CN115353643A - 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法 - Google Patents

一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法 Download PDF

Info

Publication number
CN115353643A
CN115353643A CN202211170448.9A CN202211170448A CN115353643A CN 115353643 A CN115353643 A CN 115353643A CN 202211170448 A CN202211170448 A CN 202211170448A CN 115353643 A CN115353643 A CN 115353643A
Authority
CN
China
Prior art keywords
lithium battery
polyacrylamide
negative electrode
waste lithium
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211170448.9A
Other languages
English (en)
Inventor
陈振利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202211170448.9A priority Critical patent/CN115353643A/zh
Publication of CN115353643A publication Critical patent/CN115353643A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • C08J2409/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂电池处理及水凝胶制备的技术领域,提供了一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法。该方法选择以丁苯乳胶为粘结剂、以羧甲基纤维素钠为增粘剂、以导电炭黑为导电剂的废弃锂电池石墨负极材料,先对负极粉体进行微波处理,再进行水溶分离,并对未溶的固体成分进行超声剥离处理,并在自由基聚合制备聚丙烯酰胺水凝胶时加入各种回收成分,制备得到导电水凝胶。一方面,本发明可实现对锂电池负极材料的完全回收利用,并且不产生新的污染物,环保性好。另一方面,本发明制备的聚丙烯酰胺水凝胶具有良好的导电性能和力学性能,具有实际应用价值,经济性好。

Description

一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法
技术领域
本发明涉及锂电池处理及水凝胶制备的技术领域,提供了一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法。
背景技术
近年来,锂电池在交通运输、电力储能、移动通信等领域广泛应用,随之产生的废弃锂电池数量也不断增加,若处理不当会对人体和环境带来危害,并且造成资源浪费。目前,锂电池回收利用主要是针对正极材料,对于负极材料的回收利用较少。
大多数锂电池是以石墨为负极材料,并且含有添加剂,目前绝大多数锂电池负极是以丁苯乳胶为粘结剂,以羧甲基纤维素钠为增粘剂,以导电炭黑为导电剂,同时,锂电池在使用过程中经过大量循环,负极石墨上会沉积金属杂质,目前负极回收主要是除去粘结剂、增粘剂、导电剂、沉积金属等,以获得纯度高的石墨。
现有技术中常采用盐酸、硝酸或硫酸对负极进行酸洗,可除去丁苯、羧甲基纤维素钠及沉积金属,但酸洗废液不易处置,产生新的污染物;也有采用高温热解的方式去除添加剂,但这种方法不能除去沉积金属,并且容易造成石墨氧化。可见,现有技术主要是回收利用负极中的石墨,对于其他成分仍是废弃处理。
发明内容
本发明提出一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,目的在于充分利用废弃锂电池负极中的各种组分,在制备高附加值产品的同时,不产生新的污染物。
为实现上述目的,本发明涉及的具体技术方案如下:
一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,该方法包括以下步骤:
S1.对废弃锂电池负极材料进行筛选,选出以丁苯乳胶为粘结剂、以羧甲基纤维素钠为增粘剂、以导电炭黑为导电剂的石墨负极,并研磨为粉体;
S2.对粉体进行微波处理,然后加入去离子水中,先超声处理,再磁力搅拌,过滤,得到滤液1和滤渣1;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中进行超声处理,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸盐、N,N’-亚甲基双丙烯酰胺,分散均匀,水浴加热反应,得到聚丙烯酰胺导电水凝胶。
S1是对负极材料的筛选,由于在本发明方案中,负极中的各组分均属于回收再利用物质,为保证聚丙烯酰胺导电水凝胶产品的性能,应重视负极材料的筛选过程。
S2是负极材料的水溶分离过程,通过超声和磁力搅拌,使可溶性物质充分溶于去离子水中,得到的滤液1中含有丁苯乳胶、羧甲基纤维素钠,滤渣1为膨胀石墨、导电炭黑、沉积金属的混合物。本发明在水溶分离之前,对负极粉体进行微波处理,使石墨初步剥离而膨胀,一方面有利于可溶性物质的充分溶出,另一方面有利于后续S3步骤的超声剥离。
优选的,S2中,微波处理的微波频率为400-600MHz,处理时间为10-20s。
优选的,S2中,超声处理的超声频率为20-30kHz,处理时间为10-15min。
优选的,S2中,磁力搅拌的转速为60-120rpm,时间为40-60min。
进一步优选的,S2中,粉体、去离子水的质量比为10-20:100。
S3是对滤渣1的超声剥离,在这一过程中,通过N-甲基-2-吡咯烷酮的插层作用,以及超声辅助破坏石墨层间的范德华力,将膨胀石墨剥离为石墨烯片,同时,导电炭黑、沉积金属也从石墨上分离下来。本发明采用的超声剥离方法无需加入强氧化剂,可获得氧化程度低、导电性好的石墨烯片。
优选的,S3中,超声处理的超声频率为40-60kHz,时间为10-15h。
进一步优选的,S3中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.01-0.02:100。
超声剥离完成后,得到含有石墨烯片、导电炭黑、沉积金属的滤渣2,进一步将滤渣2与十二烷基磺酸钠分散于去离子水中制得分散液。
优选的,S3中,滤渣2、十二烷基磺酸钠、去离子水的质量比为5-10:0.05-0.1:100。
S4是自由基聚合制备导电水凝胶的过程。S4的原料中,丙烯酰胺、丙烯酸为聚合单体;过硫酸盐为引发剂;N,N’-亚甲基双丙烯酰胺为交联剂;分散液中的石墨烯片、导电炭黑及金属作为导电添加剂;滤液1中的丁苯乳胶可参与聚合;羧甲基纤维素钠是制备聚丙烯酰胺水凝胶的常用添加剂,具有多种功能。
优选的,S4中,过硫酸盐为过硫酸钾、过硫酸铵、过硫酸钠中的一种。
优选的,S4中,分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸盐、N,N’-亚甲基双丙烯酰胺的质量比为90-110:40-60:10:2-3:0.15-0.2:0.08-0.1。
进一步优选的,S4中,反应温度为50-60℃,时间为2.5-3.5h。
在本发明的方法中,锂电池负极粉体水溶分离产生的滤液和滤渣均作为制备聚丙烯酰胺水凝胶的原料,可对负极材料实现完全回收利用,并且,在对滤渣1进行超声剥离后,N-甲基-2-吡咯烷酮可回收再重复使用,因而处理过程不产生新的污染物。
公知的,羧甲基纤维素钠是制备聚丙烯酰胺水凝胶的常用添加剂,可赋予水凝胶界面粘接性和pH响应性。在此基础上,本发明将石墨剥离成为具有更强导电能力的石墨烯,与导电炭黑、金属一起作为导电添加剂,负载于水凝胶的网络结构中,可赋予水凝胶良好的导电性,并且,这些添加剂还可明显提高水凝胶的力学强度。进一步的,丁苯乳胶中的双键也可参与聚合反应,从而在凝胶结构中引入刚性基团苯基,有利于进一步提高水凝胶的力学强度。
可见,与现有技术相比,本发明的技术方案具有以下有益效果:其一,本发明可实现对锂电池负极材料的完全回收利用,并且不产生新的污染物,环保性好;其二,本发明制备的聚丙烯酰胺水凝胶具有良好的导电性能和力学性能,具有实际应用价值,经济性好。
具体实施方式
下面通过具体实施例对本发明作进一步的详细说明,在不脱离本发明方法思想的情况下,根据本领域公知技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的保护范围内。
首先对废弃锂电池负极材料进行筛选,选出以丁苯乳胶为粘结剂、以羧甲基纤维素钠为增粘剂、以导电炭黑为导电剂的石墨负极,并研磨为粉体,混合均匀;采用该粉体分别按实施例1-6的工艺进行后续制备过程。
实施例1
S2.采用频率400MHz微波对粉体处理20s,然后加入去离子水中,先采用频率20kHz超声处理15min,再以120rpm磁力搅拌40min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为10:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.01:100,采用60kHz超声处理10h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为5:0.05:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至50℃反应3.5h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为90:40:10:2.5:0.15:0.08。
实施例2
S2.采用频率600MHz微波对粉体处理10s,然后加入去离子水中,先采用频率30kHz超声处理10min,再以90rpm磁力搅拌50min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为10:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.015:100,采用50kHz超声处理12h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为5:0.05:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至55℃反应3h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为90:40:10:2.5:0.15:0.08。
实施例3
S2.采用频率550MHz微波对粉体处理12s,然后加入去离子水中,先采用频率20kHz超声处理13min,再以80rpm磁力搅拌55min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为10:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.01:100,采用60kHz超声处理12h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为5:0.05:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至60℃反应2.5h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为90:40:10:2.5:0.15:0.08。
实施例4
S2.采用频率500MHz微波对粉体处理15s,然后加入去离子水中,先采用频率25kHz超声处理10min,再以60rpm磁力搅拌60min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为20:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.02:100,采用40kHz超声处理15h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为10:0.1:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至50℃反应3.5h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为110:60:10:2.5:0.15:0.08。
实施例5
S2.采用频率450MHz微波对粉体处理15s,然后加入去离子水中,先采用频率25kHz超声处理15min,再以100rpm磁力搅拌50min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为20:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.02:100,采用60kHz超声处理15h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为10:0.1:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至55℃反应3h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为110:60:10:2.5:0.15:0.08。
实施例6
S2.采用频率600MHz微波对粉体处理15s,然后加入去离子水中,先采用频率28kHz超声处理12min,再以90rpm磁力搅拌50min,过滤,得到滤液1和滤渣1;粉体、去离子水的质量比为20:100;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.015:100,采用40kHz超声处理15h,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;滤渣2、十二烷基磺酸钠、去离子水的质量比为10:0.1:100;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺,分散均匀,加热至60℃反应2.5h,得到聚丙烯酰胺导电水凝胶;分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸铵、N,N’-亚甲基双丙烯酰胺的质量比为110:60:10:2.5:0.15:0.08。
性能测试:
(1)采用两点探针测试实施例1-6的水凝胶的电导率,分别为9.41S/m、9.57S/m、9.46S/m、11.13S/m、11.28S/m、11.18S/m。
(2)将实施例1-6的水凝胶分别制成哑铃形样条(长30mm、宽4mm、厚1mm),采用万能试验机在80mm/min的拉伸速度下,测得拉伸强度分别为0.63MPa、0.67MPa、0.64MPa、0.75MPa、0.81MPa、0.77MPa,断裂伸长率分别为1061%、1052%、1058%、846%、840%、845%。
(3)将实施例1-6的水凝胶分别制成圆柱形样品(直径15mm,高10mm),采用万能试验机在30mm/min的压缩速度下,测得压缩强度分别为0.72MPa、0.77MPa、0.74MPa、0.91MPa、0.98MPa、0.94MPa。
可见,本发明通过加入废弃锂电池负极材料的回收成分,制得的聚丙烯酰胺水凝胶具有良好的导电性能和力学性能,具有实际应用价值。

Claims (9)

1.一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于,该方法包括以下步骤:
S1.对废弃锂电池负极材料进行筛选,选出以丁苯乳胶为粘结剂、以羧甲基纤维素钠为增粘剂、以导电炭黑为导电剂的石墨负极,并研磨为粉体;
S2.对粉体进行微波处理,然后加入去离子水中,先超声处理,再磁力搅拌,过滤,得到滤液1和滤渣1;
S3.将滤渣1分散于N-甲基-2-吡咯烷酮中进行超声处理,过滤,得到的滤渣2与十二烷基磺酸钠加入去离子水中,分散均匀,得到分散液;
S4.将分散液加入滤液1中,混合均匀,再加入丙烯酰胺、丙烯酸、过硫酸盐、N,N’-亚甲基双丙烯酰胺,分散均匀,水浴加热反应,得到聚丙烯酰胺导电水凝胶。
2.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S2中,微波处理的微波频率为400-600MHz,处理时间为10-20s;超声处理的超声频率为20-30kHz,处理时间为10-15min;磁力搅拌的转速为60-120rpm,时间为40-60min。
3.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S2中,粉体、去离子水的质量比为10-20:100。
4.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S3中,超声处理的超声频率为40-60kHz,时间为10-15h。
5.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S3中,滤渣1、N-甲基-2-吡咯烷酮的质量比为0.01-0.02:100。
6.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S3中,滤渣2、十二烷基磺酸钠、去离子水的质量比为5-10:0.05-0.1:100。
7.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S4中,过硫酸盐为过硫酸钾、过硫酸铵、过硫酸钠中的一种。
8.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S4中,分散液、滤液1、丙烯酰胺、丙烯酸、过硫酸盐、N,N’-亚甲基双丙烯酰胺的质量比为90-110:40-60:10:2-3:0.15-0.2:0.08-0.1。
9.根据权利要求1所述一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法,其特征在于:S4中,反应温度为50-60℃,时间为2.5-3.5h。
CN202211170448.9A 2022-09-26 2022-09-26 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法 Pending CN115353643A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211170448.9A CN115353643A (zh) 2022-09-26 2022-09-26 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211170448.9A CN115353643A (zh) 2022-09-26 2022-09-26 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法

Publications (1)

Publication Number Publication Date
CN115353643A true CN115353643A (zh) 2022-11-18

Family

ID=84008703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211170448.9A Pending CN115353643A (zh) 2022-09-26 2022-09-26 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法

Country Status (1)

Country Link
CN (1) CN115353643A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129521A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料回收再利用的处理方法
US20180013181A1 (en) * 2016-07-07 2018-01-11 Grst International Limited Method for recycling lithium-ion battery
CN112397801A (zh) * 2020-10-30 2021-02-23 北京佰利格瑞资源科技有限公司 一种锂电池材料回收再利用方法
CN113651320A (zh) * 2021-10-19 2021-11-16 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种回收废旧锂离子电池负极石墨材料制备氮掺杂多孔还原氧化石墨烯的方法
WO2023240334A1 (en) * 2022-05-02 2023-12-21 Technologies Lithion Inc. Improved lithium batteries recycling process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180013181A1 (en) * 2016-07-07 2018-01-11 Grst International Limited Method for recycling lithium-ion battery
CN106129521A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料回收再利用的处理方法
CN112397801A (zh) * 2020-10-30 2021-02-23 北京佰利格瑞资源科技有限公司 一种锂电池材料回收再利用方法
CN113651320A (zh) * 2021-10-19 2021-11-16 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种回收废旧锂离子电池负极石墨材料制备氮掺杂多孔还原氧化石墨烯的方法
WO2023240334A1 (en) * 2022-05-02 2023-12-21 Technologies Lithion Inc. Improved lithium batteries recycling process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭京龙,等: "退役动力锂电池资源回收再利用工艺研究进展", 《功能材料与器件学报》, 31 December 2018 (2018-12-31), pages 139 - 144 *

Similar Documents

Publication Publication Date Title
CN105355996B (zh) 一种从废锂电池负极材料中分离锂和石墨并资源化利用的方法
KR102712570B1 (ko) 폴리머 침전 방법
WO2024179115A1 (zh) 一种锂离子电池正极氧化物活性材料与集流体分离方法及其应用
CN115353643A (zh) 一种以废弃锂电池负极制备聚丙烯酰胺导电水凝胶的方法
CN104409696B (zh) 使用水性粘结剂和涂炭导电铝箔集流体的磷酸铁锂电池正极极片的制备方法
CN114221027A (zh) 一种复合固态电解质膜及其制备方法和锂离子电池
CN106809831A (zh) 一种利用膨胀剂膨胀石墨制备氧化石墨烯的方法
CN116375059B (zh) 利用废旧磷酸铁锂电池一步法回收制备碳酸锂的工艺
CN112707378A (zh) 一种磷酸铁锂正极片的回收方法及其应用
CN115513549B (zh) 一种电极极片的回收方法
WO2023109192A1 (zh) 一种膨胀石墨及其制备方法
CN116732343A (zh) 新型低共熔溶剂回收废旧磷酸铁锂电池中锂的方法
CN113889612B (zh) 一种锂电池用碳基纳米材料及其制备方法
CN108963231A (zh) 一种石墨烯改性锂硫电池正极活性材料及其制备方法
CN112599878B (zh) 一种电极废料的处理方法及应用
WO2021253849A1 (en) Method for polymer precipitation
CN114883681A (zh) 一种低能耗高效回收锂电池正极材料的方法
CN110931793B (zh) 一种负极粘结剂及含有该粘结剂的硅基负极片的制备方法
CN108461710A (zh) 一种锂离子电池正极片及其制备方法
CN111005031B (zh) 一种掺杂改性电解二氧化锰及其制备方法和应用
CN113161549A (zh) 一种光交联的粘结剂体系、含有其的浆料组合物及浆料组合物的应用
CN116111100B (zh) 锂离子电池负极材料及其制备方法、锂离子电池
CN108899515A (zh) 一种二次锂电池负极新材料的制备方法
WO2024093096A1 (zh) 一种用nmp循环剥离废旧正极片集流体与正极材料的方法
CN114464809A (zh) 一种石墨烯包覆的锂离子电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination