CN115274827A - 一种高压肖特基二极管及其制造方法 - Google Patents

一种高压肖特基二极管及其制造方法 Download PDF

Info

Publication number
CN115274827A
CN115274827A CN202211039573.6A CN202211039573A CN115274827A CN 115274827 A CN115274827 A CN 115274827A CN 202211039573 A CN202211039573 A CN 202211039573A CN 115274827 A CN115274827 A CN 115274827A
Authority
CN
China
Prior art keywords
layer
schottky diode
jbs
type epitaxial
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211039573.6A
Other languages
English (en)
Inventor
贾淑方
王芮
余健
洪学天
王尧林
赵大国
林和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinxin Advanced Technology Research Institute Shanxi Co ltd
Jinxin Electronics Manufacturing Shanxi Co ltd
Hongda Xinyuan Shenzhen Semiconductor Co ltd
Original Assignee
Jinxin Advanced Technology Research Institute Shanxi Co ltd
Jinxin Electronics Manufacturing Shanxi Co ltd
Hongda Xinyuan Shenzhen Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinxin Advanced Technology Research Institute Shanxi Co ltd, Jinxin Electronics Manufacturing Shanxi Co ltd, Hongda Xinyuan Shenzhen Semiconductor Co ltd filed Critical Jinxin Advanced Technology Research Institute Shanxi Co ltd
Priority to CN202211039573.6A priority Critical patent/CN115274827A/zh
Publication of CN115274827A publication Critical patent/CN115274827A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种高压肖特基二极管,属于半导体技术领域。该高压肖特基二极管包括阴极金属、N+型基板、N‑型外延层和阳极金属,所述N‑型外延层的上表面侧面设有P+JBS区域,所述P+JBS区域的掺杂浓度比所述N‑外延层的掺杂浓度高,其中,所述N‑型外延层的上表面还设有P‑层。本发明的高压肖特基二极管在N型半导体层的表面加入了相对较薄的P‑层可提高JBS二极管的导通状态(正向偏置)性能,减小器件的反向漏电流。本发明的高压肖特基二极管在P+区两侧引入沟槽SiO2介质区,屏蔽肖特结的表面电场,降低肖特基接触区的表面电场强度,使器件在体内发生击穿,进一步减小器件的反向漏电流。

Description

一种高压肖特基二极管及其制造方法
技术领域
本发明属于半导体技术领域,涉及一种高压肖特基二极管及其制造方法。
背景技术
如图1所示,常规现有技术结势垒肖特基(JBS)二极管包括与半导体材料顶部表面的N型漂移区直接接触的顶部金属层。顶部金属层形成JBS二极管的阳极。深P+区域置于上表面的侧面。N+层从底部金属层垂直分离出N-外延层,底部金属层置于N+层下形成JBS二极管的阴极。其中深P+区掺杂浓度比N-外延层的掺杂浓度高。
图1中传统的JBS二极管结构是将PIN连接置于SBD的活性区域来降低反向偏置漏电流,但高掺杂P+区域的加入降低了肖特基二极管的接触面积,减少的接触面积导致正向偏置电流减少。同时当外加偏压逐渐增大时,P+欧姆接触区开始导通,器件开始由单极性导电模式向双极性导电模式转换,此时器件中的空穴参与导电,同时器件会产生一个电压回跳现象,即snapback效应,会严重影响器件的正向导通性能,从而导致器件的工作性能不稳定。
现有技术的JBS二极管将PIN连接置于SBD的活性区域来降低反向偏置漏电流,但高掺杂P+区域的加入降低了肖特基二极管的接触面积,减少的接触面积导致正向偏置电流减少。同时当外加偏压逐渐增大时,P+欧姆接触区开始导通,器件开始由单极性导电模式向双极性导电模式转换,此时器件中的空穴参与导电,器件会产生一个电压回跳现象,从而严重影响器件的正向导通性能。
发明内容
针对现有技术JBS二极管的缺点,本发明介绍了一种肖特基二极管的制造方法。本发明中肖特基二极管在半导体层的表面形成较薄的P-层,使P-层在零偏置时载流子完全耗尽,有利于提高JBS二极管的导通状态(正向偏置)性能,也可减少器件的反向泄漏。此外,于P型层两侧引入沟槽SiO2介质区,降低肖特基接触区的表面电场强度,进一步减小器件的反向漏电流。且在正向导通时,当器件工作在单极型导电模式下,沟槽SiO2介质区能有效抑制电压回跳现象,最终消除传统JBS器件带来的snapback效应,增强器件的工作稳定性。
本发明的第一方面在于公开一种高压肖特基二极管,包括阴极金属、N+型基板、N-型外延层和阳极金属,所述N-型外延层的上表面侧面设有P+JBS区域,所述P+JBS区域的掺杂浓度比所述N-外延层的掺杂浓度高,其中,所述N-型外延层的上表面还设有P-层。
在本发明的一些的实施方式中,所述P-层的厚度为100-150nm。
在本发明的一些的实施方式中,所述P-层的掺杂浓度为1×1015-3×1016atoms/cm3
在本发明的一些的实施方式中,还包括位于所述P+JBS区域内侧的氧化层SiO2
在本发明的一些的实施方式中,所述阳极金属(4)包括Ti层、TiN层和Al/Cu层,厚度为1-3μm;
所述阴极金属(5)包括Ti层、Ni层和Ag层,厚度为1-2μm。
在本发明的一些的实施方式中,所述P+JBS区域的横向宽度为2.0-3.0μm,垂直深度为0.4-0.8μm,掺杂浓度为1×1020-2×1020atoms/cm3
本发明的第二方面在于公开一种第一方面所述的高压肖特基二极管的制造方法,包括以下步骤:
S01,选取N+型<100>晶向单晶衬底,外延生长N-型外延层;
S02,在所述N-型外延层形成沟槽,采用SiO2填充沟槽;
S03,在阳极端形成P-层;
S04,再形成重掺杂的P+JBS区;
S05,形成阴极金属和阳极金属。
在本发明的一些的实施方式中,S02中,采用光刻、干法刻蚀或者湿法刻蚀形成沟槽,采用化学气相沉积填充所述沟槽。
在本发明的一些的实施方式中,S03和S04中均采用离子注入分别形成所述P-层和所述P+JBS区。
在本发明的一些的实施方式中,S05中,采用等离子体溅射或电子束蒸发淀积形成所述阴极金属和阳极金属。
本发明的有益效果:
1.本发明的高压肖特基二极管在N型半导体层的表面加入了相对较薄的P-层可提高JBS二极管的导通状态(正向偏置)性能,减小器件的反向漏电流。
2.本发明的高压肖特基二极管在P+区两侧引入沟槽SiO2介质区,屏蔽肖特结的表面电场,降低肖特基接触区的表面电场强度,使器件在体内发生击穿,进一步减小器件的反向漏电流。
3.本发明的高压肖特基二极管引入沟槽SiO2介质区,有效抑制电压回跳现象,增强器件的工作稳定性。
4.本发明的高压肖特基二极管根据肖特基二极管的不同正向压降需求,可通过主工作区域阳极金属下的P-层厚度来辅助调整,灵活性更高。
附图说明
图1为传统JBS二极管的示意图。
图2是本发明一种实施方式的JBS二极管的示意图。
图3是图2的JBS二极管的制备流程图。
图4是本发明另一种实施方式的JBS二极管的示意图。
图5是传统JBS二极管与本发明实施方式的JBS二极管在正向导通时的输出特性曲线横向比较图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
若非特别指出,实施例和对比例为组分、组分含量、制备步骤、制备参数相同的平行试验。
本发明中肖特基二极管的制造方法包括以下步骤。
选取N+型<100>晶向单晶衬底(1),外延生长N-漂移区(2);
其次,通过光刻,刻蚀工艺(干法刻蚀或者湿法刻蚀)在N-外延层(2)形成一个沟槽,采用化学气相沉积进行SiO2淀积(6),填充沟槽;
在阳极端先进行离子注入,形成P-层(7);
在本发明中,P-层(7)的深度为100-150nm,掺杂浓度为1×1015-3×1016atoms/cm3;确保P-层(7)在零偏置下完全耗尽;
再进行离子注入,形成重掺杂的P+JBS区(3);
在本发明中,P+JBS区域(3)被布置在N-外延层(2)中,每个区域的横向宽度约为2.0-3.0μm,垂直深度为0.4-0.8μm,掺杂浓度为1×1020-2×1020atoms/cm3
利用等离子体溅射或电子束蒸发淀积Ti、Ni或Ag金属,在衬底背面形成良好的欧姆接触,形成阴极金属(5),其厚度为0.1-2μm;利用等离子体溅射或电子束蒸发淀积金属Ti,接着在其表面淀积Ti/TiN层,最后利用等离子体溅射或电子束蒸发淀积金属Al/Cu层,形成阳极金属(4),其厚度为0.1-2μm;
实施例1:
如图2所示,P-层(7)的深度为150nm,掺杂浓度选择为2×1015atoms/cm3,确保P-层(7)在零偏置下完全耗尽。P+JBS区域(3)的横向宽度为2.0μm,垂直深度为0.5μm,掺杂浓度为1×1020atoms/cm3
如图3所示,为实施例1二极管的主要工艺流程。其具体实现方法包括:①选取N+型<100>晶向单晶衬底,外延生长N-漂移区;②利用光刻、刻蚀工艺在N-外延层刻蚀形成一个沟槽,然后对刻蚀的沟槽进行SiO2淀积,填充沟槽;③在阳极端先进行离子注入,形成P-层;④再进行离子注入,形成重掺杂的P+JBS区;⑤利用等离子体溅射或电子束蒸发分别淀积
Figure BDA0003819700790000061
Figure BDA0003819700790000062
金属层,在衬底背面形成良好的欧姆接触,形成阴极金属;⑥利用等离子体溅射或电子束蒸发淀积金属
Figure BDA0003819700790000063
接着在其表面淀积TiN层
Figure BDA0003819700790000065
最后利用等离子体溅射或电子束蒸发淀积合金Al/Cu层
Figure BDA0003819700790000064
形成厚度为2μm的阳极金属。
实施例2:
如图4所示,利用光刻工艺在顶部金属层与P+JBS区的界面处形成浅P-层,其余方面与图2所示的实施例1JBS二极管都是相同的,即N-外延层的顶面直接接触表层金属(4)形成肖特基接触。确保每个P-区域在零偏置下完全耗尽,这一结构对器件的正向偏置性能影响极小,且可以降低金属-半导体界面处的电场。
如图5所示,给出了传统JBS二极管(其结构如图1所示)、实施例1(其结构如图2所示)器件和实施例2(其结构如图4所示)器件在正向导通时的输出特性曲线横向比较图。根据实验结果,当正向电流密度为一定时,本发明所提出的实施例1和实施例2器件的开启电压与传统的JBS器件的开启电压相比,出现明显的降低。因此,本发明提出的JBS二极管具有更小的开启电压。同时,当器件开始由单极性导电模式向双极性导电模式转变时,传统的JBS器件的正向偏置电压为3.70V,回跳电压的差值△VSB为0.50V,存在明显的电压回跳现象(即Snapback效应),这种现象会严重影响器件的正向导通性能,导致器件的工作不稳定性。本发明所提出的实施例器件不存在Snapback效应,器件的正向导通性能十分稳定可靠,沟槽SiO2介质区能阻止电子直接流向肖特基接触区,使得电子在P+JBS区下面不断积累,当PIN结达到开启电压时,P+JBS区将会向N-外延层注入空穴,器件将工作在双极性导电模式下,从而有效抑制电压回跳现象。因此,本发明所提出的JBS器件不存在Snapback效应。
基于上述,本发明通过在半导体层的表面加入了相对较薄的P-层,从而大大降低表面电场,减小反向偏置漏电流,同时在p型层两侧引入SiO2介质层,可有效抑制电压回跳现象,增强器件的工作稳定性,也可有效降低反向偏置漏电流。
以上对本发明优选的具体实施方式和实施例作了详细说明,但是本发明并不限于上述实施方式和实施例,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明构思的前提下作出各种变化。

Claims (10)

1.一种高压肖特基二极管,其特征在于,包括阴极金属(5)、N+型基板(1)、N-型外延层(2)和阳极金属(4),所述N-型外延层(2)的上表面侧面设有P+JBS区域(3a,3b),所述P+JBS区域(3a,3b)的掺杂浓度比所述N-外延层(2)的掺杂浓度高,其中,所述N-型外延层(2)的上表面还设有P-层(7)。
2.根据权利要求1所述的高压肖特基二极管,其特征在于,所述P-层(7)的厚度为100-150nm。
3.根据权利要求1或2所述的高压肖特基二极管,其特征在于,所述P-层(7)的掺杂浓度为1×1015-3×1016atoms/cm3
4.根据权利要求1-3任一所述的高压肖特基二极管,其特征在于,还包括位于所述P+JBS区域(3a,3b)内侧的氧化层SiO2(6)。
5.根据权利要求1-3任一所述的高压肖特基二极管,其特征在于,所述阳极金属(4)包括Ti层、TiN层和Al/Cu层,厚度为1-3μm;
所述阴极金属(5)包括Ti层、Ni层和Ag层,厚度为1-2μm。
6.根据权利要求1-3任一所述的高压肖特基二极管,其特征在于,所述P+JBS区域(3a,3b)的横向宽度为2.0-3.0μm,垂直深度为0.4-0.8μm,掺杂浓度为1×1020-2×1020atoms/cm3
7.一种根据权利要求1-6任一所述的高压肖特基二极管的制造方法,其特征在于,包括以下步骤:
S01,选取N+型<100>晶向单晶衬底(1),外延生长N-型外延层(2);
S02,在所述N-型外延层(2)形成沟槽,采用SiO2填充沟槽;
S03,在阳极端形成P-层(7);
S04,再形成重掺杂的P+JBS区(3);
S05,形成阴极金属(5)和阳极金属(4)。
8.根据权利要求7所述的高压肖特基二极管的制备方法,其特征在于,S02中,采用光刻、干法刻蚀或者湿法刻蚀形成沟槽,采用化学气相沉积填充所述沟槽。
9.根据权利要求7或8所述的高压肖特基二极管的制备方法,其特征在于,S03和S04中均采用离子注入分别形成所述P-层(7)和所述P+JBS区(3)。
10.根据权利要求7-9所述的高压肖特基二极管的制备方法,其特征在于,S05中,采用等离子体溅射或电子束蒸发淀积形成所述阴极金属(5)和阳极金属(4)。
CN202211039573.6A 2022-08-29 2022-08-29 一种高压肖特基二极管及其制造方法 Pending CN115274827A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211039573.6A CN115274827A (zh) 2022-08-29 2022-08-29 一种高压肖特基二极管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039573.6A CN115274827A (zh) 2022-08-29 2022-08-29 一种高压肖特基二极管及其制造方法

Publications (1)

Publication Number Publication Date
CN115274827A true CN115274827A (zh) 2022-11-01

Family

ID=83755845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039573.6A Pending CN115274827A (zh) 2022-08-29 2022-08-29 一种高压肖特基二极管及其制造方法

Country Status (1)

Country Link
CN (1) CN115274827A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252479A (ja) * 1999-03-01 2000-09-14 Fuji Electric Co Ltd ショットキーバリアダイオードおよびその製造方法
US6303969B1 (en) * 1998-05-01 2001-10-16 Allen Tan Schottky diode with dielectric trench
CN111668824A (zh) * 2019-03-05 2020-09-15 意法半导体股份有限公司 过电压保护设备
CN112242449A (zh) * 2020-10-19 2021-01-19 重庆邮电大学 一种基于SiC衬底沟槽型MPS二极管元胞结构
US20220059708A1 (en) * 2020-02-19 2022-02-24 Semiq Incorporated Counter-Doped Silicon Carbide Schottky Barrier Diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303969B1 (en) * 1998-05-01 2001-10-16 Allen Tan Schottky diode with dielectric trench
JP2000252479A (ja) * 1999-03-01 2000-09-14 Fuji Electric Co Ltd ショットキーバリアダイオードおよびその製造方法
CN111668824A (zh) * 2019-03-05 2020-09-15 意法半导体股份有限公司 过电压保护设备
US20220059708A1 (en) * 2020-02-19 2022-02-24 Semiq Incorporated Counter-Doped Silicon Carbide Schottky Barrier Diode
CN112242449A (zh) * 2020-10-19 2021-01-19 重庆邮电大学 一种基于SiC衬底沟槽型MPS二极管元胞结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
松波弘之等编著: "《碳化硅半导体技术与应用 原书第2版》", 31 July 2022, 机械工业出版社, pages: 253 - 254 *
高远等编著: "《碳化硅功率器件 特性、测试和应用技术》", 31 July 2021, 机械工业出版社, pages: 4 - 5 *

Similar Documents

Publication Publication Date Title
US8258032B2 (en) Power semiconductor devices and methods for manufacturing the same
US7605441B2 (en) Semiconductor device
US5241195A (en) Merged P-I-N/Schottky power rectifier having extended P-I-N junction
JP6104575B2 (ja) 半導体装置
US20150270369A1 (en) Method of Manufacturing an Insulated Gate Bipolar Transistor with Mesa Sections Between Cell Trench Structures
US8878327B2 (en) Schottky barrier device having a plurality of double-recessed trenches
TWI521693B (zh) 蕭基能障二極體及其製造方法
KR100514398B1 (ko) 실리콘 카바이드 전계제어 바이폴라 스위치
US9929285B2 (en) Super-junction schottky diode
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
US20160197201A1 (en) Power semiconductor devices having superjunction structures with implanted sidewalls and methods of fabricating such devices
US20240063311A1 (en) Gan-based trench metal oxide schottky barrier diode and preparation method therefor
CN211017091U (zh) 一种垂直型GaN基凹槽结势垒肖特基二极管
CN113782587A (zh) 一种具有屏蔽环结构的垂直型ⅲ族氮化物功率半导体器件及其制备方法
CN110931571A (zh) 一种垂直型GaN基凹槽结势垒肖特基二极管及其制作方法
CN207947287U (zh) 一种碳化硅肖特基二极管
CN115274827A (zh) 一种高压肖特基二极管及其制造方法
CN116053325A (zh) 一种高电阻场板屏蔽栅沟槽型场效应管器件及制造方法
CN110534582B (zh) 一种具有复合结构的快恢复二极管及其制造方法
JP3357793B2 (ja) 半導体装置及びその製造方法
CN111799337A (zh) 一种SiC JBS二极管器件及其制备方法
CN108461549A (zh) 一种碳化硅二极管器件及其制备方法
CN113363330B (zh) 一种肖特基半导体器件及其制作方法
CN112466926A (zh) 肖特基二极管及其制备方法
JPH05110062A (ja) 整流用半導体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination