CN115368127A - 一种铁氧体材料、制备方法及共模电感器 - Google Patents

一种铁氧体材料、制备方法及共模电感器 Download PDF

Info

Publication number
CN115368127A
CN115368127A CN202211011245.5A CN202211011245A CN115368127A CN 115368127 A CN115368127 A CN 115368127A CN 202211011245 A CN202211011245 A CN 202211011245A CN 115368127 A CN115368127 A CN 115368127A
Authority
CN
China
Prior art keywords
sintering
ferrite material
parts
temperature
bivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211011245.5A
Other languages
English (en)
Other versions
CN115368127B (zh
Inventor
李银传
聂敏
郭海
王颖欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Shunluo Layered Electronics Co ltd
Original Assignee
Shenzhen Sunlord Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sunlord Electronics Co Ltd filed Critical Shenzhen Sunlord Electronics Co Ltd
Priority to CN202211011245.5A priority Critical patent/CN115368127B/zh
Publication of CN115368127A publication Critical patent/CN115368127A/zh
Application granted granted Critical
Publication of CN115368127B publication Critical patent/CN115368127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本申请公开了一种铁氧体材料、制备方法及共模电感器,制备方法包括:将主成分进行混合和预烧,然后加入添加剂依次进行研磨、造粒和压制成型,在预设升温区间进行真空烧结,在终烧温度下进行加压烧结;其中,主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4;添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4。本申请的铁氧体材料不仅在‑20℃~100℃范围内,磁导率具有较高的稳定性,以及具有合适的起始磁导率相对温度因数和居里温度,而且具有较高的磁导率截止频率。

Description

一种铁氧体材料、制备方法及共模电感器
技术领域
本申请涉及用于共模电感的软磁铁氧体材料技术领域,具体涉及一种铁氧体材料、制备方法及共模电感器。
背景技术
从南极考察到太空探索,人类的活动范围不断扩大,环境温度的跨度也越来越大,电子设备中用于共模电感的电感器件对软磁铁氧体材料提出了新的要求,要求用于共模电感的铁氧体材料在更宽温度范围内具有高磁导率特性。因此,有必要开发一种宽温高磁导率的铁氧体材料。
发明内容
针对上述技术问题,本申请提供一种铁氧体材料、制备方法及共模电感器,以满足市场对宽温高磁导率铁氧体材料的需求。
为解决上述技术问题,第一方面,本申请实施例提供一种铁氧体材料的制备方法,包括:
将主成分进行混合和预烧,然后加入添加剂依次进行研磨、造粒和压制成型,再在一预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到所述铁氧体材料;
其中,所述主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4
以所述主成分为100重量份计,所述添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4
可选的,所述预烧的步骤中,预烧温度为750~850℃,保温时间为100~150min。
可选的,所述预设升温区间为800~1200℃,所述终烧温度为1330~1390℃。
可选的,所述真空烧结的步骤中,烧结炉内的压强小于或等于-0.08Mpa。
可选的,所述加压烧结的步骤中,烧结炉内的压强为100±10Mpa。
可选的,所述主成分包括:69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4
可选的,所述添加剂包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
第二方面,本申请实施例还提供一种铁氧体材料,包括主成分和添加剂;
所述主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4
以所述主成分为100重量份计,所述添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4。并且,铁氧体材料是在预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到。
可选的,所述主成分包括:69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4;和/或,
所述添加剂包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
第三方面,本申请实施例还提供一种共模电感器,由铁氧体材料制作而成,所述铁氧体材料采用如上各实施例所述的制备方法制作而成。
如上所述,本申请通过设计严格的主成分、添加剂以及烧结过程(先真空烧结再加压烧结)控制,制备的铁氧体材料不仅在-20℃~100℃范围内,磁导率具有较高的稳定性,以及具有合适的起始磁导率相对温度因数和居里温度,而且具有较高的磁导率截止频率,本实施例的铁氧体材料各项特性具体如下:μi=7000±1000,αF=(-1.0~1.5)×10-6/℃,fr≥900kHz,Tc>160℃。此外,采用BiVO4代替五氧化二钒和三氧化二铋的组合添加剂,不仅可以更好的降低晶粒内部的气孔率和细化晶粒,而且具有无毒性,符合环保要求。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种铁氧体材料的制备方法的流程示意图;
图2是本申请实施例5中的铁氧体材料的起始磁导率-频率特性曲线示意图;
图3是本申请实施例5中的铁氧体材料的起始磁导率-温度特性曲线示意图;
图4是本申请实施例5中的铁氧体材料断面的扫描电镜图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
由于人类的活动范围不断扩大,环境温度的跨度也越来越大,电子设备中用于共模电感的电感器件对软磁铁氧体材料提出了新的要求,要求用于共模电感的铁氧体材料在更宽温度范围内具有高磁导率特性。基于此,本申请提供了一种铁氧体材料、制备方法及共模电感器。
本申请实施例提供的铁氧体材料,包括主成分和添加剂。其中,主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4;以主成分为100重量份计,添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4。并且,铁氧体材料是在一预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到。
本实施例严格控制铁氧体材料中各组分含量,并且控制原料在预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结,制得所述铁氧体材料,可以理解的是,终烧温度要大于预设升温区间的上限值。当Fe2O3含量偏少时,铁氧体材料的起始磁导率(μi)会偏低,起始磁导率的相对温度因数(αF)大,居里温度(Tc)不到160℃,当Fe2O3含量偏高时,铁氧体材料的起始磁导率同样偏低。当不添加BiVO4时,铁氧体材料的起始磁导率也偏低,当不添加Co3O4时,铁氧体材料起始磁导率的截止频率(fr)偏低。本实施例的添加剂可以进一步促进铁氧体材料的微观结构晶粒均匀、细化、气孔率低致密化程度高,耐机械冲击的能力强,优化铁氧体材料的起始磁导率-频率特性和降低材料的损耗。
此外,本实施例中通过加入BiVO4,由于BiVO4熔点低至600℃附近,可以促进材料在低温时以液相促进固相反应使晶粒生长而降低终烧结温度,并且在高温时V5+进入晶粒内部,可以防止晶粒异常长大;相比五氧化二钒(V2O5)和三氧化二铋(Bi2O3)的组合添加剂,BiVO4自身的氧含量低,在烧结过程中排出的氧气少,可更好的降低晶粒内部的气孔率。因此,BiVO4可以提高高频高磁导率锰锌铁氧体材料的机械强度、降低材料的烧结温度以及使铁氧体内部致密化程度提高和晶粒细化均匀,还具有无毒性,符合环保要求(V2O5有剧毒,2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,V2O5在2B类致癌物清单中)。
需要说明的是,如果不经过真空烧结,直接加热至终烧温度进行烧结,起始磁导率会偏低。
本实施例的铁氧体材料不仅在-20℃~100℃范围内,磁导率具有较高的稳定性,以及具有合适的起始磁导率相对温度因数和居里温度,而且具有较高的磁导率截止频率,本实施例的铁氧体材料各项特性具体如下:μi=7000±1000,αF=(-1.0~1.5)×10-6/℃,fr≥900kHz,Tc>160℃。
作为一个示例,主成分各原料的纯度如下:Fe2O3的纯度>99.5%,ZnO的纯度>99.6%,Mn3O4中Mn的纯度>71.3%。添加剂中各原料可以是电子纯级。
在一个实施例中,铁氧体材料的主成分按照100重量份计,主成分可以包括:69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4
在一个实施例中,铁氧体材料的主成分按照100重量份计,添加剂可以包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
本申请实施例还提供了一种铁氧体材料的制备方法,将主成分进行混合和预烧,然后加入添加剂依次进行研磨、造粒和压制成型,再在一预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到铁氧体材料;其中,主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4;以主成分为100重量份计,添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4
需要说明的是,在预设升温区间升温的过程中,采用真空烧结,可以使原料在升温过程中的固相反应过程释放出多余的氧,降低铁氧体晶粒内部和晶界处的气孔率。终烧温度,采用加压烧结,可以使铁氧体不同位置的温度趋于同步,使液相均匀填充在各晶界间,液相与固相均匀反应,晶粒均匀生长,降低材料内部应力,使材料微观成分更加一致。
作为一个示例,主成分按照100重量份计,上述主成分可以包括69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4
作为一个示例,主成分按照100重量份计,上述添加剂可以包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
请参阅图1,图1是本申请实施例提供的一种铁氧体材料的制备方法的流程示意图,该方法包括:
101、将主成分混合均匀。比如,可以预先根据总设定质量、原料的纯度计算出所需原材料的质量,然后称取各原材料混合均匀。作为一个示例,可以采用湿法球磨的方式进行混合。
102、将混匀后的主成分进行预烧。例如,可以将混匀后的主成分在高温炉内在空气气氛中烧结。作为一个示例,预烧温度可以是750~850℃,保温时间为100~150min。例如,可以在750℃进行预烧保温150min,或者在770℃进行预烧保温140min,或者在800℃进行预烧保温130min,或者在850℃进行预烧保温100min等等。
103、将配置好的添加剂加入至预烧后的主成分中并进行研磨。比如,可以采用微米级砂磨机进行湿法研磨,控制料浆的平均粒径为0.6μm~1.0μm。研磨介质可以采用Φ2.0~3.0mm的氧化锆球,研磨溶剂可以采用纯水。
104、将研磨后的原料进行造粒。比如,可以采用喷雾或其他设备进行造粒。造粒时,水含量可以控制在0.02~0.05wt%,并添加适量的干式润滑剂整粒后,60~220目过筛。
105、压制成型。比如,可以将造粒得到的颗粒原料采用全自动干粉压机压制成型,例如可以压制为环型坯件,坯件的密度可以控制在3.0~3.15g/cm3
106、将坯件在一预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结。
升温段采用真空烧结可以使材料在升温过程中的固相反应过程释放出多余的氧,降低铁氧体晶粒内部和晶界处的气孔率,最大限度的提高材料致密化程度,为各物料充分接触、增强固相反应提供有利条件。还可以有效减小气孔的应力效应,从而使铁氧体相趋于均匀、一致性更好,大幅优化磁特性。
终烧温度进行压力烧结可以使铁氧体不同位置的温度趋于同步,使液相均匀填充在各晶界间,液相与固相均匀反应,晶粒均匀生长,降低材料内部应力,使材料微观成分更加一致,并进一步提高铁氧体的强度和各向同性特性,降低材料的磁晶各向异性常数,提高起始磁导率-频率和起始磁导率-温度特性。
例如,预设升温区间可以是800~1200℃,可以将压制成型的坯件在800~1200℃的升温过程中进行真空烧结,再在终烧温度进行加压烧结,终烧温度可以是1330~1390℃任一温度,比如,可以在1350℃下加压保温,以进行加压烧结,需要说明的是,本实施例中,1200~1350℃为真空阶段向加压阶段的过渡阶段。真空烧结时,烧结炉内的压强可以控制在不超过-0.08Mpa。加压烧结时,烧结炉内的压强可以控制在100±10Mpa,加压烧结的保温时间可以是4.0~6.0小时。此外,进入终烧结温度时,可以使用平衡氧分压气氛进行加压烧结。
本申请实施例还提供了一种共模电感器,由铁氧体材料制作而成,铁氧体材料采用如上各实施例所述的制备方法制作而成。本实施例的共模电感器可以应用于各种电子设备中,使电子设备在-20℃~100℃范围内使用时,共模电感器仍然具有高阻抗特性。
下面以具体实施例对本申请做进一步说明。
实施例1
材料主成分为:70.04份的Fe2O3,17.47份的Mn3O4,12.49份的ZnO;
添加剂为:0.04份的CaCO3,0.04份的BiVO4,0.03份的SnO2,0.09份的Co3O4
制备过程如下:
(1)将主成分混合均匀。
(2)将混匀后的主成分进行预烧,预烧温度为780℃,保温时间为145min。
(3)将配置好的添加剂加入至预烧后的主成分中并进行研磨,控制料浆的平均粒径为0.91μm。
(4)将研磨后的原料进行造粒。
(5)采用全自动干粉压机压制成型。
(6)将坯件进行烧结,其中在800~1200℃的升温过程进行真空烧结,再在1370℃下进行加压烧结,烧结炉内的压强为100±10Mpa。
实施例2~实施例9以及对比例1~对比例5的制备过程可参照实施例1,区别仅在于材料组分及表中列出的相关工艺参数不同,具体请参照表1。
表1实施例和对比例的配方及工艺参数
Figure BDA0003809739770000061
Figure BDA0003809739770000071
对实施例1~实施例9以及对比例1~对比例5制备的坯件进行测试,测试结果请参照表1。
表2实施例和对比例的测试结果
Figure BDA0003809739770000072
通过表1、表2可以看出:实施例1~实施例9证明了本申请的铁氧体材料不仅具有合适的起始磁导率相对温度因数和居里温度,而且具有较高的磁导率截止频率,本实施例的铁氧体材料各项特性具体如下:μi=7000±1000,αF=(-1.0~1.5)×10-6/℃,fr≥900kHz,Tc>160℃。
对比例1的主成分超出本申请规定的范围,由于铁含量太少,常温的起始磁导率过低,起始磁导率的温度因数偏大,而且居里温度不到160℃。
对比例2的主成分超出本申请规定的范围,由于铁含量过多,虽然居里温度为180℃,较为合适,但样品的起始磁导率偏低。
对比例3的添加剂超出本申请规定的范围,由于没有添加BiVO4,起始磁导率不到6000。
对比例4的添加剂超出本申请规定的范围,由于没有添加Co3O4,材料的起始磁导率的截止频率偏低,只有700MHz,磁导率-温度的稳定性差。
对比例5主成分和添加剂均符合本申请规定的范围,但没有采用升温段进行真空烧结和终烧结温度加压烧结的工艺,而是直接升温至终烧温度,样品的起始磁导率不到6000。
此外,本申请还以实施例5为例,进行了形貌分析和其他磁性能测试,请参阅图2-4,其中,图2是本申请实施例5中的铁氧体材料的起始磁导率-频率特性曲线示意图,图3是本申请实施例5中的铁氧体材料的起始磁导率-温度特性曲线示意图,图4是本申请实施例5中的铁氧体材料断面的扫描电镜图。
图2证明了本申请的铁氧体材料起始磁导率随频率的波动较小,具有较高的频率稳定性;图3证明了本申请的铁氧体材料在-20℃~100℃范围内,磁导率具有较高的稳定性。图4证明了本申请的铁氧体材料具有致密的微观结构,晶粒大小均匀,平均粒径不超过20μm,基本稳定在12~18μm内,可以提高铁氧体材料的机械强度。
以上对本申请所提供的一种铁氧体材料、制备方法及共模电感器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述。需要说明的是,在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

1.一种铁氧体材料的制备方法,其特征在于,包括:
将主成分进行混合和预烧,然后加入添加剂依次进行研磨、造粒和压制成型,再在一预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到所述铁氧体材料;
其中,所述主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4
以所述主成分为100重量份计,所述添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4
2.根据权利要求1所述的制备方法,其特征在于,所述预烧的步骤中,预烧温度为750~850℃,保温时间为100~150min。
3.根据权利要求1所述的制备方法,其特征在于,所述预设升温区间为800~1200℃,所述终烧温度为1330~1390℃。
4.根据权利要求3所述的制备方法,其特征在于,所述真空烧结的步骤中,烧结炉内的压强小于或等于-0.08Mpa。
5.根据权利要求3所述的制备方法,其特征在于,所述加压烧结的步骤中,烧结炉内的压强为100±10Mpa。
6.根据权利要求1~5任一项所述的制备方法,其特征在于,所述主成分包括:69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4
7.根据权利要求6所述的制备方法,其特征在于,所述添加剂包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
8.一种铁氧体材料,其特征在于,包括主成分和添加剂;
所述主成分按照100重量份计,包括:69.0~70.4份的Fe2O3,11.3~13.5份的ZnO,其余为Mn3O4
以所述主成分为100重量份计,所述添加剂包括:0.02~0.10份的CaCO3,0.01~0.08份的BiVO4,0~0.08份的SnO2,0.05~0.25份的Co3O4。并且,铁氧体材料是在预设升温区间进行真空烧结,以及在终烧温度下进行加压烧结得到。
9.根据权利要求8所述的铁氧体材料,其特征在于,所述主成分包括:69.2~70.0份的Fe2O3,11.8~13.0份的ZnO,其余为Mn3O4;和/或,
所述添加剂包括:0.04~0.06份的CaCO3,0.04~0.06份的BiVO4,0.03~0.05份的SnO2,0.08~0.22份的Co3O4
10.一种共模电感器,由铁氧体材料制作而成,其特征在于,所述铁氧体材料采用权利要求1-7任一项所述的制备方法制作而成。
CN202211011245.5A 2022-08-22 2022-08-22 一种铁氧体材料、制备方法及共模电感器 Active CN115368127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211011245.5A CN115368127B (zh) 2022-08-22 2022-08-22 一种铁氧体材料、制备方法及共模电感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211011245.5A CN115368127B (zh) 2022-08-22 2022-08-22 一种铁氧体材料、制备方法及共模电感器

Publications (2)

Publication Number Publication Date
CN115368127A true CN115368127A (zh) 2022-11-22
CN115368127B CN115368127B (zh) 2023-04-28

Family

ID=84068428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211011245.5A Active CN115368127B (zh) 2022-08-22 2022-08-22 一种铁氧体材料、制备方法及共模电感器

Country Status (1)

Country Link
CN (1) CN115368127B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354712A (zh) * 2023-03-29 2023-06-30 东莞市德门电子有限公司 一种铁氧体材料、制备方法、近场通信天线及通信设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093688A (en) * 1975-08-25 1978-06-06 Memorex Corporation Method of making manganese-zinc ferrite
JPH04240195A (ja) * 1991-01-18 1992-08-27 Ngk Insulators Ltd 単結晶フェライトの製造方法
CN1686931A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 高居里温度低损耗双五千锰锌系铁氧体及其制备方法
CN101004961A (zh) * 2006-12-11 2007-07-25 电子科技大学 高频大功率铁氧体材料的制备方法
JP2007194402A (ja) * 2006-01-19 2007-08-02 Millenium Gate Technology Co Ltd 磁性多層ナノ粒子及びその製造方法並びにそれを用いた磁性材料
CN101121547A (zh) * 2006-08-08 2008-02-13 上海依林磁业有限公司 一种烧结高截止频率超高磁导率锰锌铁氧体的方法
JP2009143784A (ja) * 2007-12-17 2009-07-02 Kobe Steel Ltd マグネタイトバルク材の製造方法
CN109231978A (zh) * 2018-08-20 2019-01-18 浙江大学 一种高频高磁导率铁氧体片及其制备方法
US20190322587A1 (en) * 2018-04-23 2019-10-24 Skyworks Solutions, Inc. Modified barium tungstate for co-firing
US20190393579A1 (en) * 2018-06-21 2019-12-26 Skyworks Solutions, Inc. Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators
CN113443906A (zh) * 2021-07-26 2021-09-28 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093688A (en) * 1975-08-25 1978-06-06 Memorex Corporation Method of making manganese-zinc ferrite
JPH04240195A (ja) * 1991-01-18 1992-08-27 Ngk Insulators Ltd 単結晶フェライトの製造方法
CN1686931A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 高居里温度低损耗双五千锰锌系铁氧体及其制备方法
JP2007194402A (ja) * 2006-01-19 2007-08-02 Millenium Gate Technology Co Ltd 磁性多層ナノ粒子及びその製造方法並びにそれを用いた磁性材料
CN101121547A (zh) * 2006-08-08 2008-02-13 上海依林磁业有限公司 一种烧结高截止频率超高磁导率锰锌铁氧体的方法
CN101004961A (zh) * 2006-12-11 2007-07-25 电子科技大学 高频大功率铁氧体材料的制备方法
JP2009143784A (ja) * 2007-12-17 2009-07-02 Kobe Steel Ltd マグネタイトバルク材の製造方法
US20190322587A1 (en) * 2018-04-23 2019-10-24 Skyworks Solutions, Inc. Modified barium tungstate for co-firing
US20190393579A1 (en) * 2018-06-21 2019-12-26 Skyworks Solutions, Inc. Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators
CN109231978A (zh) * 2018-08-20 2019-01-18 浙江大学 一种高频高磁导率铁氧体片及其制备方法
CN113443906A (zh) * 2021-07-26 2021-09-28 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354712A (zh) * 2023-03-29 2023-06-30 东莞市德门电子有限公司 一种铁氧体材料、制备方法、近场通信天线及通信设备

Also Published As

Publication number Publication date
CN115368127B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN111943658B (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
US7524433B2 (en) Ferrite material
CN108129143B (zh) 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN110937887B (zh) 一种高频低损耗MnZn铁氧体材料及其制备方法
WO2022095577A1 (zh) 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
CN106747396B (zh) 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
CN115368127A (zh) 一种铁氧体材料、制备方法及共模电感器
CN107089828B (zh) 一种宽温宽频低比磁导率温度系数的锰锌高磁导率材料及其制备方法
CN109354489B (zh) 一种高频低损耗铁氧体材料及其制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN113072369B (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN113443906A (zh) 一种Mn-Zn铁氧体材料及其制备方法
CN112390638A (zh) 一种低饱和窄线宽旋磁材料及其制备方法
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN115073165B (zh) 一种巨介电常数BaTiO3陶瓷及制备方法
CN111362680A (zh) 一种高频低损耗FeMnZnNi铁氧体材料及其制备方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN109734432B (zh) 一种车载用宽温抗应力铁氧体材料和磁芯、及其制造方法
CN108892501B (zh) 一种铁氧体材料及其制备方法
CN117809926A (zh) 一种宽频宽温低损耗软磁材料及其制备方法和应用
JP3545438B2 (ja) Ni−Zn系フェライト粉の製造方法
CN115196958B (zh) 一种高频宽温MnZn铁氧体及其制备方法
CN117383924B (zh) 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法
CN115745588B (zh) 一种高性能因子锰锌铁氧体材料及其制备方法
CN116120049B (zh) 钙镧钴铁氧体磁体的制备方法、钙镧钴铁氧体磁体和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231031

Address after: Building A, Building 101, Building 16, Dafu Industrial Zone, Dafu Community, Guanlan Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Patentee after: Shenzhen Shunluo Layered Electronics Co.,Ltd.

Address before: 518000 Guanlan Industrial Park, DAFUYUAN Industrial Park, Guanlan street, Longhua District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN SUNLORD ELECTRONICS Co.,Ltd.