CN113831115B - 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法 - Google Patents

具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法 Download PDF

Info

Publication number
CN113831115B
CN113831115B CN202111063939.9A CN202111063939A CN113831115B CN 113831115 B CN113831115 B CN 113831115B CN 202111063939 A CN202111063939 A CN 202111063939A CN 113831115 B CN113831115 B CN 113831115B
Authority
CN
China
Prior art keywords
holmium
ytterbium
disilicate
solid solution
solution ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111063939.9A
Other languages
English (en)
Other versions
CN113831115A (zh
Inventor
王京阳
张洁
吕熙睿
孙鲁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111063939.9A priority Critical patent/CN113831115B/zh
Publication of CN113831115A publication Critical patent/CN113831115A/zh
Application granted granted Critical
Publication of CN113831115B publication Critical patent/CN113831115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及极端环境用陶瓷材料领域,具体为一种具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐(Yb1‑xHox)2Si2O7固溶体陶瓷材料及其制备方法。镱钬双硅酸盐固溶体陶瓷材料的化学式为(Yb1‑xHox)2Si2O7,其中x的取值范围为0<x<1。制备过程具体为:以氧化镱粉、氧化钬粉和二氧化硅粉为原料,经湿法混合,在空气气氛下无压烧结合成获得镱钬双硅酸盐固溶体陶瓷材料;并可在通有保护气氛的热压炉内热压烧结,获得镱钬双硅酸盐固溶体陶瓷块体材料。本发明制备出具有高纯度、优异高温相稳定性、优异抗高温水蒸气腐蚀能力的(Yb1‑xHox)2Si2O7固溶体陶瓷材料。

Description

具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅 酸盐固溶体陶瓷材料及制备方法
技术领域
本发明涉及极端环境用陶瓷材料领域,具体为一种具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐(Yb1-xHox)2Si2O7固溶体粉体、块体陶瓷材料及其制备方法。
背景技术
随着航空发动机对更高推重比的追求,发动机热端部件面临的工作条件越来越苛刻。新一代高推重比空发动机热端部件表面温度将达到1400℃以上,远超了现有高温合金材料所能承受的温度极限。因此,发展更耐高温的先进结构材料成为研制下一代高推重比航空发动机的关键之一。碳化硅纤维增强碳化硅陶瓷基复合材料(SiCf/SiC)具有低密度、高强度、优异的耐温性和抗氧化性等特点,是应用于高推重比航空发动机关键热端部件的新兴结构材料。SiCf/SiC在高温干燥环境下,表面生成一层致密稳定的SiO2,可以阻止材料进一步氧化。但在航空发动机苛刻燃气环境中,SiO2保护层与高温水蒸气反应生成易挥发的Si(OH)4等物质,导致基体材料被快速消耗,严重限制了SiCf/SiC材料的可靠应用。为解决该问题,需要在复合材料表面涂敷耐水氧腐蚀的环境障涂层。早期的环境障涂层为BSAS体系(1-xBaO-xSrO-Al2O3-2SiO2,0≤x≤1),其具有热膨胀系数匹配好,硅活度较低,抗水蒸气腐蚀性能良好的优点,但是在1300℃以上,BSAS与碳化硅复合材料氧化生成的SiO2发生共晶反应,生成低熔点玻璃相而失去保护作用,无法满足高温度长时间的服役要求。因此新型耐高温环境障涂层材料是新一代航空发动机研发的关键技术之一。
近年来,稀土双硅酸盐(RE2Si2O7)被认为是最具应用前景的环境障涂层材料。镱双硅酸盐(Yb2Si2O7)具有优异的高温刚性,良好的损伤容限,与碳化硅复合材料非常接近的热膨胀系数,较低的高温热导率,从室温至熔点不存在相变等优点,是目前本领域重点发展的涂层体系(田志林,几种稀土硅酸盐陶瓷的预测、制备和性能研究,中国科学院大学博士学位论文,2016);研究表明含钬硅酸盐表现出最优的抗高温水蒸气腐蚀能力(Z.L.Tian,etal.J.Am.Ceram.Soc.2019(102)3076-3080),但是钬双硅酸盐(Ho2Si2O7)存在多种晶型(
Figure BDA0003257630640000011
Y.X.Luo,et al.J.Eur.Ceram.Soc.2018(38)3547-3554),高温诱发的晶型转变可引起涂层脱落失效。因此,研发高温稳定的抗水氧腐蚀稀土双硅酸盐材料是应对新一代航空发动机工作温度高、水蒸气腐蚀强和热循环应力大的关键。
稀土硅酸盐经固溶改性,可以显著提升综合性能,例如(Y1-xYbx)2SiO5,(Ho1-xYx)2SiO5等固溶体材料显示出更高的杨氏模量、剪切模量,高温强度和更低的高温热导率等(Z.L.Tian,et al.Acta Mater.2018(144)292-304,Z.L.Tian,et al.ScientificReports,DOI:10.1038/s41598-018-36883-2);对于稀土双硅酸盐,(YxYb1-x)2Si2O7,(YxLu1-x)2Si2O7和(YxSc1-x)2Si2O7在特定的成分范围内依然能保持其优异的相稳定性(A.I.Becerro et al.J.Solid.State.Chem.2011(184)1882-1889,J.Eur.Ceram.Soc.2006(26)2293-2299,J.Solid.State.Chem.2007(180)1436-1445)。据此,本发明研发镱钬双硅酸盐固溶体材料,经稀土元素固溶优化获得高温相稳定性好和抗高温水蒸气腐蚀性能优的新型环境障涂层材料。
发明内容
本发明的目的在于提供一种镱钬双硅酸盐(Yb1-xHox)2Si2O7固溶体材料及其制备方法,使该材料兼具Yb2Si2O7陶瓷材料较好的力学和热学性能、相稳定性和Ho2Si2O7陶瓷材料优异的抗水蒸气腐蚀能力。
本发明的技术方案如下:
一种具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料,镱钬双硅酸盐固溶体化学式为(Yb1-xHox)2Si2O7,其中,Ho取代Yb的原子摩尔量x的取值范围为0<x<1。
所述的镱钬双硅酸盐固溶体陶瓷材料,镱钬双硅酸盐固溶体陶瓷材料晶体结构在室温至1550℃范围内保持稳定。
所述的具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,具体步骤如下:
1)以氧化镱、氧化钬和二氧化硅粉末作为原料,使化学式(Yb1-xHox)2Si2O7中,(Yb1-xHox):Si:O的摩尔比为2:2:7,其中Ho取代Yb的原子摩尔量x的取值范围为0<x<1;
2)镱钬双硅酸盐固溶体陶瓷粉体材料采用无压烧结合成方法制备:以乙醇为介质,将原始粉料进行球磨混合8~24小时形成浆料,浆料经烘干、过筛后所得粉末在马弗炉中无压烧结合成,最后得到纯净镱钬双硅酸盐固溶体陶瓷粉体材料;
3)镱钬双硅酸盐固溶体陶瓷块体材料采用无压烧结合成-热压烧结两步法制备;将步骤2)无压烧结合成的镱钬双硅酸盐固溶体陶瓷粉体材料,经物理机械方法球磨10~24小时,经干燥、过筛后,装入石墨模具中冷压成型,在通有保护气氛的热压炉内进行热压烧结,最后得到纯净镱钬双硅酸盐固溶体陶瓷块体材料。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,氧化镱、氧化钬和二氧化硅粉末的纯度≥99.9wt%,原始粒度范围在200~800目。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,无压烧结采用常压在空气气氛下进行。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,无压烧结的工艺参数如下:升温速率为5~15℃/分钟,烧结温度为1300~1600℃,保温时间为4~12小时,经过无压烧结得到镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为0.5~5μm。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,物理机械方法球磨采用在酒精介质下的球磨法,经过球磨、干燥、过筛后,得到镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为0.5~5μm。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,热压炉采用常规热压烧结炉或放电等离子烧结炉。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,热压烧结的工艺参数如下:升温速率为20~50℃/分钟,烧结温度为1300~1600℃,保温时间为0.25~2小时,烧结压强为30~40MPa。
所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,热压烧结采用的保护气氛为氩气或氦气。
本发明的设计思想是:
本发明采用稀土元素固溶改性的方法来提高稀土双硅酸盐材料的综合性能,将力学性能、相稳定性优异、但抗高温水蒸气腐蚀性能较弱的镱双硅酸盐,以及抗高温水蒸气腐蚀性能优异、但具有多型相转变的钬双硅酸盐优势互补,成功研发出具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体粉体和块体陶瓷材料。
本发明的优点及有益效果是:
1.纯度高、力学性能良好、高温相稳定性优异。采用本发明制备的(Yb1-xHox)2Si2O7固溶体材料不含稀土单硅酸盐或二氧化硅等杂质相;(Yb1-xHox)2Si2O7固溶体块体材料的维氏硬度、弹性模量、断裂韧性、热膨胀系数等均与纯相镱双硅酸盐块体材料接近,保持了良好的力学性能和与碳化硅复合材料的热膨胀系数匹配;针对含钬双硅酸盐高温下的晶型转变,本发明制备的镱钬双硅酸盐固溶体陶瓷材料在1550℃、空气气氛下保温100小时不发生相变,体现出优异的相稳定性,满足先进环境障涂层应用对高温相稳定性的需求。
2.抗高温水蒸气腐蚀性能优异。本发明中,镱钬双硅酸盐固溶体材料抗高温水蒸气腐蚀性能优异。高温水蒸气腐蚀实验中,镱钬双硅酸盐固溶体陶瓷在1400℃、相对湿度90%的水蒸气环境下腐蚀5小时,失重较纯相镱双硅酸盐降低了40%,证明了这类固溶体作为新型环境涂层材料具有重要应用前景。
附图说明
图1为x=2/3和3/4的(Yb1-xHox)2Si2O7固溶体的X射线衍射图。
图2为Ho2Si2O7、(Yb1/3Ho2/3)2Si2O7陶瓷块体在1500℃保温1小时后平均晶粒尺寸(a)及晶粒形貌(b)。
图3为Ho2Si2O7、(Yb1/3Ho2/3)2Si2O7、(Yb1/4Ho3/4)2Si2O7陶瓷粉体在1550℃保温100小时后X射线衍射图。
图4为Yb2Si2O7、(Yb1/3Ho2/3)2Si2O7陶瓷块体在1400℃、相对湿度90%的水蒸气环境下单位面积失重随时间的变化曲线。
图5为Yb2Si2O7、(Yb1/3Ho2/3)2Si2O7维氏硬度(a)、弹性模量(b)、压痕断裂韧性(c)的对比图。
图6为(Yb1/3Ho2/3)2Si2O7热膨胀系数随温度变化曲线。
具体实施方式
在具体实施过程中,镱钬双硅酸盐固溶体陶瓷材料的化学式为(Yb1-xHox)2Si2O7,其中x的取值范围为0<x<1。制备过程具体为:以氧化镱粉、氧化钬粉和二氧化硅粉为原料,经湿法混合,在空气气氛下无压烧结合成获得镱钬双硅酸盐固溶体陶瓷材料;并可在通有保护气氛的热压炉内热压烧结,获得镱钬双硅酸盐固溶体陶瓷块体材料。
下面,通过实施例进一步详述本发明。
实施例1
原料氧化镱、氧化钬和二氧化硅粉末的原始粒度为600目,将氧化镱20.8克、氧化钬39.9克和二氧化硅20.0克(摩尔比为符合化学式(Yb1/3Ho2/3)2Si2O7,以Yb2O3粉(纯度99.99wt%)、Ho2O3粉(纯度99.99wt%)与SiO2粉(纯度99.99wt%)为原料,用无水乙醇作为介质,将粉末放入氮化硅球磨罐中球磨8小时形成浆料,浆料经烘干、过80目筛后所得粉末在马弗炉中进行无压烧结。无压烧结工艺为:以5℃/分钟的速度升温至1550℃,保温12小时,得到纯净镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为1μm。
将无压烧结后的镱钬双硅酸盐固溶体陶瓷粉体放入球磨罐中,在酒精介质下球磨10小时,经干燥、过80目筛后,并将固溶体陶瓷粉体装入石墨模具中进行室温冷压成型:冷压压力15MPa、冷压时间5分钟,最后将石墨模具放入热压烧结炉中进行热压烧结:以50℃/分钟的速度升温至1550℃同时在30MPa压力下保温0.25小时,之后随炉冷却。整个保温过程中的压强都维持在30MPa,整个烧结过程都是在氩气保护下进行。
本实施例中,获得的反应产物经X射线衍射分析(图1)为纯净的(Yb1/3Ho2/3)2Si2O7
实施例2
原料氧化镱、氧化钬和二氧化硅粉末的原始粒度为800目,将氧化镱15.6克、氧化钬44.9克和二氧化硅20.0克(摩尔比为符合化学式(Yb1/4Ho3/4)2Si2O7,以Yb2O3粉(纯度99.99wt%)、Ho2O3粉(纯度99.99wt%)与SiO2粉(纯度99.99wt%)为原料,用无水乙醇作为介质,将粉末放入氮化硅球磨罐中球磨24小时形成浆料,浆料经烘干、过80目筛后所得粉末在马弗炉中进行无压烧结。无压烧结工艺为:以5℃/分钟的速度升温至1550℃,保温4小时,得到纯净镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为1μm。
将无压烧结后的镱钬双硅酸盐固溶体陶瓷粉体放入球磨罐中,在酒精介质下球磨24小时,经干燥、过80目筛后,并将固溶体陶瓷粉体装入石墨模具中进行室温冷压成型:冷压压力15MPa、冷压时间5分钟,最后将石墨模具放入热压烧结炉中进行热压烧结:保护气氛为氩气,以50℃/分钟的速度升温至1550℃同时在30MPa压力下保温0.5小时,之后随炉冷却。整个保温过程中的压强都维持在30MPa,整个烧结过程都是在氩气保护下进行。
本实施例中,获得的反应产物经X射线衍射分析(图1)为纯净的(Yb1/4Ho3/4)2Si2O7
实施例3
将氧化钬59.8克和二氧化硅20.0克按照实施例1所用工艺获得单相纯净的Ho2Si2O7陶瓷(图1)。将Ho2Si2O7、(Yb1/3Ho2/3)2Si2O7两种陶瓷块体置于马弗炉中,以15℃/分钟的速度升温至1500℃,在空气气氛下保温1小时,之后随炉冷却。如图2所示,对保温后的块体进行扫描电镜表面形貌分析,从两种块体样品平均晶粒尺寸及晶粒形貌可以看出,样品为等轴晶,晶粒细小。
比较例1
本比较例中,将Ho2Si2O7、(Yb1/4Ho3/4)2Si2O7、(Yb1/3Ho2/3)2Si2O7三种粉体置于马弗炉中,以5℃/分钟的速度升温至1550℃,在空气气氛下保温100小时,之后随炉冷却。如图3所示,对保温后的粉体进行X射线衍射分析,发现纯相Ho2Si2O7陶瓷发生了部分γ相向δ相的相变,而(Yb1/4Ho3/4)2Si2O7,(Yb1/3Ho2/3)2Si2O7固溶体陶瓷依然保持γ相。
以上结果显示固溶体材料具有优异的高温相稳定性,可提高其在高温服役环境中的可靠性。
比较例2
将氧化镱62.1克和二氧化硅20.0克(摩尔比为Yb2Si2O7)按照实施例1所用工艺获得单相Yb2Si2O7陶瓷。首先,将Yb2Si2O7、(Yb1/3Ho2/3)2Si2O7陶瓷分别于1400℃、相对湿度90%的水蒸气环境下保温5小时,同时原位记录材料在腐蚀过程中重量随时间变化的关系(图4)。计算单位面积材料失重,Yb2Si2O7总失重为0.2178mg/cm2,(Yb1/3Ho2/3)2Si2O7总失重为0.1300mg/cm2,失重量降低了40%。为比较固溶体材料与镱双硅酸盐陶瓷材料的力学性能,分别测量了(Yb1/3Ho2/3)2Si2O7,Yb2Si2O7块体陶瓷的维氏硬度,弹性模量以及压痕断裂韧性(图5),发现固溶体性能保持与镱双硅酸盐材料接近;接着测试了(Yb1/3Ho2/3)2Si2O7的热膨胀性能(图6),其线膨胀系数为4.26×10-6K-1,与纯相Yb2Si2O7(4.66×10-6K-1)接近。固溶体材料与碳化硅复合材料基体的热膨胀系数匹配好,有助于涂层与基材间降低热循环应力,提高涂层服役寿命。
本比较例中,镱钬双硅酸盐固溶体材料表现出优异的抗水蒸气腐蚀能力,良好的力学性能,与碳化硅复合材料匹配的热膨胀系数,对于提高环境障涂层在先进航空发动机工作环境中的可靠性和服役寿命有利。
实施例结果表明,本发明采用无压/热压两步法烧结,可以制备出具有高纯度、优异高温相稳定性、优异抗高温水蒸气腐蚀能力的(Yb1-xHox)2Si2O7固溶体陶瓷材料,可作为高推重比航空发动机热端部件用环境障涂层材料获得重要应用。

Claims (10)

1.一种具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料,其特征在于,镱钬双硅酸盐固溶体化学式为(Yb1-xHox)2Si2O7,其中,Ho取代Yb的原子摩尔量x的取值范围为2/3≤x≤3/4。
2.按照权利要求1所述的镱钬双硅酸盐固溶体陶瓷材料,其特征在于,镱钬双硅酸盐固溶体陶瓷材料晶体结构在室温至1550℃范围内保持稳定的γ相。
3.一种权利要求1或2所述的具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,具体步骤如下:
1)以氧化镱、氧化钬和二氧化硅粉末作为原料,使化学式(Yb1-xHox)2Si2O7中,(Yb1- xHox):Si:O的摩尔比为2:2:7,其中Ho取代Yb的原子摩尔量x的取值范围为2/3≤x≤3/4;
2)镱钬双硅酸盐固溶体陶瓷粉体材料采用无压烧结合成方法制备:以乙醇为介质,将原始粉料进行球磨混合8~24小时形成浆料,浆料经烘干、过筛后所得粉末在马弗炉中无压烧结合成,最后得到纯净镱钬双硅酸盐固溶体陶瓷粉体材料;
3)镱钬双硅酸盐固溶体陶瓷块体材料采用无压烧结合成-热压烧结两步法制备;将步骤2)无压烧结合成的镱钬双硅酸盐固溶体陶瓷粉体材料,经物理机械方法球磨10~24小时,经干燥、过筛后,装入石墨模具中冷压成型,在通有保护气氛的热压炉内进行热压烧结,最后得到纯净镱钬双硅酸盐固溶体陶瓷块体材料。
4.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,氧化镱、氧化钬和二氧化硅粉末的纯度≥99.9wt%,原始粒度范围在200~800目。
5.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,无压烧结采用常压在空气气氛下进行。
6.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,无压烧结的工艺参数如下:升温速率为5~15℃/分钟,烧结温度为1300~1600℃,保温时间为4~12小时,经过无压烧结得到镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为0.5~5μm。
7.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,物理机械方法球磨采用在酒精介质下的球磨法,经过球磨、干燥、过筛后,得到镱钬双硅酸盐固溶体陶瓷粉体材料的粒度为0.5~5μm。
8.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,热压炉采用常规热压烧结炉或放电等离子烧结炉。
9.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,热压烧结的工艺参数如下:升温速率为20~50℃/分钟,烧结温度为1300~1600℃,保温时间为0.25~2小时,烧结压强为30~40MPa。
10.按照权利要求3所述的镱钬双硅酸盐固溶体陶瓷材料的制备方法,其特征在于,热压烧结采用的保护气氛为氩气或氦气。
CN202111063939.9A 2021-09-10 2021-09-10 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法 Active CN113831115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111063939.9A CN113831115B (zh) 2021-09-10 2021-09-10 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111063939.9A CN113831115B (zh) 2021-09-10 2021-09-10 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN113831115A CN113831115A (zh) 2021-12-24
CN113831115B true CN113831115B (zh) 2023-01-13

Family

ID=78959056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111063939.9A Active CN113831115B (zh) 2021-09-10 2021-09-10 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN113831115B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853473B (zh) * 2022-04-22 2023-01-20 沈阳工业大学 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法
CN115536405B (zh) * 2022-09-26 2023-06-16 中国人民解放军国防科技大学 一种抗高温水氧侵蚀准塑性界面相的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091085B2 (ja) * 1994-06-24 2000-09-25 京セラ株式会社 希土類珪酸化物系焼結体及びその製造方法
CN110092663B (zh) * 2018-01-31 2021-10-22 中国科学院金属研究所 一种(Y1-xHox)2Si2O7固溶体材料及其制备方法
CN110041061A (zh) * 2019-05-17 2019-07-23 淄博星澳新材料研究院有限公司 多元固溶稀土硅酸盐陶瓷粉体及其制备方法
CN111056826B (zh) * 2019-11-29 2022-01-14 中国科学院金属研究所 具有超高温稳定性的γ型高熵稀土双硅酸盐及其制备方法
CN111056827B (zh) * 2019-11-29 2021-09-24 中国科学院金属研究所 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法
CN113248266B (zh) * 2021-07-05 2021-10-01 中国人民解放军国防科技大学 一种新型界面相材料的制备方法

Also Published As

Publication number Publication date
CN113831115A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN111056826B (zh) 具有超高温稳定性的γ型高熵稀土双硅酸盐及其制备方法
CN113831115B (zh) 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法
CN111056827B (zh) 高温相稳定多组元稀土硅酸盐固溶体陶瓷及其制备方法
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN110606740A (zh) 高熵稀土铪酸盐陶瓷材料及其制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
CN113024232B (zh) 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法
CN100355695C (zh) 碳化铬与碳氮化钛颗粒弥散强韧化氧化铝基陶瓷复合材料及其制备方法
He et al. Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CAI Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
Kassem et al. A comprehensive study on the mechanical properties of Yb2SiO5 as a potential environmental barrier coating
Zhang et al. Fabrication, microstructure and mechanical behavior of SiCw-B4C–Si composite
CN110372386A (zh) 一种低温液相热压烧结制备致密碳化钽陶瓷的方法
Ye et al. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering
CN110092663B (zh) 一种(Y1-xHox)2Si2O7固溶体材料及其制备方法
Fan et al. Fabrication and properties of Si2N2O ceramics for microwave sintering furnace
CN109704780B (zh) 一种耐热冲击氮化硼-锶长石陶瓷基复合材料及其制备方法
CN108002841B (zh) 六方氮化硼-镱硅氧氮陶瓷基复合材料及其原位制备方法
Liang et al. Mechanical properties and thermal shock resistance of alumina/hexagonal boron nitride composite refractories
CN110330349B (zh) 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法
Wang et al. Densification and mechanical properties of B4C based composites sintered by reaction hot-pressing
EP0764142A1 (en) Stress-rupture resistant sintered silicon nitride
CN113683435A (zh) 一种多相复合增强碳化硅陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant