CN115268369A - 一种龙门机床动梁交叉耦合控制方法 - Google Patents

一种龙门机床动梁交叉耦合控制方法 Download PDF

Info

Publication number
CN115268369A
CN115268369A CN202210980682.1A CN202210980682A CN115268369A CN 115268369 A CN115268369 A CN 115268369A CN 202210980682 A CN202210980682 A CN 202210980682A CN 115268369 A CN115268369 A CN 115268369A
Authority
CN
China
Prior art keywords
machine tool
control
gantry
model
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210980682.1A
Other languages
English (en)
Inventor
赵硕
刘志峰
陈传海
杨兆军
林智文
郭劲言
徐浩
王帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210980682.1A priority Critical patent/CN115268369A/zh
Publication of CN115268369A publication Critical patent/CN115268369A/zh
Priority to PCT/CN2023/111894 priority patent/WO2024037394A1/zh
Priority to US18/508,333 priority patent/US20240082966A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • G05B19/4086Coordinate conversions; Other special calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35356Data handling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种龙门机床动梁交叉耦合控制方法,涉及数控机床控制领域,该龙门机床动梁交叉耦合控制方法包括:步骤1:建立考虑横梁上滑枕的横梁动力学模型,同时将该模型进行化简用于观测器的设计;步骤2:按照单边伺服控制系统参数整定的方法进行,使用相同控制参数的伺服系统共同驱动横梁上下移动,实现同步控制,实现两端电机PID控制参数整定;与现有技术相比,本发明的有益效果是:本发明在实际应用于大型动梁式龙门加工中心不仅减小了横梁因机械结构差异而扭转产生的同步误差,并且解决了横梁移动部件在运动过程中造成的两侧负载不对称造成的同步误差,而且提高了系统鲁棒性和稳定性。

Description

一种龙门机床动梁交叉耦合控制方法
技术领域
本发明涉及数控机床控制领域,具体是一种龙门机床动梁交叉耦合控制方法。
背景技术
高端数控机床作为“工业母机”的核心,其结构和控制精度是影响其可靠性的关键一环,研究高端数控机床的共性关键技术,对推动我国制造业的发展有着重要作用。龙门加工中心作为一种常见的高端数控机床,其动梁式结构可以通过横梁移动完成大质量、大体积、形状不规则部件的加工,例如海上的大型潜艇、大型船舶的关键零部件等。
而动梁式龙门加工中心在实际应用中更加广泛,保证横梁运动时同步驱动精度是保证加工质量的关键。因此,研究横梁运动时同步驱动策略有着重要意义。
现有数控系统的同步算法很少考虑横梁上移动部件运动过程中引起的横梁质心改变的问题,导致同步误差较大。横梁运动时两侧的同步误差会影响龙门机床的加工精度并降低系统动态响应,需要改进。
发明内容
本发明的目的在于提供一种龙门机床动梁交叉耦合控制方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种龙门机床动梁交叉耦合控制方法,包括:
步骤1:建立考虑横梁上滑枕的横梁动力学模型,同时将该模型进行化简用于观测器的设计;
步骤2:按照单边伺服控制系统参数整定的方法进行,实现两端电机PID控制参数整定,使用相同控制参数的伺服系统共同驱动横梁上下移动(两侧的结构对称),实现同步控制;
步骤3:采用交叉耦合同步控制来反馈两轴之间的相互影响,并设计干扰观测器将输出补偿到相应的轴,构成另外一个闭环回路;
步骤4:设计干扰观测器,并对干扰进行补偿,提高系统的鲁棒性的同时减小同步误差。
作为本发明再进一步的方案:步骤1包括:
步骤11:采用广义三自由度坐标系(Z,θ,Y)或位置坐标系(Z1,Z2,Y)建立横梁组合体的三自由度运动学模型;
步骤12:获取龙门横梁机构的横梁移动过程中的微分方程;
步骤13:对横梁移动过程中的微分方程进行化简。
作为本发明再进一步的方案:步骤11中:采用位置坐标系(Z1,Z2,Y)或广义三自由度坐标系(Z,θ,Y)建立横梁组合体的运动学模型:
Figure BDA0003800280070000021
两个模型可互相转换,其中:θ为横梁的偏转角度、L为横梁跨度、z为横梁平动位移量、y为移动部件距离横梁重心的位移量、z1和z2为两轴平动位移量。
作为本发明再进一步的方案:步骤12中:龙门横梁转动惯量J可以表示为:
Figure BDA0003800280070000022
根据拉格朗日方程建立横梁移动过程中的微分方程需要提前定义与其动态性相关的能量表达式,包括动能T、弹性势能V、瑞利耗散函数D、横梁质量M;移动部件质量m,表达式如下:
Figure BDA0003800280070000023
Figure BDA0003800280070000024
Figure BDA0003800280070000031
瑞利耗散函数D中:k1、k2分别为横梁两侧与滑座之间的摩擦系数、kbh为横梁与移动部件之间的摩擦系数;
由于龙门横梁为刚体结构,可认为势能不变,即:
V=0;(4)
对于广义三自由度坐标系(Z,θ,Y),其对应的广义力为:
Figure BDA0003800280070000032
其中,Fi和fi(i=1,2,3)是伺服电机驱动力和摩擦力(i=1,2,3分别代表沿Z,θ,Y方向)。
联合(2)~(5),代入到带耗散的拉格朗日方程(6)中:
Figure BDA0003800280070000033
其中:广义坐标qj=(Z,θ,Y);广义力Fj=(Fz,Fθ,Fy);L=T-V。;
龙门横梁机构的横梁移动过程中的微分方程可以表示为:
Figure BDA0003800280070000034
其中,M、C、K分别为质量矩阵、阻尼系数矩阵、刚度系数矩阵;H为科里奥利向心矩阵;广义坐标向量:q=(Z,θ,Y)T;广义力向量:F=(Fz,Fθ,Fy)T
作为本发明再进一步的方案:步骤13中:龙门横梁在实际运动过程中,扭转角度θ很小(θ<0.0001rad),故可化简为cosθ≈1;sinθ≈0,则(7)中质量矩阵M中元素可近似为:
Figure BDA0003800280070000041
同理,科里奥利向心矩阵中所有元素可以忽略不计,即H≈0;取系统动力学方程中关于z和θ两式进行分析,可以将(7)化简为:
Figure BDA0003800280070000042
Ms、Cs、Ks分别为化简后的质量矩阵、阻尼系数矩阵、刚度系数矩阵;化简后的广义坐标向量:qs=(Z,θ,Y)T;化简后的广义力向量:Fs=(Fz,Fθ,Fy)T
(9)式中各矩阵形式如下:
Figure BDA0003800280070000043
对于y轴,其独立的运动学微分方程为:
Figure BDA0003800280070000044
作为本发明再进一步的方案:步骤2包括:
步骤21:构建伺服电机的控制模型;
步骤22:构建伺服系统三环建模;
步骤23:完成伺服系统三环参数整定。
作为本发明再进一步的方案:步骤21中:根据永磁电机在d-q坐标系下的数学模型,并选用id=0的控制方法实现d、q两轴解耦,得到在id=0控制方式下的永磁同步电机控制模型。
作为本发明再进一步的方案:步骤22中:步骤22中:基于永磁同步电机控制模型,对伺服控制系统进行设计,电流环、速度环以及位置环是三个相互关联且基于PID控制器的闭环负反馈调节系统,伺服控制系统对电流环、速度环、位置环三环进行控制,达到控制电机的输出转矩、运行速度、输出位置的目的。
作为本发明再进一步的方案:步骤23中:龙门机床横梁双驱动两侧选用相同的电机,通过伺服系统三环建模先进行单侧的伺服系统的三环参数整定,然后用具有相同控制参数的两伺服系统共同驱动龙门机床横梁,实现同步控制。
作为本发明再进一步的方案:步骤4中:DOB(干扰观测器)包括对象的传递函数P(s)、对象的名义模型Pn -1(s)、干扰观测值
Figure BDA0003800280070000051
控制输入r、测量噪声ζ、低通滤波器Q(s),等效干扰d(外界干扰、名义模型的建模误差折合);
低通滤波器Q(s)的设计影响DOB的实际性能,故DOB的设计问题转化为低通滤波器Q(s)的设计问题,Q(s)的模型描述为:
Figure BDA0003800280070000052
其中,τ是时间常数(截止频率的倒数);N是分母阶数;M是分子阶数;N-M是相对阶;
Q(s)的阶次会影响系统的稳定性,分母阶次越大,系统越稳定,高阶次的Q(s)出现相位滞后现象,削弱对干扰的补偿作用;分子阶次增大会抵消相位滞后现象,提高系统抗干扰能力,但会破坏系统稳定性;
龙门横梁的同步控制系统的名义模型Pn(s)可以通过基于最小二乘法的参数辨识原理获得,采集驱动力矩信号作为输入信号和横梁端的位移信号作为输出信号来对控制对象进行参数辨识。得到的名义模型Pn(s)如(13)所示:
Figure BDA0003800280070000061
以模型(13)作为两轴的名义模型,考虑控制精度、系统鲁棒性和稳定性,在满足(12)的所有式子中,模型(14)的性能是最好的,其相对阶次为2,可以获得较好的抗干扰性能和噪音抑制性能。
Figure BDA0003800280070000062
模型(14)为Q31(s)型低通滤波器,时间常数选为τ=0.005s,可得:
Figure BDA0003800280070000063
与现有技术相比,本发明的有益效果是:本发明在实际应用于大型动梁式龙门加工中心不仅减小了横梁因机械结构差异而扭转产生的同步误差,并且解决了横梁移动部件在运动过程中造成的两侧负载不对称造成的同步误差,而且提高了系统鲁棒性和稳定性。
附图说明
图1为一种龙门机床动梁交叉耦合控制方法的流程图。
图2为交叉耦合控制的原理图。
图3为龙门横梁同步驱动结构的示意图。
图4为永磁同步电机d-q坐标系下的控制结构图。
图5为伺服系统的控制框图。
图6为电机三环参数的示意图。
图7为龙门机床交叉耦合同步控制结构示意图。
图8为DOB的内部结构图。
图9为横梁上移动部件运动过程中的同步误差示意图。
图10为阶跃干扰下PID控制器的同步误差示意图。
图11为阶跃干扰下DOB观测器的同步误差示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,一种龙门机床动梁交叉耦合控制方法,包括:
步骤1:建立考虑横梁上滑枕的横梁动力学模型,同时将该模型进行化简用于观测器的设计;
步骤2:按照单边伺服控制系统参数整定的方法进行,实现两端电机PID控制参数整定,使用相同控制参数的伺服系统共同驱动横梁上下移动(两侧的结构对称),实现同步控制;
步骤3:采用交叉耦合同步控制来反馈两轴之间的相互影响,并设计干扰观测器将输出补偿到相应的轴,构成另外一个闭环回路;
步骤4:设计干扰观测器,并对干扰进行补偿,提高系统的鲁棒性的同时减小同步误差。
在具体实施例中:横梁动力学模型中的两轴(横梁变化)变化通过干扰观测器将输出补偿到相应的轴,以此高系统的鲁棒性的同时减小两轴的同步误差。其中交叉耦合如图2所示。
在步骤3中:伺服控制系统主要包括电机以及所需设计的观测器,通过电机的三环参数整定以及观测器的观测结果进行驱动系统的控制,驱动系统包括由两根滚珠丝杠驱动的龙门横梁,其两端的位置信号可以由光栅尺以及编码器测得,并将位置信号反馈给伺服控制系统,以此构建反馈补偿闭合回路。
在本实施例中:请参阅图3,步骤1包括:
步骤11:采用广义三自由度坐标系(Z,θ,Y)或位置坐标系(Z1,Z2,Y)建立横梁组合体的三自由度运动学模型;
步骤12:获取龙门横梁机构的横梁移动过程中的微分方程;
步骤13:对横梁移动过程中的微分方程进行化简。
作为本发明再进一步的方案:步骤11中:采用位置坐标系(Z1,Z2,Y)或广义三自由度坐标系(Z,θ,Y)建立横梁组合体的运动学模型:
Figure BDA0003800280070000081
两个模型可互相转换,其中:θ为横梁的偏转角度、L为横梁跨度、z为横梁平动位移量、y为移动部件距离横梁重心的位移量、z1和z2为两轴平动位移量、M为横梁质量、m为移动部件质量。
龙门横梁同步驱动结构一般由两个相同的伺服电机分别驱动Z1和Z2轴的滚珠丝杠带动横梁上下移动,同时横梁上的滑枕与刀架(下文统称为移动部件)在Y轴上移动,同时将其看作集中质量块,而横梁两侧运动不同步导致的最终结果为横梁会有小角度的扭转。
在本实施例中:请参阅图3,步骤12中:龙门横梁转动惯量J可以表示为:
Figure BDA0003800280070000082
根据拉格朗日方程建立横梁移动过程中的微分方程需要提前定义与其动态性相关的能量表达式,包括动能T、弹性势能V、瑞利耗散函数D、横梁质量M;移动部件质量m,表达式如下:
Figure BDA0003800280070000091
Figure BDA0003800280070000092
瑞利耗散函数D中:k1、k2分别为横梁两侧与滑座之间的摩擦系数、kbh为横梁与移动部件之间的摩擦系数;
由于龙门横梁为刚体结构,可认为势能不变,即:
V=0;(4)
对于广义三自由度坐标系(Z,θ,Y),其对应的广义力为:
Figure BDA0003800280070000093
其中,Fi和fi(i=1,2,3)是伺服电机驱动力和摩擦力(i=1,2,3分别代表沿Z,θ,Y方向)。
联合(2)~(5),代入到带耗散的拉格朗日方程(6)中:
Figure BDA0003800280070000094
其中:广义坐标qj=(Z,θ,Y);广义力Fj=(Fz,Fθ,Fy);L=T-V。;
龙门横梁机构的横梁移动过程中的微分方程可以表示为:
Figure BDA0003800280070000101
其中,M、C、K分别为质量矩阵、阻尼系数矩阵、刚度系数矩阵;H为科里奥利向心矩阵;广义坐标向量:q=(Z,θ,Y)T;广义力向量:F=(Fz,Fθ,Fy)T
在本实施例中:请参阅图3,步骤13中:龙门横梁在实际运动过程中,扭转角度θ很小(θ<0.0001rad),故可化简为cosθ≈1;sinθ≈0,则(7)中质量矩阵M中元素可近似为:
Figure BDA0003800280070000102
同理,科里奥利向心矩阵中所有元素可以忽略不计,即H≈0;取系统动力学方程中关于z和θ两式进行分析,可以将(7)化简为:
Figure BDA0003800280070000103
Ms、Cs、Ks分别为化简后的质量矩阵、阻尼系数矩阵、刚度系数矩阵;化简后的广义坐标向量:qs=(Z,θ,Y)T;化简后的广义力向量:Fs=(Fz,Fθ,Fy)T
(9)式中各矩阵形式如下:
Figure BDA0003800280070000104
(10)
对于y轴,其独立的运动学微分方程为:
Figure BDA0003800280070000111
在本实施例中:步骤2包括:
步骤21:构建伺服电机的控制模型;
步骤22:构建伺服系统三环建模;
步骤23:完成伺服系统三环参数整定。
在本实施例中:请参阅图4,步骤21中:根据永磁电机在d-q坐标系下的数学模型,并选用id=0的控制方法实现d、q两轴解耦,得到在id=0控制方式下的永磁同步电机控制模型。
图4中:KE=npψf,称为电机反电动势系数。KT=1.5npψf,称为电机转矩常量(np为磁极对数;ψf为永磁体磁链)。
在本实施例中:请参阅图5,步骤22中:基于永磁同步电机控制模型,对伺服控制系统进行设计,电流环、速度环以及位置环是三个相互关联且基于PID控制器的闭环负反馈调节系统,伺服控制系统对电流环、速度环、位置环三环进行控制,达到控制电机的输出转矩、运行速度、输出位置的目的。
在图5中电流环和速度环使用PI控制器,位置环使用P控制器,Kp、Kv、Ki分别为位置环、速度环、电流环的反馈系数。故电流环和速度环需要整定比例系数和积分时间常数,位置环只需整定比例系数。
在本实施例中:请参阅图6,步骤23中:龙门机床横梁双驱动两侧选用相同的电机,通过伺服系统三环建模先进行单侧的伺服系统的三环参数整定,然后用具有相同控制参数的两伺服系统共同驱动龙门机床横梁,实现同步控制。
利用MATLAB/Simulink中的PID Tuner工具进行各参数的整定结果如图6所示。
在本实施例中:请参阅图7,步骤3中:龙门机床横梁同步驱动交叉耦合同步控制结构示意图如图7所示。伺服控制系统主要包括电机以及所需设计的观测器,通过电机的三环参数整定以及观测器的观测结果进行驱动系统的控制。驱动系统主要包括由两根滚珠丝杠驱动的龙门横梁,其两端的位置信号可以由光栅尺以及编码器测得,并将位置信号反馈给伺服控制系统。
在本实施例中:请参阅图8,步骤4中:DOB(干扰观测器)包括对象的传递函数P(s)、对象的名义模型Pn -1(s)、干扰观测值
Figure BDA0003800280070000121
控制输入r、测量噪声ζ、低通滤波器Q(s),等效干扰d(外界干扰、名义模型的建模误差折合);
低通滤波器Q(s)的设计影响DOB的实际性能,故DOB的设计问题转化为低通滤波器Q(s)的设计问题,Q(s)的模型描述为:
Figure BDA0003800280070000122
其中,τ是时间常数(截止频率的倒数);N是分母阶数;M是分子阶数;N-M是相对阶;
Q(s)的阶次会影响系统的稳定性,分母阶次越大,系统越稳定,高阶次的Q(s)出现相位滞后现象,削弱对干扰的补偿作用;分子阶次增大会抵消相位滞后现象,提高系统抗干扰能力,但会破坏系统稳定性;
龙门横梁的同步控制系统的名义模型Pn(s)可以通过基于最小二乘法的参数辨识原理获得,采集驱动力矩信号作为输入信号和横梁端的位移信号作为输出信号来对控制对象进行参数辨识。得到的名义模型Pn(s)如(13)所示:
Figure BDA0003800280070000123
以模型(13)作为两轴的名义模型,考虑控制精度、系统鲁棒性和稳定性,在满足(12)的所有式子中,模型(14)的性能是最好的,其相对阶次为2,可以获得较好的抗干扰性能和噪音抑制性能。
Figure BDA0003800280070000131
模型(14)为Q31(s)型低通滤波器,时间常数选为τ=0.005s,可得:
Figure BDA0003800280070000132
在具体实施例中:请参阅图9、图10、图11,本控制算法经验证测试结果显示,使用DOB观测器可以对横梁质心变化产生的同步误差有很好的调节能力(图9),最大同步误差为0.33mm,相比于使用传统PID控制器的最大同步误差0.48mm有很好的补偿效果。当受到阶跃干扰时(图10、图11),采用DOB观测器的同步误差调节时间0.8s,虽大于PID控制器的0.5s;但同步误差最大值仅为0.24mm远小于PID控制器的0.4mm。上述结果表明:横梁同步控制的干扰抑制性能和系统稳定性在加入DOB观测器后得到了显著提高。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

1.一种龙门机床动梁交叉耦合控制方法,其特征在于:
该龙门机床动梁交叉耦合控制方法包括:
步骤1:建立考虑横梁上滑枕的横梁动力学模型,同时将该模型进行化简用于观测器的设计;
步骤2:按照单边伺服控制系统参数整定的方法进行,实现两端电机PID控制参数整定;使用相同控制参数的伺服系统共同驱动横梁上下移动,实现同步控制;
步骤3:采用交叉耦合同步控制来反馈两轴之间的相互影响,并设计干扰观测器将输出补偿到相应的轴,构成另外一个闭环回路;
步骤4:设计干扰观测器,并对干扰进行补偿,提高系统的鲁棒性的同时减小同步误差。
2.根据权利要求1所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤1包括:
步骤11:采用广义三自由度坐标系或位置坐标系建立横梁组合体的三自由度运动学模型;
步骤12:获取龙门横梁机构的横梁移动过程中的微分方程;
步骤13:对横梁移动过程中的微分方程进行化简。
3.根据权利要求2所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤11中:采用位置坐标系或广义三自由度坐标系建立横梁组合体的运动学模型:
Figure FDA0003800280060000011
两个模型能够互相转换,其中:θ为横梁的偏转角度、L为横梁跨度、z为横梁平动位移量、y为移动部件距离横梁重心的位移量、z1和z2为两轴平动位移量。
4.根据权利要求2所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤12中:龙门横梁转动惯量J表示为:
Figure FDA0003800280060000021
根据拉格朗日方程建立横梁移动过程中的微分方程需要提前定义与其动态性相关的能量表达式,包括动能T、弹性势能V、瑞利耗散函数D、横梁质量M;移动部件质量m,表达式如下:
Figure FDA0003800280060000022
Figure FDA0003800280060000023
瑞利耗散函数D中:k1、k2分别为横梁两侧与滑座之间的摩擦系数、kbh为横梁与移动部件之间的摩擦系数;
由于龙门横梁为刚体结构,势能不变,即:
V=0;
(4)
对于广义三自由度坐标系,其对应的广义力为:
Figure FDA0003800280060000024
其中,Fi和fi是伺服电机驱动力和摩擦力;
联合(2)~(5),代入到带耗散的拉格朗日方程(6)中:
Figure FDA0003800280060000025
Figure FDA0003800280060000031
其中:广义坐标qj=(Z,θ,Y);广义力Fj=(Fz,Fθ,Fy);L=T-V。;
龙门横梁机构的横梁移动过程中的微分方程表示为:
Figure FDA0003800280060000032
其中,M、C、K分别为质量矩阵、阻尼系数矩阵、刚度系数矩阵;H为科里奥利向心矩阵;广义坐标向量:q=(Z,θ,Y)T;广义力向量:F=(Fz,Fθ,Fy)T
5.根据权利要求2所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤13中:龙门横梁在实际运动过程中,cosθ≈1;sinθ≈0,则(7)中质量矩阵M中元素为:
Figure FDA0003800280060000033
科里奥利向心矩阵中H≈0;取系统动力学方程中关于z和θ两式进行分析,可以将(7)化简为:
Figure FDA0003800280060000034
Ms、Cs、Ks分别为化简后的质量矩阵、阻尼系数矩阵、刚度系数矩阵;化简后的广义坐标向量:qs=(Z,θ,Y)T;化简后的广义力向量:Fs=(Fz,Fθ,Fy)T
(9)式中各矩阵形式如下:
Figure FDA0003800280060000041
对于y轴,其独立的运动学微分方程为:
Figure FDA0003800280060000042
6.根据权利要求1所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤2包括:
步骤21:构建伺服电机的控制模型;
步骤22:构建伺服系统三环建模;
步骤23:完成伺服系统三环参数整定。
7.根据权利要求6所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤21中:根据永磁电机在d-q坐标系下的数学模型,并选用id=0的控制方法实现d、q两轴解耦,得到在id=0控制方式下的永磁同步电机控制模型。
8.根据权利要求6所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤22中:基于永磁同步电机控制模型,对伺服控制系统进行设计,电流环、速度环以及位置环是三个相互关联且基于PID控制器的闭环负反馈调节系统,伺服控制系统对电流环、速度环、位置环三环进行控制,达到控制电机的输出转矩、运行速度、输出位置的目的。
9.根据权利要求6所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤23中:龙门机床横梁双驱动两侧选用相同的电机,通过伺服系统三环建模先进行单侧的伺服系统的三环参数整定,然后用具有相同控制参数的两伺服系统共同驱动龙门机床横梁,实现同步控制。
10.根据权利要求1所述的龙门机床动梁交叉耦合控制方法,其特征在于,步骤4中:DOB包括对象的传递函数P(s)、对象的名义模型Pn -1(s)、干扰观测值
Figure FDA0003800280060000051
控制输入r、测量噪声ζ、低通滤波器Q(s),等效干扰d;
低通滤波器Q(s)的设计影响DOB的实际性能,故DOB的设计问题转化为低通滤波器Q(s)的设计问题,Q(s)的模型描述为:
Figure FDA0003800280060000052
其中,τ是时间常数;N是分母阶数;M是分子阶数;N-M是相对阶;
Q(s)的阶次会影响系统的稳定性,分母阶次越大,系统越稳定,高阶次的Q(s)出现相位滞后现象,削弱对干扰的补偿作用;分子阶次增大会抵消相位滞后现象,提高系统抗干扰能力,但会破坏系统稳定性;
龙门横梁的同步控制系统的名义模型Pn(s)通过基于最小二乘法的参数辨识原理获得,采集驱动力矩信号作为输入信号和横梁端的位移信号作为输出信号来对控制对象进行参数辨识。得到的名义模型Pn(s)如(13)所示:
Figure FDA0003800280060000053
以模型(13)作为两轴的名义模型,考虑控制精度、系统鲁棒性和稳定性,在满足(12)的所有式子中,模型(14)的相对阶次为2;
Figure FDA0003800280060000054
模型(14)为Q31(s)型低通滤波器,时间常数为τ=0.005s,可得:
Figure FDA0003800280060000061
CN202210980682.1A 2022-08-16 2022-08-16 一种龙门机床动梁交叉耦合控制方法 Pending CN115268369A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210980682.1A CN115268369A (zh) 2022-08-16 2022-08-16 一种龙门机床动梁交叉耦合控制方法
PCT/CN2023/111894 WO2024037394A1 (zh) 2022-08-16 2023-08-09 一种龙门机床动梁交叉耦合控制方法
US18/508,333 US20240082966A1 (en) 2022-08-16 2023-11-14 Cross-coupling control method for moving beam of gantry machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210980682.1A CN115268369A (zh) 2022-08-16 2022-08-16 一种龙门机床动梁交叉耦合控制方法

Publications (1)

Publication Number Publication Date
CN115268369A true CN115268369A (zh) 2022-11-01

Family

ID=83751360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210980682.1A Pending CN115268369A (zh) 2022-08-16 2022-08-16 一种龙门机床动梁交叉耦合控制方法

Country Status (3)

Country Link
US (1) US20240082966A1 (zh)
CN (1) CN115268369A (zh)
WO (1) WO2024037394A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115580189A (zh) * 2022-11-08 2023-01-06 哈尔滨工业大学 具有扰动抑制的高速龙门双驱同步控制方法及系统
WO2024037394A1 (zh) * 2022-08-16 2024-02-22 吉林大学 一种龙门机床动梁交叉耦合控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031439B (zh) * 2021-03-01 2021-08-31 哈尔滨工业大学 一种双运动台精密协同控制系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7680547B2 (en) * 2006-06-08 2010-03-16 Liu Hugh H T Method, system and computer program for generic synchronized motion control for multiple dynamic systems
CN107085373A (zh) * 2017-06-01 2017-08-22 浙江工业大学 一种基于通信干扰观测器的网络化多轴运动控制系统的交叉耦合控制方法
CN108363301B (zh) * 2018-02-11 2020-12-18 台州学院 基于干扰观测滑模变结构的轮廓误差交叉耦合控制方法
TWI726498B (zh) * 2019-11-22 2021-05-01 財團法人工業技術研究院 龍門機構線上慣量匹配同步控制方法
CN112904741A (zh) * 2021-01-14 2021-06-04 上海交通大学 一种双驱龙门桁架系统的高精度同步控制方法及系统
CN115268369A (zh) * 2022-08-16 2022-11-01 吉林大学 一种龙门机床动梁交叉耦合控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037394A1 (zh) * 2022-08-16 2024-02-22 吉林大学 一种龙门机床动梁交叉耦合控制方法
CN115580189A (zh) * 2022-11-08 2023-01-06 哈尔滨工业大学 具有扰动抑制的高速龙门双驱同步控制方法及系统
CN115580189B (zh) * 2022-11-08 2023-07-25 哈尔滨工业大学 具有扰动抑制的高速龙门双驱同步控制方法及系统

Also Published As

Publication number Publication date
WO2024037394A1 (zh) 2024-02-22
US20240082966A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN115268369A (zh) 一种龙门机床动梁交叉耦合控制方法
CN108762096B (zh) 一种基于离散型非线性级联扩张状态观测器的控制力矩陀螺框架系统扰动抑制方法
CN106338970B (zh) 一种五轴联动数控机床伺服系统控制方法
CN110716506A (zh) 一种基于混合滑模控制的伺服系统位置跟踪控制方法
CN102385342B (zh) 虚拟轴机床并联机构运动控制的自适应动态滑模控制方法
CN108536185B (zh) 一种基于降阶级联扩张状态观测器的双框架磁悬浮cmg框架系统参数优化方法
CN110649845B (zh) 基于鲁棒广义预测控制的光电转台位置跟踪控制方法
CN110968037B (zh) 一种减小多轴运动系统轮廓误差的控制方法
Smith Wide bandwidth control of high-speed milling machine feed drives
CN109657282A (zh) 一种基于拉格朗日动力学的h型运动平台建模方法
CN108983595B (zh) 一种前馈控制器参数的自动整定方法
CN111947959A (zh) 一种电惯量模拟方法
CN110190793A (zh) 一种二自由度数控机床及其控制系统和定位方法
CN108453741A (zh) 一种工业机器人柔性伺服控制方法
CN104635621A (zh) 基于现场总线的xy工作台过象限凸起补偿方法
Rassudov et al. Dynamic model exact tracking control of a permanent magnet synchronous motor
CN103309280B (zh) 一种用于重型并联机床的双前馈控制系统
CN112904713A (zh) 一种空间运动伺服机构的高精度强鲁棒控制方法
Krishnamurthy et al. Control design and implementation for sawyer motors used in manufacturing systems
Salihbegovic et al. High performance disturbance observer based control of the nonlinear 2DOF helicopter system
CN116442223A (zh) 一种机械手系统轨迹跟踪的非线性动态控制器设计方法
CN111293949B (zh) 一种抗干扰电动六自由度并联机构控制方法
JP2003263228A (ja) 同期制御装置
CN114726275A (zh) 一种应用于含摩擦随动系统的自适应滑模控制方法
Peukert et al. Flexible coupling of drive and guide elements for parallel-driven feed axes to increase dynamics and accuracy of motion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination