CN115283015A - 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法 - Google Patents

一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法 Download PDF

Info

Publication number
CN115283015A
CN115283015A CN202210800102.6A CN202210800102A CN115283015A CN 115283015 A CN115283015 A CN 115283015A CN 202210800102 A CN202210800102 A CN 202210800102A CN 115283015 A CN115283015 A CN 115283015A
Authority
CN
China
Prior art keywords
mil
bivo
composite photocatalyst
organic metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210800102.6A
Other languages
English (en)
Other versions
CN115283015B (zh
Inventor
徐龙君
刘燕陵
刘成伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202210800102.6A priority Critical patent/CN115283015B/zh
Publication of CN115283015A publication Critical patent/CN115283015A/zh
Application granted granted Critical
Publication of CN115283015B publication Critical patent/CN115283015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种有机金属骨架复合光催化剂BiVO4@NH2‑MIL‑125(Ti)的制备方法,其属于光催化材料领域。本发明先用水热法制备了NH2‑MIL‑125(Ti),再通过水热法制备得到了BiVO4@NH2‑MIL‑125(Ti)复合光催化剂。本发明方法制备工艺简单,使用设备少,能耗低。制备的BiVO4@NH2‑MIL‑125(Ti)稳定性强、光催化活性高、光电转化效率高,在模拟太阳光氙灯照射下,0.1g制备的复合光催化剂降解100mL浓度为10mg/L的罗丹明B溶液,光照120min降解率达99%。本发明制备出的产品可广泛用于光催化降解有机污染物的领域中。

Description

一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制 备方法
技术领域
本发明涉及一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,属于光催化材料技术领域。
背景技术
半导体光催化技术是近年来发展起来的对环境特别友好的水污染环境治理技术,利用光能即可达到降解有机污染物的目的。传统光催化剂TiO2载流子复合率高,量子效率较低、光吸收波长范围窄,吸收波长阀值大都在紫外光区,且太阳光利用率低(仅占3%~5%)。研究发现,钒酸铋是一种极具潜力的光催化剂,它具有可见光吸收带隙窄、化学和热稳定性高、对环境友好、成本低等优点。然而,到目前为止,BiVO4实际转换的光电效率远低于预期。一是BiVO4电子传输效率太缓慢,约60%-80%的电子-空穴对在到达界面之前便重新组合,二是BiVO4导带(CB)边缘在可逆氢电极(RHE)水平以下严重限制了光催化性能。NH2-MIL-125(Ti)是由Ti8O8八面体笼和2-氨基对苯二甲酸组成的金属-有机骨架,具有强稳定性、高太阳能转换效率、优异的吸附和光催化性能,广泛应用于催化、传感器、气体储存分离、有机废水治理、光解制H2和CO2还原中。其制备的方法包括自牺牲模板法、溶剂热法、界面扩散法和微波法。
目前,构建半导体复合材料是提高光催化效率的有效策略。如“AppliedOrganometallic Chemistry”2018年4月第32卷第四期“Preparation of BiVO4/MIL-125(Ti)composite with enhanced visible-light photocatalytic activity for dyedegradation”一文中,先以钛酸四丁酯、对苯二甲酸,N,N-二甲基甲酰胺和甲醇为原材料通过热溶剂法合成MIL-125(Ti),再将MIL-125(Ti)与BiCl3和NH4VO3形成混合溶液二次水热制备出BiVO4/MIL-125(Ti)催化剂。该方法的不足之处是:(1)该复合催化剂催化活性低,在500W氙灯模拟太阳光下180min对罗丹明B的降解率仅为92%;(2)制备出的BiVO4/MIL-125(Ti)催化剂稳定性较差,4次循环回收实验后降解率仅为79%。又如“Separation AndPurification Technology”2020年10月第248卷“Novel z-scheme In2S3/BiVO4composites with improved visible-light photocatalytic performance andstability for glyphosate degradation”一文中,首先以硫脲作为硫源,与In(NO3)3·4.5H2O形成均匀混合溶液,通过水热反应合成In2S3,再向In2S3与Bi(NO3)3·5H2O形成的混合溶液中添加NH4VO3在180℃下水热24h合成了In2S3/BiVO4。该方法的不足之处是:(1)In2S3单样制备过程工艺复杂,硫脲与In(NO3)3·4.5H2O的混合溶液被转移到两个50mL的特氟龙高压釜中,难以控制两个反应釜所得的In2S3单样是一致的,进而影响In2S3/BiVO4光催化活性;(2)通过该方法制备的In2S3/BiVO4光催化活性不高,在模拟太阳光下180min对草甘膦的降解率仅为78%;(3)In2S3/BiVO4复合光催化材料光电转化效率低,复合材料受光激发产生的瞬时光电流仅为1.5μA/cm2
发明内容
本发明的目的是针对制备BiVO4、NH2-MIL-125(Ti)光催化活性不佳以及催化剂稳定性差等问题,提出采用两步水热法制备新型复合光催化材料BiVO4@NH2-MIL-125(Ti),提高复合光催化剂的活性和光电转化效率,该制备工艺方法简单、周期短,催化剂活性高、稳定性强,本发明BiVO4@NH2-MIL-125(Ti)复合光催化材料的制备方法如下:
(1)有机金属骨架NH2-MIL-125(Ti)的制备
准确称取2-氨基对苯二甲酸2.86g,溶解于40mL的N,N-二甲基甲酰胺和10mL甲醇的混合溶液中,磁力搅拌20min,向混合溶液中滴加2.86mL异丙醇钛,持续搅拌30min,将所得的粘稠溶液转入100mL高压反应釜,密封完好,在110℃的烘箱中水热反应72h;反应完成后取出高压反应釜自然冷却至室温,过滤,滤饼分别用N,N-二甲基甲酰胺和甲醇在高速离心机中离心洗涤3次后置于60℃的烘箱中烘12h,取出后用石英研钵磨细成粉末状,得到的淡黄色粉末即为NH2-MIL-125(Ti)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:3-15的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的有机金属骨架复合光催化材剂BiVO4@NH2-MIL-125(Ti)具有较高的光催化活性,0.1g制备的BiVO4@NH2-MIL-125(Ti)复合光催化剂分散于100mL浓度为10mg/L罗丹明B溶液中,在模拟太阳光300W氙灯光照120min,降解率达到了99%。
(2)本发明采用两步水热法制备,复合光催化剂的瞬时光电流达到2.53μA/cm2,且稳定性强,制备操作简单,所需设备少,能耗低。
附图说明
图1为BiVO4、NH2-MIL-125(Ti)和BiVO4@NH2-MIL-125(Ti)的X射线衍射图。
图2为BiVO4、NH2-MIL-125(Ti)和BiVO4@NH2-MIL-125(Ti)的SEM图。
图3为复合光催化剂BiVO4@NH2-MIL-125(Ti)的XPS图。
图4为BiVO4、NH2-MIL-125(Ti)和BiVO4@NH2-MIL-125(Ti)的降解率对比图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,具体步骤如下:
(1)有机金属骨架NH2-MIL-125(Ti)的制备
准确称取2-氨基对苯二甲酸2.86g,溶解于40mL的N,N-二甲基甲酰胺和10mL甲醇的混合溶液中,磁力搅拌20min,向混合溶液中滴加2.86mL异丙醇钛,持续搅拌30min,将所得的粘稠溶液转入100mL高压反应釜,密封完好,在110℃的烘箱中水热反应72h;反应完成后取出高压反应釜自然冷却至室温,过滤,滤饼分别用N,N-二甲基甲酰胺和甲醇在高速离心机中离心洗涤3次后置于60℃的烘箱中烘12h,取出后用石英研钵磨细成粉末状,得到的淡黄色粉末即为NH2-MIL-125(Ti)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:3的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
实施例2
一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,具体步骤如下:
(1)同实施例1中(1)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:5的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
实施例3
一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,具体步骤如下:
(1)同实施例1中(1)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:7的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
实施例4
一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,具体步骤如下:
(1)同实施例1中(1)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:10的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
实施例5
一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,具体步骤如下:
(1)同实施例1中(1)。
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:15的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h;待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
实验结果
实施例3制备的复合光催化材料BiVO4@NH2-MIL-125(Ti)催化降解活性最佳。为了便于比较,制备了BiVO4样品。BiVO4制备方法为实施例3步骤(2)中不加入NH2-MIL-125(Ti)。
BiVO4的XRD如图1(b)所示,BiVO4样品在2θ为18.67°、18.99°、28.95°、30.55°、34.50°、35.22°、39.78°、40.04°、46.71°、47.31°、53.24°和53.31°处出现单斜白钨矿类型钒酸铋的特征衍射峰(JCPDS#14-0688),分别对应(110)、(011)、(-121)、(121)、(200)、(002)、(-141)、(141)、(240)、(042)、(-161)和(161)晶面。衍射峰窄而尖锐且无杂峰,样品结晶度高,纯度高。
NH2-MIL-125(Ti)的XRD图如图1(c),NH2-MIL-125(Ti)样品在2θ为6.77°、9.71°、11.60°、16.54°、17.85°和19.51°处都观察到了NH2-MIL-125(Ti)的特征衍射峰,这与前人制备的NH2-MIL-125(Ti)特征衍射峰一致,衍射峰尖锐且无其他的杂峰,说明制备的NH2-MIL-125(Ti)结晶度良好,样品纯度高。
BiVO4@NH2-MIL-125(Ti)的XRD衍射图谱如图1(a)所示,从图中观察到BiVO4的特征衍射峰,这些峰与BiVO4单样的特征峰2θ完美对应,说明BiVO4的特征衍射峰没有因NH2-MIL-125(Ti)的引入而改变,且由于NH2-MIL-125(Ti)在复合样品中含量太少,图中没有观察到明显的NH2-MIL-125(Ti)特征峰。而复合光催化材料中属于BiVO4晶面指数(020)、(121)、(051)和(-161)的强度有增加的趋势,特别是(121)晶面明显增强,这将有利于罗丹明B污染物分子氧化分解。
BiVO4、NH2-MIL-125(Ti)和BiVO4@NH2-MIL-125(Ti)的SEM如图2所示。从图2(a)可以看出BiVO4呈两头偏大、中间偏小的哑铃型形貌,边界分明,表面光滑,不规则块状BiVO4分布较均匀,结合不很紧密,晶体之间存在较大孔隙。图2(b)NH2-MIL-125(Ti)则为一定厚度的圆形片状晶体,许多圆形片状晶体团聚在一起,这些规则圆片分布均匀,结合紧密,晶体之间孔隙很小。图2(c)为BiVO4@NH2-MIL-125(Ti)的形貌图,具有哑铃型形貌的BiVO4和团聚圆片状形貌的NH2-MIL-125(Ti)组成,二者堆叠在一起,团聚的NH2-MIL-125(Ti)圆片穿插在BiVO4的孔隙中,使得孔隙变小,证明BiVO4@NH2-MIL-125(Ti)制备成功。
BiVO4@NH2-MIL-125(Ti)的XPS如图3所示。从图3可看出,BiVO4@NH2-MIL-125(Ti)中有C、N、Bi、Ti、O和V元素,在图3c中V2p谱图中出现了523.78eV和516.44eV两处特征峰,分别对应于BiVO4的V2p1/2和V2p3/2,说明V元素处于V5+的价态;图3a的Bi4f谱图中,164.06eV与158.77eV处的特征峰对应于Bi4f5/2和Bi4f7/2结合能,表明Bi元素以Bi3+的形式存在;图3b中529.11eV、529.62eV和530.16eV处的峰值证实了O1s的结合能,其中,特征峰529.11eV处对应的是BiVO4的Bi-O键,特征峰529.62eV来源于NH2-MIL-125的Ti-O键,530.16eV处的峰值对应羟基;图3f中,Ti2p在465.46eV和458.79eV处有两个特征峰,这两个峰对应Ti2p3/2和Ti2p1/2结合能,表明Ti以Ti4+化学状态存在;图3e为C1s的高分辨谱图,288.24eV、285.97eV、284.63eV处分别对应碳氧双键官能团(C=O)、碳氮键官能团(C-N)和碳碳双键官能团(C=C),表明NH2-MIL-125(Ti)的官能团成功引入BiVO4@NH2-MIL-125(Ti)样品中;图3dN1s在399.5 4eV处发现一个尖锐的峰,这个峰对应碳氮键和氮氢键(C-N/N-H)。XPS分析结果显示出,BiVO4@NH2-MIL-125(Ti)样品制备成功。
如图4所示,BiVO4与NH2-MIL-125(Ti)质量比为100:7时制备的BiVO4@NH2-MIL-125(Ti)降解效果最佳,在光照120min时RhB溶液降解率达99%,此时瞬时光电流最大(2.53μA/cm2),是BiVO4的21倍;稳定性施压表明,BiVO4@NH2-MIL-125(Ti)光催化剂使用后回收再利用,4次循环利用光催化降解RhB溶液,降解率达92%。

Claims (2)

1.一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,其包括以下步骤:
(1)有机金属骨架NH2-MIL-125(Ti)的制备
准确称取2-氨基对苯二甲酸2.86g,溶解于40mL的N,N-二甲基甲酰胺和10mL甲醇的混合溶液中,磁力搅拌20min,向混合溶液中滴加2.86mL异丙醇钛,持续搅拌30min,将所得的粘稠溶液转入100mL高压反应釜,密封完好,在110℃的烘箱中水热反应72h;反应完成后取出高压反应釜自然冷却至室温,过滤,滤饼分别用N,N-二甲基甲酰胺和甲醇在高速离心机中离心洗涤3次后置于60℃的烘箱中烘12h,取出后用石英研钵磨细成粉末状,得到的淡黄色粉末即为NH2-MIL-125(Ti);
(2)有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备
称取五水硝酸铋2.43g充分溶解于25mL的2mol/L稀硝酸中,将偏钒酸铵0.58g添加至混合溶液中,搅拌10min,缓慢滴加2mol/L的氢氧化钠溶液调节pH值至6.0,得到BiVO4前驱体溶液;按BiVO4:NH2-MIL-125(Ti)的质量比为100:3-15的比例称取制备的NH2-MIL-125(Ti)加入BiVO4前驱体溶液中,继续搅拌30min,将溶液转入100mL水热反应釜,在160℃下水热反应24h,待其冷却至室温后过滤,滤饼用蒸馏水和乙醇分别抽滤洗涤3次,放入烘箱60℃下干燥12h,取出后用石英研钵磨细成粉末状,得到的亮黄色粉末即为有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)。
2.根据权利要求1所述的一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法,其特征在于两步水热法制备,实现了BiVO4和NH2-MIL-125(Ti)间的牢固结合和光催化活性的提高。
CN202210800102.6A 2022-07-08 2022-07-08 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法 Active CN115283015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210800102.6A CN115283015B (zh) 2022-07-08 2022-07-08 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210800102.6A CN115283015B (zh) 2022-07-08 2022-07-08 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法

Publications (2)

Publication Number Publication Date
CN115283015A true CN115283015A (zh) 2022-11-04
CN115283015B CN115283015B (zh) 2023-11-24

Family

ID=83821951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210800102.6A Active CN115283015B (zh) 2022-07-08 2022-07-08 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法

Country Status (1)

Country Link
CN (1) CN115283015B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286087A (zh) * 2022-07-08 2022-11-04 重庆大学 一种有机钛骨架复合氧化剂MnO2@NH2-MIL-125(Ti)的制备方法
CN116328843A (zh) * 2022-12-29 2023-06-27 广西民族大学 一种异质光催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964305A (zh) * 2016-05-14 2016-09-28 上海大学 ZnIn2S4/NH2-MIL-125(Ti)复合可见光催化剂及其制备方法
CN108126756A (zh) * 2017-12-12 2018-06-08 上海大学 钨酸铋-MIL-53(Al)复合材料、其制备方法和应用
CN109174082A (zh) * 2018-11-06 2019-01-11 重庆大学 一种制备BiVO4/MnO2复合光催化氧化剂的方法
CN109261213A (zh) * 2018-09-28 2019-01-25 湖北民族学院 一种碘氧化铋/钛基金属有机骨架复合材料的制备方法及应用
CN109794232A (zh) * 2019-01-24 2019-05-24 重庆大学 一种锌掺杂钒酸铋球状可见光催化剂的制备方法
US20200179916A1 (en) * 2017-04-28 2020-06-11 Cambridge Enterprise Limited Composite Metal Organic Framework Materials, Processes for Their Manufacture and Uses Thereof
WO2021026392A1 (en) * 2019-08-06 2021-02-11 University Of Miami Metal-oxide nanoparticles, photocatalytic nanostructures, and related methods
CN112759770A (zh) * 2020-12-31 2021-05-07 江汉大学 一种功能化NH2-MIL125(Ti)及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964305A (zh) * 2016-05-14 2016-09-28 上海大学 ZnIn2S4/NH2-MIL-125(Ti)复合可见光催化剂及其制备方法
US20200179916A1 (en) * 2017-04-28 2020-06-11 Cambridge Enterprise Limited Composite Metal Organic Framework Materials, Processes for Their Manufacture and Uses Thereof
CN108126756A (zh) * 2017-12-12 2018-06-08 上海大学 钨酸铋-MIL-53(Al)复合材料、其制备方法和应用
CN109261213A (zh) * 2018-09-28 2019-01-25 湖北民族学院 一种碘氧化铋/钛基金属有机骨架复合材料的制备方法及应用
CN109174082A (zh) * 2018-11-06 2019-01-11 重庆大学 一种制备BiVO4/MnO2复合光催化氧化剂的方法
CN109794232A (zh) * 2019-01-24 2019-05-24 重庆大学 一种锌掺杂钒酸铋球状可见光催化剂的制备方法
WO2021026392A1 (en) * 2019-08-06 2021-02-11 University Of Miami Metal-oxide nanoparticles, photocatalytic nanostructures, and related methods
CN112759770A (zh) * 2020-12-31 2021-05-07 江汉大学 一种功能化NH2-MIL125(Ti)及其制备方法和应用

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
FU B等: "Construction of MIL-125-NH2@ BiVO4 Composites for Efficient Photocatalytic Dye Degradation", ACS OMEGA, vol. 7, no. 30, pages 26201 - 26210 *
LIANG JJ等: "In-situ implantation of BiVO4 QDs into NH2-mil-125 to construct Z-scheme heterojunction for photocatalytic degradation of organic pollutants in water", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 180 *
LIU CL等: "Preparation and Visible-Light-Driven Photocatalytic Performance of Magnetic SrFe12O19/BiVO4", JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, vol. 24, no. 2, pages 771 - 777, XP035438077, DOI: 10.1007/s11665-014-1362-4 *
TAN M等: "Visible-light-responsive BiVO4/NH2-MIL-125 (Ti) Z-scheme heterojunctions with enhanced photoelectrocatalytic degradation of phenol", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 936, pages 168345 *
WANG DD等: "Optimized design of BiVO4/NH2-MIL-53(Fe) heterostructure for enhanced photocatalytic degradation of methylene blue and ciprofloxacin under visible light", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, vol. 154 *
YANG ZQ等: "Preparation of BiVO4/MIL-125(Ti) composite with enhanced visible-light photocatalytic activity for dye degradation", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 32, no. 4, pages 2 *
YIN S等: "Construction of NH2-MIL-125 (Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation", GREEN ENERGY & ENVIRONMENT, vol. 5, no. 2, pages 2 - 3 *
ZHU S R等: "Enhanced photocatalytic performance of BiOBr/NH 2-MIL-125 (Ti) composite for dye degradation under visible light", DALTON TRANSACTIONS, vol. 45, no. 43, pages 17521 - 17529 *
刘颖琪: "MOFs/钒酸盐复合光催化材料的制备及其环境应用", 中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑), no. 5, pages 014 - 344 *
常娜;刘亚攀;王海涛;: "复合光催化剂Ag@AgCl/MIL-101(Fe)-NH_2的制备及性能", 天津工业大学学报, no. 03 *
李梦佳;妥小军;李小妹;常?;查飞;: "BiVO_4/MIL-100(Fe)复合材料光催化降解结晶紫", 精细化工, no. 01, pages 39 - 44 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286087A (zh) * 2022-07-08 2022-11-04 重庆大学 一种有机钛骨架复合氧化剂MnO2@NH2-MIL-125(Ti)的制备方法
CN115286087B (zh) * 2022-07-08 2023-12-08 重庆大学 一种有机钛骨架复合氧化剂MnO2@NH2-MIL-125(Ti)的制备方法
CN116328843A (zh) * 2022-12-29 2023-06-27 广西民族大学 一种异质光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN115283015B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN103920520B (zh) 一种超声波辅助沉积法合成纳米SnO2/g-C3N4复合可见光催化剂的制备方法
CN115283015B (zh) 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法
CN105148949B (zh) 一种碘氧化铋‑钒酸铋异质结光催化剂及其制备方法
Wang et al. One-step calcination method for synthesis of mesoporous gC 3 N 4/NiTiO 3 heterostructure photocatalyst with improved visible light photoactivity
CN103240130A (zh) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
CN108325554B (zh) 一种钒酸铋/石墨相氮化碳复合材料、其制备方法及用途
CN105214709A (zh) 层间双金属离子掺杂氮化碳光催化材料及其制备和应用
CN106944118B (zh) 银和磷杂化石墨相氮化碳纳米片共同修饰的钒酸铋复合光催化剂及其制备方法和应用
CN112517043B (zh) 一种氮空位与羟基协同修饰石墨相氮化碳光催化剂及其制备和在光催化产氢中的应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN105854863A (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
CN110586183A (zh) 一种利用超临界二氧化碳制备TiO2/COF催化材料的方法
CN111889127B (zh) 一种原位生长制备β-Bi2O3/g-C3N4纳米复合光催化剂的方法
CN106378158A (zh) 一种在可见光下具有高催化降解活性的硫化铋/二氧化钛/石墨烯复合物的制法
Yu et al. Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@ Ni4S3
CN112892607A (zh) 一种稳定的光催化分解水制氢的三元复合材料及其制备方法
CN113058601B (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用
CN110721726A (zh) 一种CdS-g-C3N4负载纳米TiO2的光催化产氢复合催化剂及其制法
CN113649039A (zh) 一种红磷/碳酸氧铋s型异质结光催化剂及其制备方法
CN116212966B (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
CN110227458A (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN114471620B (zh) 一种α-SnWO4/In2S3复合光催化剂
CN115591558A (zh) 一种复合光催化产氢材料NiTiO3/CdIn2S4的制备方法
CN113941342A (zh) 一种Co3S4/Zn0.5Cd0.5S复合光催化剂及其制备方法和应用
CN111974433B (zh) 一种榫卯结构复合光催化材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant