Si2O7和Lu2Si2O7相当,明显高于BASA和γ-Y2Si2O7,显示出优秀的耐水蒸气腐蚀性能,证明了这类材料有望作为一种新型热障涂层材料具有广泛应用前景。
实施例结果表明,本发明采用无压/热压两步法烧结,可以制备出具有高纯度、高温相稳定性优异、热膨胀系数与基体匹配和耐高温水蒸气性能优异的多组元稀土硅酸盐固溶体陶瓷材料,极有希望作为新型先进航空发动机SiCf/SiCm陶瓷基复合材料的热障/环境障一体化涂层材料获得应用。

Claims (5)

1.一种高温相稳定多组元稀土硅酸盐固溶体陶瓷,其特征在于,多组元稀土硅酸盐固溶体化学式为(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7,其中REI、REII、REIII和REIV分别为稀土元素Y、Sc、Ho、Er、Tm、Yb和Lu中的一种;
多组元稀土硅酸盐固溶体陶瓷材料为β型结构,且该结构在室温至2000℃范围内保持稳定;
所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷的制备方法,具体步骤如下:
1)以氧化钇粉、氧化钪粉、氧化钬粉、氧化铒粉、氧化铥粉、氧化镱粉、氧化镥粉中的四种,以及氧化硅粉为原料,使化学式(REI 0.25REII 0.25REIII 0.25REIV 0.25)2Si2O7中(REI 0.25REII 0.25REIII 0.25REIV 0.25):Si:O的摩尔比为2:2:7,其中REI:REII:REIII:REIV的摩尔比=0.25:0.25:0.25:0.25;REI、REII、REIII和REIV分别为稀土元素Y、Sc、Ho、Er、Tm、Yb和Lu中的一种;多组元稀土硅酸盐固溶体陶瓷块体材料采用无压烧结合成-热压烧结两步法制备;
2)多组元稀土硅酸盐固溶体陶瓷粉体材料采用无压烧结合成方法制备:以乙醇为介质,将原始粉料进行球磨混合2~24小时形成浆料,浆料经烘干、过筛后所得粉末在马弗炉中无压烧结合成,升温速率为5~15℃/分钟,合成温度为1500~1650℃,合成时间为0.5~20小时,最后得到纯净多组元稀土硅酸盐固溶体陶瓷粉体材料;
3)将无压烧结合成的多组元稀土硅酸盐固溶体陶瓷粉体材料,经物理机械方法球磨2~24小时,经干燥、过筛后,采用石墨模具进行预冷压成型,施加压强为3~20MPa;在通有保护气氛的热压炉内进行热压烧结,升温速率为5~20℃/分钟,烧结温度为1750~2000℃、烧结时间为0.5~2小时、烧结压强为20~40MPa。
2.按照权利要求1所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷,其特征在于,氧化钇粉、氧化钪粉、氧化钬粉、氧化铒粉、氧化铥粉、氧化镱粉、氧化镥粉和氧化硅粉的纯度≥99.9wt%,原始粒度≤80目。
3.按照权利要求1所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷,其特征在于,物理机械方法混合采用在酒精介质下的球磨法。
4.按照权利要求1所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷,其特征在于,无压烧结合成采用常压在空气气氛下进行。
5.按照权利要求1所述的高温相稳定多组元稀土硅酸盐固溶体陶瓷,其特征在于,热压烧结采用的保护气氛为氩气或氦气。
CN201911196373.XA 2019-11-29 2019-11-29 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法 Active CN111056827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911196373.XA CN111056827B (zh) 2019-11-29 2019-11-29 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911196373.XA CN111056827B (zh) 2019-11-29 2019-11-29 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111056827A CN111056827A (zh) 2020-04-24
CN111056827B true CN111056827B (zh) 2021-09-24

Family

ID=70299435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911196373.XA Active CN111056827B (zh) 2019-11-29 2019-11-29 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111056827B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354398B (zh) * 2021-07-08 2022-08-05 西安石油大学 一种三氧化二铝基高熵共晶陶瓷及其制备方法
CN114057203B (zh) * 2021-09-10 2023-02-17 中国科学院金属研究所 一种等离子喷涂用六稀土主元双硅酸盐固溶体球形喂料及其制备方法
CN113831115B (zh) * 2021-09-10 2023-01-13 中国科学院金属研究所 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法
CN114436656B (zh) * 2022-01-29 2023-06-06 北京工业大学 一种具有低热导率和高热稳定性的高熵硅酸盐陶瓷及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041061A (zh) * 2019-05-17 2019-07-23 淄博星澳新材料研究院有限公司 多元固溶稀土硅酸盐陶瓷粉体及其制备方法
CN110092663A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种(Y1-xHox)2Si2O7固溶体材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598777B2 (en) * 2013-03-12 2017-03-21 Rolls-Royce Corporation Method for fabricating multilayer environmental barrier coatings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092663A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种(Y1-xHox)2Si2O7固溶体材料及其制备方法
CN110041061A (zh) * 2019-05-17 2019-07-23 淄博星澳新材料研究院有限公司 多元固溶稀土硅酸盐陶瓷粉体及其制备方法

Also Published As

Publication number Publication date
CN111056827A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN111056827B (zh) 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法
CN111056826B (zh) 具有超高温稳定性的γ型高熵稀土双硅酸盐及其制备方法
Kablov et al. Perspective high-temperature ceramic composite materials
CN113816751B (zh) 一种四方相高熵热障涂层材料及其制备方法
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
CN110606740A (zh) 高熵稀土铪酸盐陶瓷材料及其制备方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN113024232B (zh) 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法
CN113831115B (zh) 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法
CN104356696B (zh) 一种稀土硅酸盐涂料及C/SiC复合材料表面制备涂层的方法
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN113402279A (zh) 一种长棒状β-SiAlON增韧的高熵碳化物陶瓷及其制备方法和应用
CN101734925B (zh) 可控气孔率的氮化硅多孔陶瓷及制备方法
CN110092663B (zh) 一种(Y1-xHox)2Si2O7固溶体材料及其制备方法
CN113105238B (zh) 一种原位生成SiC掺杂Gd2Zr2O7热障涂层陶瓷材料及其制备方法
CN114315394A (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
JP2001335378A (ja) セラミックス基複合部材の製造方法
CN114853473B (zh) 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111763089A (zh) 具有层状结构的三元硼化物陶瓷材料制备方法及其制品
CN113213905B (zh) 一种堇青石基微晶玻璃结合Al2O3-SiO2系统陶瓷材料及其制备方法
CN110803924B (zh) 一种低热导率、高相稳定性的锆酸锶基复合陶瓷热障涂层材料及其制备方法和应用
CN110092649B (zh) 一种钇钬单硅酸盐固溶体材料及其制备方法
EP0764142A1 (en) Stress-rupture resistant sintered silicon nitride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant