CN115286259B - 一种提高全无机钙钛矿室温相稳定性的方法 - Google Patents

一种提高全无机钙钛矿室温相稳定性的方法 Download PDF

Info

Publication number
CN115286259B
CN115286259B CN202210868778.9A CN202210868778A CN115286259B CN 115286259 B CN115286259 B CN 115286259B CN 202210868778 A CN202210868778 A CN 202210868778A CN 115286259 B CN115286259 B CN 115286259B
Authority
CN
China
Prior art keywords
film
cspbi
perovskite
sno
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210868778.9A
Other languages
English (en)
Other versions
CN115286259A (zh
Inventor
钟敏
姜彦钰
金腾龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202210868778.9A priority Critical patent/CN115286259B/zh
Publication of CN115286259A publication Critical patent/CN115286259A/zh
Application granted granted Critical
Publication of CN115286259B publication Critical patent/CN115286259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3458Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a chloride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种提高全无机钙钛矿(CsPbI2Br)室温相稳定性的方法,是在CsPbI2Br钙钛矿前驱体溶液中加入一定质量百分比浓度的乙烯基吡咯烷酮‑乙酸乙烯酯共聚物,旋涂在覆盖有平面结构SnO2/SnCl2薄膜的基底上,通过一次成膜法梯度退火生长全无机CsPbI2Br钙钛矿薄膜。本发明通过在全无机CsPbI2Br钙钛矿薄膜中添加乙烯基吡咯烷酮‑乙酸乙烯酯共聚物,钝化了CsPbI2Br全无机钙钛矿薄膜晶界缺陷,阻碍了水分的渗入和钙钛矿的降解,提高了CsPbI2Br钙钛矿薄膜的结晶度,改善了CsPbI2Br全无机钙钛矿薄膜的质量,提高了其室温黑相稳定性。

Description

一种提高全无机钙钛矿室温相稳定性的方法
技术领域
本发明属于太阳能电池的制备技术领域,具体涉及一种乙烯基吡咯烷酮-乙酸乙烯酯共聚物添加全无机CsPbI2Br钙钛矿薄膜以提高全无机CsPbI2Br钙钛矿室温相稳定性的方法。制备的全无机CsPbI2Br钙钛矿薄膜可作为光吸收层制备太阳能电池。
背景技术
目前,有机-无机杂化钙钛矿材料由于具有较高的光吸收系数,较长的载流子扩散距离,较高的载流子迁移率,较为低廉的价格等诸多优点,使有机-无机杂化钙钛矿太阳能电池成为一种潜力巨大的硅基太阳能电池的替代品。虽然有机-无机杂化钙钛矿太阳能电池的光电转化效率由最开始的3%提高到了25.5%,但是体系中的有机物阳离子(如:甲胺离子、甲脒离子)容易受到环境中的水分、光、热等因素的影响而挥发和吸湿,极大地限制了有机-无机杂化钙钛矿太阳能电池的产业化进程。科研人员利用铯离子(Cs+)代替有机-无机杂化钙钛矿中的有机阳离子制成全无机钙钛矿,以克服有机组分遇热、遇光、在潮湿环境中易分解的问题。在全无机钙钛矿,CsPbI2Br既有好的组分稳定性,又有较好的吸光性,这使它成为应用于钙钛矿/硅串联太阳能电池的一个理想材料。然而,室温下全无机CsPbI2Br钙钛矿相不稳定,会由有光活性的钙钛矿黑相转变为无光活性的非钙钛矿黄相,全无机钙钛矿室温相稳定性问题阻碍了其商业化的进程。
添加剂工程能够有效地降低黑相全无机CsPbI2Br钙钛矿的形成温度,提高CsPbI2Br钙钛矿在室温下的黑相稳定性,并且添加剂可选择范围广,在稳定全无机CsPbI2Br钙钛矿方面备受科研工作者们的喜爱。
本发明根据乙烯基吡咯烷酮-乙酸乙烯酯共聚物中的C=O基团能与Pb2+和Cs+离子相互作用形成配位键,使得添加剂分子与钙钛矿晶粒联结起来,这种联结相当于在晶界间建立起了一座座“桥梁”,从而有效钝化晶界缺陷,提高钙钛矿薄膜稳定性。从而设计出一种合适的添加剂(乙烯基吡咯烷酮-乙酸乙烯酯共聚物)来改善全无机CsPbI2Br钙钛矿薄膜的质量,提高全无机CsPbI2Br钙钛矿的室温黑相稳定性。适当质量百分比浓度的乙烯基吡咯烷酮-乙酸乙烯酯共聚物的添加能改善CsPbI2Br钙钛矿薄膜形貌、结构、光吸收性能、发光性能、空气稳定性和光学稳定性。
发明内容
本发明的目的是提供一种共聚物添加改性的全无机CsPbI2Br钙钛矿薄膜及其制备方法,该方法可改善CsPbI2Br全无机钙钛矿薄膜的质量及其室温黑相稳定性,方法核心是一种基于平面结构SnO2/SnCl2薄膜的添加共聚物的CsPbI2Br全无机钙钛矿薄膜的制备工艺。
本发明的技术方案为:
一种提高全无机CsPbI2Br钙钛矿薄膜室温相稳定性的方法,是在CsPbI2Br钙钛矿前驱体溶液中加入一定质量百分比浓度的共聚物,完全溶解获得混合液,将混合液旋涂在覆盖有平面结构SnO2/SnCl2薄膜的基底上,通过一次成膜法经阶段旋涂后梯度退火生长全无机CsPbI2Br钙钛矿薄膜,所述共聚物为乙烯基吡咯烷酮-乙酸乙烯酯共聚物。
所述的CsPbI2Br钙钛矿前驱体溶液是CsI,PbI2,PbBr2溶于二甲基亚砜(DMSO)所得,混合液中乙烯基吡咯烷酮-乙酸乙烯酯共聚物的质量百分比浓度为1wt%~5wt%;所述混合液加热搅拌至完全溶解后需用聚四氟乙烯滤头过滤,。如果乙烯基吡咯烷酮-乙酸乙烯酯的添加量过小,则CsPbI2Br钙钛矿薄膜晶粒尺寸较小,晶界缺陷较多,结晶度差且空气、光学稳定性不好;而乙烯基吡咯烷酮-乙酸乙烯酯的添加量过大则薄膜出现叠层现象,不平整致密,晶界缺陷又变多,CsPbI2Br钙钛矿薄膜的光学性能变差。只有添加适量的乙烯基吡咯烷酮-乙酸乙烯酯,CsPbI2Br钙钛矿薄膜尺寸较大,晶界缺陷减少,平整致密,结晶度高且空气、光学稳定性和光学性能最佳。
覆盖有平面结构SnO2/SnCl2薄膜的基底,其制备方法包括以下步骤:
(1)将导电玻璃分别用丙酮、无水乙醇、去离子水超声清洗,烘干后,紫外臭氧清洗处理至少30min;将SnO2水胶体分散液、去离子水、异丙醇按一定体积比混合,搅拌均匀,再用聚四氟乙烯滤头过滤,获得SnO2前驱液。将SnO2前驱液旋涂到经过紫外臭氧处理的导电玻璃上,重复旋涂若干次后,在一定温度下退火一定时间,获得以导电玻璃为基底的SnO2薄膜,记为导电玻璃/SnO2薄膜;
(2)将SnCl2溶于无水乙醇中,获得一定浓度的SnCl2溶液,将SnCl2溶液旋涂于导电玻璃/SnO2薄膜上,梯度退火后,紫外臭氧清洗机中处理至少30min,得到导电玻璃/SnO2/SnCl2薄膜;
进一步的,步骤(1)中所述SnO2水胶体分散液、去离子水、异丙醇的体积比为1:4:4~1:2:2,旋涂速度为1000~6000rpm,旋涂时间为1~20s,退火温度为50~300℃,退火时间为1~20min。
进一步的,步骤(2)中SnCl2溶液浓度为0.005~0.02mol/L,旋涂速度为3000~5000rpm,旋涂时间为1~40s,梯度退火为:第一步退火温度为50~105℃,第一步退火时间为1~15min,第二步退火温度为100~250℃,第二步退火时间为10~80min。
进一步的,所述混合液中CsPbI2Br前驱体浓度为1.0~3.0mol/L,加入共聚物后需恒温加热搅拌温度为70℃~90℃,搅拌时间为1~3h。
进一步的,将混合液旋涂至基底上时,旋涂为两阶段:第一阶段旋涂速度为600~1000rpm,时间为5~15s;第二阶段旋涂速度为1000~2000rpm,时间为100~150s。采用阶段性旋涂可以改善钙钛矿薄膜的质量,提高薄膜的覆盖率、均匀性和结晶性。
进一步的,经阶段旋涂后采用梯度退火,为首先在较低温度为40~60℃退火1~5min,再在较高温度140~160℃退火5~10min。采用梯度退火可以改善钙钛矿薄膜的质量,增大薄膜的覆盖率、结晶性、晶粒尺寸及分布均匀性,降低缺陷密度。
根据本发明的一种具体实施例,本发明的制备方法包括以下步骤:
(1)将FTO导电玻璃分别用丙酮、无水乙醇、去离子水超声处理30min,在真空干燥箱中烘干,然后在紫外臭氧清洗机中处理30min。将SnO2水胶体分散液、去离子水、异丙醇按照体积比1:4:4~1:2:2配置SnO2前驱液。将体积为100~150μL的SnO2前驱液旋涂到经过紫外臭氧处理的FTO导电玻璃上,在1000~6000rpm的转速下旋涂1~20s,该过程重复1~10次,然后置于恒温加热台上50~300℃条件下退火1~20min,获得以FTO导电玻璃为基底的SnO2薄膜(FTO/SnO2薄膜)。
(2)称取适量SnCl2溶于无水乙醇中,获得浓度为0.005~0.02mol/L的SnCl2溶液。将体积为100~150μL的SnCl2溶液以3000~5000rpm的转速、1~40s的时间旋涂于步骤(1)制备的FTO/SnO2薄膜上。随后将FTO/SnO2/SnCl2薄膜置于加热台上进行梯度退火,先在50~105℃退火1~15min,随后在100~250℃的温度下继续退火10~80min,,获得FTO/SnO2/SnCl2薄膜。
(3)将适量CsI,PbI2,PbBr2,乙烯基吡咯烷酮-乙酸乙烯酯共聚物溶于二甲基亚砜(DMSO)之中,在70℃~90℃加热搅拌1~3h至完全溶解,获得浓度为1.0~3.0mol/L的CsPbI2Br前驱体溶液。然后将该溶液用聚四氟乙烯滤头过滤,获得CsPbI2Br前驱体溶液。将步骤(2)中制备获得的FTO/SnO2/SnCl2薄膜在紫外臭氧清洗机中处理至少30min,将100~150μL的CsPbI2Br前驱体溶液滴加在经过紫外臭氧处理的FTO/SnO2/SnCl2薄膜上,分两阶段旋涂:第一阶段旋涂速度为600~1000rpm,时间为5~15s;第二阶段旋涂速度为1000~2000rpm,时间为100~150s。然后再进行梯度退火,首先在较低温度为40~60℃退火1~5min;再在较高温度140~160℃退火5~10min,获得FTO/SnO2/SnCl2/CsPbI2Br薄膜。
上述步骤(3)中,所述的乙烯基吡咯烷酮-乙酸乙烯酯共聚物,纯度为99.9%,分子量为50000。
上述的FTO导电玻璃的规格为20mm*25mm,方块电阻为14Ω,透光率≥90%。
本发明通过在全无机CsPbI2Br钙钛矿薄膜中添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物,钝化了CsPbI2Br全无机钙钛矿薄膜晶界缺陷,阻碍了水分的渗入和钙钛矿的降解,提高了CsPbI2Br钙钛矿薄膜的结晶度,改善了CsPbI2Br全无机钙钛矿薄膜的质量,提高了其室温黑相稳定性及光学性能。
附图说明
图1(a)和(b)分别为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的场发射扫描电镜图。
图2为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的X射线衍射图。
图3为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的紫外可见吸收光谱。
图4为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的荧光光谱。
图5为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜在空气中存放0~90min的照片。
图6为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜在空气中存放0~90min的光学稳定性图。
具体实施方式
下面结合具体实施例对本发明进行具体说明。
实施例1
(1)将FTO导电玻璃分别用丙酮、无水乙醇、去离子水超声处理30min,在真空干燥箱中烘干,然后在紫外臭氧清洗机中处理30min。将SnO2水胶体分散液、去离子水、异丙醇按照体积比1:4:4配置SnO2前驱液。将体积为100μL的SnO2前驱液旋涂到经过紫外臭氧处理的FTO导电玻璃上,在2000rpm的转速下旋涂10s,该过程重复3次,然后置于恒温加热台上100℃条件下退火10min,获得以FTO导电玻璃为基底的SnO2薄膜(FTO/SnO2薄膜)。
(2)称取适量SnCl2溶于无水乙醇中,获得浓度为0.005mol/L的SnCl2溶液。将体积为100μL的SnCl2溶液以3000rpm的转速、30s的时间旋涂于步骤(1)制备的FTO/SnO2薄膜上。随后将FTO/SnO2/SnCl2薄膜置于加热台上进行梯度退火,先在70℃退火15min,随后在200℃的温度下继续退火40min,,获得FTO/SnO2/SnCl2薄膜。
(3)将适量CsI,PbI2,PbBr2,乙烯基吡咯烷酮-乙酸乙烯酯共聚物溶于二甲基亚砜(DMSO)之中,在70℃加热搅拌3h至完全溶解,获得浓度为1.0mol/L的CsPbI2Br前驱体溶液。然后将该溶液用聚四氟乙烯滤头过滤,获得CsPbI2Br前驱体溶液。将步骤(2)中制备获得的FTO/SnO2/SnCl2薄膜在紫外臭氧清洗机中处理至少30min,将100μL的CsPbI2Br前驱体溶液滴加在经过紫外臭氧处理的FTO/SnO2/SnCl2薄膜上,分两阶段旋涂:第一阶段旋涂速度为600rpm,时间为15s;第二阶段旋涂速度为1400rpm,时间为130s。然后再进行梯度退火,首先在较低温度为40℃退火5min;再在较高温度150℃退火9min,获得FTO/SnO2/SnCl2/CsPbI2Br薄膜。
下面结合附图对本发明进行具体说明:
附图1(a)和附图1(b)分别为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的场发射扫描电镜图。结果表明,乙烯基吡咯烷酮-乙酸乙烯酯共聚物添加后,CsPbI2Br薄膜的结晶度明显提高,改善了CsPbI2Br薄膜的质量。
附图2为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的X射线衍射图。由附图2可知,在未添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的XRD图谱中,对应光学相α相的衍射峰强度较低,而对应CsPbI2Br分解产生的非光学相δ相的衍射峰强度较高,说明未添加的CsPbI2Br薄膜很容易发生相变产生非光学相δ相。而在乙烯基吡咯烷酮-乙酸乙烯酯共聚物添加后的CsPbI2Br的XRD图谱中,对应α相的衍射峰强度较未添加的CsPbI2Br明显增大,而对应δ相的衍射峰强度较未添加的CsPbI2Br则发生了明显下降,表明经过添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物后CsPbI2Br在室温下的相变得到了抑制,显著提高了CsPbI2Br钙钛矿薄膜的室温黑相稳定性。
附图3为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的紫外可见吸收光谱。结果表明,CsPbI2Br薄膜在添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物后,其吸光度在500nm-900nm的波长范围内明显提高,同时吸收边从653.94nm红移到657.12nm,添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物后CsPbI2Br薄膜的光吸收性能得到了改善。
附图4为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜的荧光光谱。由附图4可知,经过添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物后,CsPbI2Br薄膜的PL强度有所增强,同时相应的发射峰发生了红移,由659.07nm红移至660.52nm。以上结果均表明乙烯基吡咯烷酮-乙酸乙烯酯共聚物的添加钝化了CsPbI2Br薄膜表面的缺陷,降低了缺陷态密度,改善了CsPbI2Br薄膜质量。
附图5为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜在空气中存放0~90min的照片。由附图5可知,在环境温度为21℃、湿度为47%的条件下未添加的CsPbI2Br薄膜在20分钟时开始迅速褪色,到了30min,薄膜基本完全褪色,钙钛矿完全分解,说明未添加共聚物的钙钛矿薄膜的空气稳定性差。而添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的钙钛矿薄膜在90min内仍然保持黑色,未发生褪色。结果表明,添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物可以有效提高CsPbI2Br薄膜的室温黑相稳定性。
附图6为未添加和添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜分别在空气中存放0~90min的光学稳定性图。由附图6可知,在环境温度为20℃、湿度为46%的条件下,未添加的CsPbI2Br薄膜在环境中放置30min后,其在500-900nm范围内的吸光度发生了明显的降低,基本完全分解完;而添加乙烯基吡咯烷酮-乙酸乙烯酯共聚物的CsPbI2Br薄膜在环境中放置90min后,虽然其在500-900nm范围内的吸光度略微有所降低,但是吸收边仍然对应于CsPbI2Br特征吸收边,基本没有分解。这一结果表明,对乙烯基吡咯烷酮-乙酸乙烯酯共聚物的添加能够抑制水分的渗入,明显抑制了CsPbI2Br薄膜在环境条件下的降解,从而提高其光学稳定性。
实施例2
(1)将FTO导电玻璃分别用丙酮、无水乙醇、去离子水超声处理30min,在真空干燥箱中烘干,然后在紫外臭氧清洗机中处理30min。将SnO2水胶体分散液、去离子水、异丙醇按照体积比1:2:2配置SnO2前驱液。将体积为150μL的SnO2前驱液旋涂到经过紫外臭氧处理的FTO导电玻璃上,在3500rpm的转速下旋涂20s,该过程重复5次,然后置于恒温加热台上160℃条件下退火20min,获得以FTO导电玻璃为基底的SnO2薄膜(FTO/SnO2薄膜)。
(2)称取适量SnCl2溶于无水乙醇中,获得浓度为0.02mol/L的SnCl2溶液。将体积为150μL的SnCl2溶液以4000rpm的转速、20s的时间旋涂于步骤(1)制备的FTO/SnO2薄膜上。随后将FTO/SnO2/SnCl2薄膜置于加热台上进行梯度退火,先在105℃退火8min,随后在170℃的温度下继续退火70min,,获得FTO/SnO2/SnCl2薄膜。
(3)将适量CsI,PbI2,PbBr2,乙烯基吡咯烷酮-乙酸乙烯酯共聚物溶于二甲基亚砜(DMSO)之中,在90℃加热搅拌1h至完全溶解,获得浓度为1.2mol/L的CsPbI2Br前驱体溶液。然后将该溶液用聚四氟乙烯滤头过滤,获得CsPbI2Br前驱体溶液。将步骤(2)中制备获得的FTO/SnO2/SnCl2薄膜在紫外臭氧清洗机中处理至少30min,将150μL的CsPbI2Br前驱体溶液滴加在经过紫外臭氧处理的FTO/SnO2/SnCl2薄膜上,分两阶段旋涂:第一阶段旋涂速度为900rpm,时间为8s;第二阶段旋涂速度为1600rpm,时间为110s。然后再进行梯度退火,首先在较低温度为60℃退火3min;再在较高温度160℃退火7min,获得FTO/SnO2/SnCl2/CsPbI2Br薄膜。

Claims (9)

1.一种提高全无机钙钛矿室温相稳定性的方法,其特征在于,所述全无机钙钛矿为CsPbI2Br钙钛矿,所述方法是在CsPbI2Br钙钛矿前驱体溶液中加入一定质量百分比浓度的乙烯基吡咯烷酮-乙酸乙烯酯共聚物,完全溶解得到混合液,旋涂在覆盖有平面结构SnO2/SnCl2薄膜的基底上,通过一次成膜法经阶段旋涂后梯度退火生长全无机CsPbI2Br钙钛矿薄膜;混合液中乙烯基吡咯烷酮-乙酸乙烯酯共聚物的质量百分比浓度为1wt%~5wt%。
2.根据权利要求1所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于,所述的CsPbI2Br钙钛矿前驱体溶液是CsI,PbI2,PbBr2溶于二甲基亚砜(DMSO)所得;所述混合液加热搅拌至完全溶解后需用聚四氟乙烯滤头过滤。
3.根据权利要求1所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于,所述的覆盖有平面结构SnO2/SnCl2薄膜的基底采用如下方法制得:
(1)将导电玻璃分别用丙酮、无水乙醇、去离子水超声清洗后烘干,用紫外臭氧清洗处理至少30 min;将SnO2水胶体分散液、去离子水、异丙醇混合,搅拌均匀,用聚四氟乙烯滤头过滤,获得SnO2前驱液;将SnO2前驱液旋涂到所得导电玻璃上,重复旋涂若干次后,在一定温度下退火一定时间,获得以导电玻璃为基底的SnO2薄膜,记为导电玻璃/SnO2薄膜;
(2)将SnCl2溶于无水乙醇中得到SnCl2溶液,将SnCl2溶液旋涂于(1)所得薄膜上,梯度退火后,再紫外臭氧清洗处理至少30 min,得到导电玻璃/SnO2/SnCl2薄膜。
4.根据权利要求3所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于:步骤(1)中所述SnO2水胶体分散液、去离子水、异丙醇的体积比为1:4:4~1:2:2,旋涂速度为1000~6000 rpm,旋涂时间为1 s~20 s,退火温度为50~300℃,退火时间为1~20 min。
5. 根据权利要求3所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于:步骤(2)中SnCl2溶液浓度为0.005~0.02 mol/L,旋涂速度为3000~5000 rpm,旋涂时间为不超过40 s,所述的梯度退火为:第一步退火温度为50~105 ℃,第一步退火时间为1~15 min,第二步退火温度为100~250 ℃,第二步退火时间为10~80 min。
6.根据权利要求1所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于:混合液中CsPbI2Br前驱体浓度为1.0~3.0 mol/L,加入共聚物后需恒温加热搅拌,温度为70℃~90℃,搅拌时间为1~3 h。
7.根据权利要求1所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于:将混合液旋涂在覆盖有平面结构SnO2/SnCl2薄膜的基底上,旋涂为两阶段:第一阶段旋涂速度为600~1000 rpm,时间为5~15s,第二阶段旋涂速度为1000~2000 rpm,时间为100~150 s,旋涂后梯度退火。
8.根据权利要求7所述的提高全无机钙钛矿室温相稳定性的方法,其特征在于:所述旋涂后梯度退火为首先在较低温度为40~60℃退火1~5 min,再在较高温度140~160℃退火5~10 min。
9.一种全无机CsPbI2Br钙钛矿薄膜,其特征在于,采用如权利要求1-8任一项所述的方法制得。
CN202210868778.9A 2022-07-22 2022-07-22 一种提高全无机钙钛矿室温相稳定性的方法 Active CN115286259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210868778.9A CN115286259B (zh) 2022-07-22 2022-07-22 一种提高全无机钙钛矿室温相稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210868778.9A CN115286259B (zh) 2022-07-22 2022-07-22 一种提高全无机钙钛矿室温相稳定性的方法

Publications (2)

Publication Number Publication Date
CN115286259A CN115286259A (zh) 2022-11-04
CN115286259B true CN115286259B (zh) 2023-06-09

Family

ID=83824661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210868778.9A Active CN115286259B (zh) 2022-07-22 2022-07-22 一种提高全无机钙钛矿室温相稳定性的方法

Country Status (1)

Country Link
CN (1) CN115286259B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416410A (zh) * 2019-07-11 2019-11-05 重庆文理学院 一种钙钛矿薄膜的制备方法
CN111792851A (zh) * 2020-07-24 2020-10-20 西安电子科技大学 高稳定性的全无机CsPbI2Br钙钛矿薄膜及制备方法

Also Published As

Publication number Publication date
CN115286259A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN113394347B (zh) 一种全无机钙钛矿太阳能电池的制备方法
CN110176539B (zh) 一种全光谱光稳定的高效钙钛矿太阳能电池的制备方法
CN113193126B (zh) 一种实现无甲胺钙钛矿薄膜表面重构的制备方法及其应用
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
CN111490168A (zh) 一种基于气氛调控无机钙钛矿太阳能电池的制备方法
Ezike et al. Effect of tertiary butylpyridine in stability of methylammonium lead iodide perovskite thin films
CN110854220B (zh) 功能性聚合物在全无机钙钛矿光吸收层的应用及制备方法和全无机钙钛矿太阳电池
CN115286259B (zh) 一种提高全无机钙钛矿室温相稳定性的方法
CN113636597B (zh) 一种钽掺杂的二氧化钒薄膜的制备方法
CN112614947B (zh) 一种含锡钙钛矿前驱液、光活性层、电池及制备方法
CN111244291B (zh) 一种高性能高稳定的FACs钙钛矿薄膜的制备方法
CN115132864B (zh) 一种金属钇掺杂的CsSnI3无机钙钛矿薄膜及其制备方法
CN111540807A (zh) 一种具有高开路电压的全无机钙钛矿太阳能电池及其制备方法
CN115020598A (zh) 一种提升无机CsPbI3钙钛矿薄膜环境稳定性的方法
CN118076188A (zh) 一种基于乙烯-马来酸酐共聚物添加剂提高全无机钙钛矿薄膜性能的方法
CN113461483A (zh) 一种钙钛矿材料、太阳能电池器件及制备方法
CN106927688A (zh) 一种卤素掺杂ZnMgO薄膜及其制备方法
CN112071985A (zh) 一种提高钙钛矿太阳电池全光谱稳定性的界面工程方法
CN116004229B (zh) 一种叶绿素修饰的CsPbCl3:Yb3+钙钛矿薄膜及其制备方法和应用
CN113929131A (zh) 一种FA掺杂的CsPbI2Br基钙钛矿薄膜材料的制备方法
CN105895808A (zh) 一种钙钛矿太阳电池纳米氧化铝溶胶镀膜液及制备方法
CN106927691A (zh) 一种具有光响应特性的磷酸铋薄膜及其制备方法和应用
CN106944111A (zh) 一种钨酸铋/磷酸铋复合薄膜及其制备方法和应用
CN115117246A (zh) 一种Lewis碱表面修饰的全无机钙钛矿薄膜及其制备方法
CN115528180A (zh) 一种生物友好的碳量子点修饰电子传输层诱导钙钛矿下表面结晶的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant