CN1152841C - 电介质陶瓷组合物 - Google Patents

电介质陶瓷组合物 Download PDF

Info

Publication number
CN1152841C
CN1152841C CNB991031733A CN99103173A CN1152841C CN 1152841 C CN1152841 C CN 1152841C CN B991031733 A CNB991031733 A CN B991031733A CN 99103173 A CN99103173 A CN 99103173A CN 1152841 C CN1152841 C CN 1152841C
Authority
CN
China
Prior art keywords
dielectric
sintering
composition
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991031733A
Other languages
English (en)
Other versions
CN1242348A (zh
Inventor
洪国善
尹赫睃
金东完
金炳圭
边纯千
金泰见
文钟云
李孝宗
曹瑞镛
金德亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amecs Co Ltd
Original Assignee
Amecs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amecs Co Ltd filed Critical Amecs Co Ltd
Publication of CN1242348A publication Critical patent/CN1242348A/zh
Application granted granted Critical
Publication of CN1152841C publication Critical patent/CN1152841C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种(1-x)ZnNb2O6-xTiO2系组合物及对其添加了添加剂的低温烧结用微波电介质陶瓷组合物。本电介质组合物具有优异的电介特性,尤其是能够进行谐振频率温度系数的调节,并且是仅添加了少量的添加剂的低温烧结组合物。由于使用低融点电极并可同时烧成,所以可降低制造成本,适于积层结构的电介质装置的小型化。

Description

电介质陶瓷组合物
本发明涉及微波用电介质陶瓷组合物,具体地说,是涉及运行在微波频带的诸如电介质谐振器类的微波装置中用的电介质陶瓷组合物。
近来,由于移动通信和卫星传输等信息通信设备的广泛应用,使得人们对用于微波的电介质陶瓷元件越发关注起来。尤其是在作为移动通信媒体的汽车电话、无线电话、飞行控制系统、GPS(全球定位系统)等系统中,微波用电介质陶瓷都被用来作为电介质谐振器使用。为将电介质谐振器应用于微波领域,在器件既小型化又具有高电介率、高Q值、低谐振频率温度系数等的同时,还必须使其具有良好的烧结特性。
有关为满足上述特性的电介质陶瓷组合物进行的研究是从对TiO2的研究开始的,目前已经对许多的TiO2系逐一进行了研究,其结果,发现了许多TiO2系电介质,如目前常用的微波电介质组合物:Ba2Ti9O20、(Zr、Sn)TiO4、BaO-RE2O3-TiO2(Re:稀土元素)、BaO-Nd2O3-TiO2系(BNT系)等,以及许多最近发现的如Ba(Mg1/3Ta2/3)O3、Ba(Zn1/3Ta2/3)O3、Ba(Mg1/3Nb2/3)O3、Sr(Mg1/3Ta2/3)O3、Sr(Zn1/3Ta2/3)O3等类的具有复合钙钛矿型结构的电介质,目前还正着力开发着两种使用钙钛矿固溶体的新型电介质材料。
然而与其他的微波电介质相比,BNT系存在的问题是Q值(品质因数、Q×f)小于2000(1GHz)、谐振频率仅限于1GHz以下。加之Nd2O3为稀土类金属,比其他的元素价格偏高。
另一方面,(Zr、Sn)TiO4系以其较高的Q值和稳定的温度特性成为最常用的材料。其电介率的范围为30~40、Q值在4GHz时可达8000左右,谐振频率温度系数(τf)的范围为-30~+30ppm/℃,但TiO4系在通过通常的固相反应制造时,熔烧温度在1100℃以上,属于不添加烧结调节剂就难以在1600℃以下实施烧结的难烧结物质。因此,为降低烧结温度,就要使用CuO、Co2O3、ZnO等烧结调节剂。但烧结调节剂的添加又会降低组合物自身的物理性质。于是,人们尝试取代最经济的固相法,而采用溶胶或烃氧基金属法、共浸法等液相法进行粉末合成。然而,此类方法不仅工艺复杂且提高了成本,又形成新的问题。
以Ba(Zn1/3Ta2/3)O3为代表的复合钙钛矿系电介质也是烧结温度超过1550℃的难烧结物质,存有难以实施烧结这一不足之处。对为降低烧结温度而添加的元素和化合物(BaZrO3、Mn等)进行分析的结果表明,因其含有6~8种以上的成份,存在着难以控制工艺因素的问题。
近来,随着电子装置的小型化,为使移动通信用电介质滤波器等的电介质部件小型化,人们尝试进行元件的积层化。为要积层化,就需联同电极一起同时烧成,而为要使用廉价的Ag、Cu电极,又使得具有优良的烧结特性,即能在900℃以下的低烧结温度进行烧结的电介质陶瓷组合物成为必需之物。
相应这一要求对照迄今报道的低温烧结用电介质陶瓷组合物来看,可知在BaO-PbO-Nd2O3-TiO2系(烧结温度1300℃)电介质中添加玻璃后烧结温度降为900℃,其特性是:电介率67;Q值在5.1GHz时为572、谐振频率温度系数为20ppm/℃。在CaZrO3系(烧结温度1350℃)电介质中添加玻璃后烧结温度降为980℃,其特性是:电介率25;Q值在5.1GHz时为700;谐振频率温度系数为10ppm/℃。
另一方面,本发明人发现在对US 5,756,412中公开的电介质陶瓷组合物ZnNb2O6中添加了CuO、V2O5、Bi2O3、Sb2O5等的烧结调节剂后,能使烧结温度降至900℃以下。然而ZnNb2O6系的电介特性虽优,谐振频率温度系数却为较大的负(-)值,故限制了它在电介质材料中的实际应用。
本发明是在的US 5,756,412基础上的改进方案。其TiO2组合物的电介率及品质系数等电介特性优异,且谐振温度系数也具有为400ppm/℃左右的显著正(+)值。因此,通过将ZnNb2O6与TiO2以适当的摩尔比相混合,至少能保持其原有的优异烧结特性,并能将谐振频率温度系数值调整在适当的范围内,从而最终完成了本项发明。
本发明的目的在于提供一种工艺简单、制造价格经济、能够使用低融点电极的、具有优异的烧结特性和电介特性的微波电介质陶瓷组合物。
为达到这一目的,本发明提供了具有以公式(1-x)ZnNb2O6-xTiO2表示的、其中摩尔比x=0.2~0.8的电介质陶瓷组合物。之所以限定摩尔比的值在0.2~0.8的范围之内,是因为当x不足0.2时,TiO2的摩尔比过小,而会使谐振频率温度系数值呈过大的负(-)值;相反,当x大于0.8时,谐振频率温度系数值又会阳性(+)值,二者皆不如人意。所以,本发明通过将x的值限定在特定的范围内,而得到了一种能保持优异的电介特性和烧结特性的电介质陶瓷组合物。
另一方面,本发明为提高电介质陶瓷组合物的电介特性,还可以以降低烧结温度为目的添加入多种低温烧结调节剂,其中尤以CuO对降低组合物的烧结温度影响大,因而显得格外重要。其添加量以占全体组合物重量的0.5~12.0%为好。CuO添加量不足0.5%重量时,不能对降低烧结温度产生比较大的影响,而超过12.0重量%时,又会带来降低品质系数值等不利于电介特性的负面影响。
本发明除上述CuO氧化物烧结调节剂之外,还可以采用V2O5、Sb2O5、Bi2O3、B2O3、NiO、WO3、AgNO3、ZnO及MgO等中至少一种氧化物进行少量的添加,以便能进一步提高组合物的电介特性和烧结特性。为防止上述烧结调节剂降低电介特性,其添加量最好限制在全体组合物的0.05~5.0重量%内。
下面通过实施例对本发明进行详细的说明。
实施例
先以同一摩尔比称量出高纯度的ZnO和Nb2O2,再将二者的混合粉末同蒸馏水以1∶1的比例混合。然后用ZrO2球磨混合12小时后急速干燥。之后以1000℃在矾土炉中焙烧2小时,随后添加适当摩尔比的高纯度TiO2,再将少量的CuO、V2O5、Sb2O5、Bi2O3、B2O3、NiO、WO3、AgNO3、ZnO、MgO作为烧结调节剂添加在低温烧结组合物中。将混合后的粉末经24小时的球磨混合后进行喷雾干燥,之后以1000kg/cm2的压力在直径100mm×厚约3mm的圆盘中加压成型,再将上述试样以1000℃烧结2小时,焙烧或烧结时的升温速度为5℃/min,最后使炉冷却。
由此获得的烧结试样的品质系数和电介率用6~10GHz的网络分析仪(HP8730)以Hakki-Coleman建议的平行导体板法(Post Resonator-method)进行了测定,对Q值高的试样,还以谐振仪法(Cavity method)对品质系数和谐振频率温度系数进行了测定。测定结果如表1至表4所示。
                                     表1
               (1-x)ZnNb2O6-xTiO2组合物的烧结特性及电介特性
    x   烧结温度(℃)    收缩率(%)    电介率(ε)   品质系数(Q值)   共振频率温度系数(τf)(ppm/℃)
    0.1     1250     15.9     27.6     69440     -55
    1300     16.5     27.0     67310     -52
    0.2     1250     16.1     29.8     66460     -58
    1300     16.6     29.2     63440     -51
    0.3     1250     15.4     31.6     51050     -51
    1300     16.0     31.4     48620     -50
    0.4     1250     16.2     34.3     42490     -34
    1300     16.4     35.1     34390     -21
    0.5     1250     16.7     37.0     30850     -15
    1300     16.2     36.4     16890     -6
    0.55     1250     16.6     41.0     23340      0
    1300     16.2     41.8     17960     +2
    0.6     1250     16.6     41.9     11320     -5
    1300     16.5     44.4     10760     +6
    0.65     1250     16.9     45.1     6100     +13
    1300     16.7     47.2     4430     +19
    0.7     1250     16.2     50.2     4110     +29
    1300     16.0     52.8     2950     +32
    0.8     1250     16.5     79.7     5350     +188
    1300     16.5     79.4     1770     +234
    0.9     1250     16.4     82.7     2360     +245
    1300     16.3     89.3     660     +272
如表1所示,(1-x)ZnNb2O6-xTiO2组合物在1250~1300℃左右的温度下进行2小时的持续烧结。使谐振频率温度系数具有正值的TiO2的含量(x)越大,其谐振频率温度系数的正值就越增大,同时电介率也随之增大,但品质系数却随之减少。因此,使温度系数接近于0时的TiO2的摩尔比x的值为0.55左右,电介率为41,品质系数在23300以上。以此段为基准,若x在0.4~0.7的组成区域,均能获得电介特性优异的组合物。
表2所示为x在0.4~0.7之间的组成区域中将CuO作为低温烧结调节剂添加后的烧结特性及电介特性。CuO添加量为相对全体组合物的重量%。
                                  表2
      (1-x)ZnNb2O6-xTiO2组合物中添加了添加剂后的烧结特性及电介特性
    x    添加剂   烧结温度(℃)    收缩率(%)    电介率(ε)    品质系数(Q值)   温度系数(τf)(ppm/℃)
CuO(重量%)
    0.4     1.0     900     10.1     31.0     31080     -30
    2.0     900     11.5     32.1     33200     -28
    0.5     1.0     900     10.9     32.3     24710     -17
    2.0     900     13.1     33.4     28000     -12
    0.55     0.5     900     11.0     36.5     23060     -6
    1.0     900     11.5     38.0     21500     -4
    2.0     900     15.1     40.2     20210     -2
    4.0     900     14.7     39.7     19700     -5
    8.0     900     14.5     39.2     17820     -11
    12.0     900     14.0     39.1     16100     -15
    0.6     1.0     900     12.2     38.5     10010     +3
    2.0     900     14.0     40.9     11200     -2
    0.65     1.0     900     12.1     41.8     5900     +10
    2.0     900     13.8     42.4     6010     +7
    0.7     1.0     900     12.7     43.8     4030     +18
    2.0     900     13.9     45.1     4010     +12
表2所示,在(1-x)ZnNb2O6-xTiO2系中添加了CuO后,能在900℃的低温条件下烧结。在x=0.55左右的组成中,由于CuO添加量(0.5~12.0重量%)的不同,对电介特性显出若干差异。烧结特性最好的、添加2.0重量%时的电介率显出最高的值,品质系数虽有在20000以上的值,但由于添加量的增加,使品质系数减小,谐振频率温度系数则显出负(-)值增加的状况,所以增加TiO2的摩尔比,可望提高电介率。
                                      表3
           (1-x)ZnNb2O6-xTiO2组合物中添加了添加剂后的烧结特性及电介特性
 x                  添加剂CuO(重量%)  烧结温度(℃)  收缩率(%)  电介率(ε) 品质系数(Q值)   温度系数(τf)(ppm/℃)
CuO V2O5 Sb2O5 Bi2O3 B2O3
0.55   2.0   0.05  900   15.4   40.3 20020     -1
  2.0   0.1  900   15.5   40.5 20080      0
  2.0   0.5  900   15.9   41.7 20010      0
  2.0   1.0  900   16.2   42.1 20500     +3
  2.0   2.0  900   17.1   42.3 19000     +7
  2.0   5.0  900   16.5   41.9 16900     +8
  2.0   0.05  900   15.2   40.1 20150     -3
  2.0   0.1  900   15.2   40.2 20110     -2
  2.0   0.5  900   15.1   40.0 20900      0
  2.0   1.0  900   15.4   40.2 21300      0
  2.0   2.0  900   15.3   40.0 22900     -2
  2.0   5.0  900   15.3   40.1 21700     -2
  2.0   0.05  900   15.1   40.0 20860     -4
  2.0   0.1  900   15.3   40.5 21200     -2
  2.0   0.5  900   16.0   40.9 23400     -1
  2.0   1.0  900   16.2   40.9 22500      0
  2.0   2.0  900   16.1   40.8 21100     +1
  2.0   5.0  900   16.3   41.0 20300      0
  2.0   0.05  900   15.0   40.7 20500     -5
  2.0   0.1  900   15.7   40.9 19700     -3
  2.0   0.5  900   16.2   41.3 19050     +1
  2.0   1.0  900   17.3   42.2 18000     -1
  2.0   2.0  900   16.4   41.5 17400     -2
  2.0   5.0  900   16.0   41.1 15500      0
                                   表4
              (1-x)ZnNb2O6-xTiO2组合物中添加了添加剂后的烧结特性及电介特性
 x                       添加剂CuO(重量%)  烧结温度(℃)   收缩率(%)  电介率(ε) 品质系数(Q值)   温度系数(τf)(ppm/℃)
CuO NiO WO3 AgNO3 ZnO MgO
0.55   2.0  2.0  900   13.4   37.4 22020     +5
  2.0   2.0  900   13.2   37.2 21090     +7
  2.0     2.0  900   14.9   38.5 15010      0
  2.0   2.0  900   14.7   38.1 20220     -1
  2.0   2.0   900   13.1   37.4 13800     +6
表3是当(1-x)ZnNb2O6-xTiO2的谐振频率温度系数为0且x=0.55时,将作为提高烧结特性的添加剂的CuO以2重量%分别同V2O5、Sb2O5、Bi2O3、B2O3以0.05~5.0重量%相结合、并实施添加后的烧结特性与电介特性的测定值。对于各种添加组合方式,谐振频率温度系数在±10左右,V2O5和B2O3对提高烧结性和电介率起作用,Sb2O5和Bi2O3对品质系数的提高起作用。
同样,表4是将烧结性非常好的CuO以2重量%分别和NiO、WO3、AgNO3、ZnO、MgO以各自2重量%相组合并实施添加后得到的测定值,这些添加剂也是能够提高电介特性的添加剂。
纵览表2、3、4中本发明的电介质的电介特性可知,首先是烧结温度都在900℃以下,这是采用Ag为电极得到的温度,而且同迄今公布的电介质最低烧结温度为同一水准。组合物的电介率超过40,表示电介损失的Q值在20000以上,这与其他的低温烧结型电介质相比指标非常好。另外,谐振频率温度系数在±10左右,温度特性也令人满意。
如上所述,本发明的电介质组合物的制造工艺简单,并能在900℃以下与廉价的Ag电极同时烧结,因而是一种便于应用在顺应电子装置电路元件小型化的积层型电介质的有价值的发明。

Claims (3)

1.微波用电介质陶瓷组合物,其特征是该组合物用公式(1-x)ZnNb2O6-xTiO2来表示,且TiO2的摩尔比具有x=0.2~0.8范围的值。
2.如权利要求1所述的微波用电介质陶瓷组合物,其特征是还将CuO作为添加剂,以总组合物的0.5~12.0重量%进行添加。
3.如权利要求2所述的微波用电介质陶瓷组合物,其特征为将V2O5、Sb2O5、Bi2O3、B2O3、NiO、WO3、AgNO3、ZnO和MgO中的至少一种氧化物以总组合物的0.05~5.0重量%进行添加。
CNB991031733A 1998-07-22 1999-03-24 电介质陶瓷组合物 Expired - Fee Related CN1152841C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR29499/98 1998-07-22
KR29499/1998 1998-07-22
KR1019980029499A KR100292915B1 (ko) 1998-07-22 1998-07-22 유전체 세라믹 조성물

Publications (2)

Publication Number Publication Date
CN1242348A CN1242348A (zh) 2000-01-26
CN1152841C true CN1152841C (zh) 2004-06-09

Family

ID=19544869

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991031733A Expired - Fee Related CN1152841C (zh) 1998-07-22 1999-03-24 电介质陶瓷组合物

Country Status (5)

Country Link
US (1) US6242375B1 (zh)
JP (1) JP2000044341A (zh)
KR (1) KR100292915B1 (zh)
CN (1) CN1152841C (zh)
DE (1) DE19909089C2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402469B1 (ko) * 2000-12-21 2003-10-22 안달 마이크로파 유전체 세라믹 조성물
KR100444223B1 (ko) * 2001-11-13 2004-08-16 삼성전기주식회사 유전체 세라믹 조성물
KR100454711B1 (ko) * 2002-04-24 2004-11-05 주식회사 지믹스 마이크로파 유전체 세라믹 조성물
JP2007246340A (ja) * 2006-03-16 2007-09-27 Yokowo Co Ltd 誘電体磁器組成物
JP5128783B2 (ja) * 2006-04-17 2013-01-23 株式会社ヨコオ 高周波用誘電体材料
KR100806679B1 (ko) * 2006-04-19 2008-02-26 한국과학기술연구원 온도특성 제어가 가능한 저온소성용 유전체 세라믹스조성물
CN101851091B (zh) * 2010-04-14 2012-09-12 河北理工大学 抗温变复合高介电子材料及其制备方法
JP5774094B2 (ja) * 2011-04-25 2015-09-02 京セラ株式会社 誘電体セラミックスおよびこれを備える誘電体フィルタ
CN102320825B (zh) * 2011-08-16 2013-04-10 广西新未来信息产业股份有限公司 一种低温烧结微波介质陶瓷及其烧结方法
CN102603282B (zh) * 2012-03-22 2013-06-19 桂林理工大学 超低温烧结温度稳定型微波介质陶瓷及其制备方法
KR101994734B1 (ko) * 2014-04-02 2019-07-01 삼성전기주식회사 적층형 전자부품 및 그 제조 방법
CN104291820B (zh) * 2014-09-27 2016-01-13 桂林理工大学 近零谐振频率温度系数的低介电常数微波介质陶瓷AgNb5Bi2O16
CN104311026B (zh) * 2014-10-21 2016-04-06 桂林理工大学 一种温度稳定型微波介电陶瓷ZnTi2V4O15及其制备方法
CN105000883A (zh) * 2015-08-05 2015-10-28 天津大学 一种用于ltcc技术的中介温度稳定型微波介质陶瓷材料
CN107573056A (zh) * 2017-09-24 2018-01-12 天津大学 谐振频率温度系数近零的微波介质材料及其制备方法
CN108341662A (zh) * 2018-04-17 2018-07-31 南京大学 一种低介电常数低损耗高频陶瓷基板材料的制备方法
CN110451959A (zh) * 2019-09-25 2019-11-15 哈尔滨工业大学 一种介电性能可调的高q微波介质陶瓷及其制备方法
CN113788676B (zh) * 2021-11-03 2022-11-04 电子科技大学 一种低温共烧改性NiTa2O6基微波介质陶瓷材料及其制备方法
CN113860871B (zh) * 2021-11-03 2022-12-13 电子科技大学 一种低温烧结改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136103A (ja) * 1983-12-26 1985-07-19 宇部興産株式会社 誘電体磁器組成物
US5356843A (en) * 1992-09-10 1994-10-18 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic compositions and dielectric resonators
KR970001682B1 (ko) * 1994-07-19 1997-02-13 한국과학기술연구원 고주파 유전체 자기조성물 및 그 제조방법
KR100203515B1 (ko) 1996-06-11 1999-06-15 김병규 고주파용 세라믹 유전체 조성물
KR100199301B1 (ko) * 1997-04-09 1999-06-15 김병규 유전체 세라믹 조성물

Also Published As

Publication number Publication date
JP2000044341A (ja) 2000-02-15
DE19909089A1 (de) 2000-02-17
KR20000009225A (ko) 2000-02-15
CN1242348A (zh) 2000-01-26
US6242375B1 (en) 2001-06-05
DE19909089C2 (de) 2002-08-29
KR100292915B1 (ko) 2001-09-22

Similar Documents

Publication Publication Date Title
CN1152841C (zh) 电介质陶瓷组合物
US6579817B2 (en) Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same
US7655588B2 (en) Dielectric porcelain composition and method for production thereof
KR100203846B1 (ko) 유전체 세라믹 조성물
CN100386285C (zh) 低温烧结铌酸盐微波介电陶瓷及其制备方法
US5723395A (en) Dielectric ceramic composition, its preparation method, multilayer chip capacitor, dielectric filter, and electronic parts
CN1071722C (zh) 介电陶瓷组合物
CN1070828C (zh) 介电陶瓷组合物
CN102690118B (zh) Np0型陶瓷电容器介质材料及其制备方法
KR100401942B1 (ko) 유전체 세라믹 조성물 및 그 제조방법
JP3011123B2 (ja) 誘電体セラミック組成物
US5858893A (en) Ceramic composition with low dielectric constant and method of making same
CN1821171A (zh) 一种低温烧结的微波介质陶瓷及其制备方法
TWI243157B (en) Ceramic material
CN1101358C (zh) 高性能低温烧结高频点介质陶瓷
Fu et al. Microwave dielectric properties of low-fired (1− x) Mg2Si0. 9V0. 1O4–xCa0. 8Sr0. 2TiO3 composite ceramics
US5378667A (en) Intercrystalline semiconductive ceramic capacitor
JPH10330163A (ja) 非還元性誘電体磁器組成物
EP1795512A1 (en) Dielectric porcelain composition and method for production thereof
CN1232474C (zh) 一种低温烧结多元多相复合微波介质陶瓷及其制备方法
CN1654422A (zh) 铌酸盐微波介电陶瓷及其制备方法
JP2998586B2 (ja) 半導体磁器組成物とその製造方法
KR970001063B1 (ko) 저온소성용 세라믹 유전체 조성물
KR100240006B1 (ko) 유전체 세라믹 조성물
KR19990016913A (ko) CaTiO₃ - Ca(Al1/2Nb1/2)O₃계 고주파 유전체 세라믹 조성물

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040609