CN115261812A - 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法 - Google Patents

一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法 Download PDF

Info

Publication number
CN115261812A
CN115261812A CN202210905158.8A CN202210905158A CN115261812A CN 115261812 A CN115261812 A CN 115261812A CN 202210905158 A CN202210905158 A CN 202210905158A CN 115261812 A CN115261812 A CN 115261812A
Authority
CN
China
Prior art keywords
ion implantation
zinc alloy
alloy material
alloy
ternary zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210905158.8A
Other languages
English (en)
Inventor
岩雨
黄诗雨
乔利杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210905158.8A priority Critical patent/CN115261812A/zh
Publication of CN115261812A publication Critical patent/CN115261812A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/008Zinc or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,属于金属材料表面改性技术领域。本发明采用离子注入技术对Zn–Cu–Li三元锌合金材料进行表面改性,通过引入外来元素更精准地调控其降解性能、生物相容性和生理功能性,更自由地实现合金表面功能化。

Description

一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法
技术领域
本发明涉及金属材料表面改性技术领域,尤其涉及一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法。
背景技术
目前,用于人体植入物的医用金属材料主要是不可降解的传统金属材料,例如医用316L不锈钢,钛合金和钴基合金等。然而,这些永久植入材料的长期存在将严重损害人体健康,往往需要二次手术将其取出,这个过程增加了病患的痛苦和经济负担。因此,可生物降解的金属(镁、铁、锌)得到快速发展,开始被用于制造医疗器械。
锌作为一种可降解的金属材料,由于其优异的生物相容性和合适的生理降解性,已逐渐引起医疗行业和研究机构的关注。锌是人体的必需微量元素,成人推荐膳食摄入量为男性每天15.5mg,女性每天11.5mg,几乎参与人体的所有生理代谢过程。因此,锌合金具有优异的生物相容性。另外,纯锌的标准电极电位介于纯镁和纯铁之间,意味着其降解速率和临床植入物要求最为契合,避免了镁合金降解过快和铁合金降解过慢的缺点。然而,纯锌的力学性能难以达到可降解植入物的门槛要求,导致迫切需要开发新型的锌基合金。
现有专利中报道的可降解锌合金有Zn–Mn系、Zn–Li系、Zn–Cu系、Zn–Mg系、Zn–Mo系、Zn–Mn–Li系、Zn–Mn–Mg系、Zn–Mn–Cu系、Zn–Li–Fe系、Zn–Li–Mg系、Zn–Li–Mn系、Zn–Fe–Li系、Zn–Cu–Ag系、Zn–Cu–Mg系、Zn–Cu–Sr–Ti系、Zn–Cu–Mn–Zr系。
目前还没有专利报道本发明所述Zn–Cu–Li合金及Zn–Cu–Li三元锌合金材料离子注入表面改性方法。我们在研究中发现Zn–Cu合金具有高的断裂延伸率、优异的抗菌性能和适宜的降解行为,但屈服强度和抗拉强度难以达到力学门槛要求。同时不同植入部位具有不同的内部环境和降解速率需求,对植入合金提出“可控降解”的要求。
申请号为200610027164.9的专利通过用砂纸打磨镁合金表面,去除表面污染物,再用酒精清洗,在空气中自然干燥,然后放入离子注入机的真空室中,注入钽离子提高了镁合金表面的耐腐蚀性能。但是该方法处理后的镁合金的抗菌效果和力学性能较差。
申请号为200710041967.4的专利通过对铜或者铜合金表面依次进行研磨、抛光、清洗、烘干、注入复合离子等工艺,提高了材料的硬度和耐磨性能,但是其抗菌性能和可降解性能均较差。
发明内容
有鉴于此,本发明提供了一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,由该方法制备的锌合金具有优异的力学性能、适宜且可控的降解速率和降解模式、突出的抗菌性能和良好的细胞相容性,可以用于制备生物医用可降解植入器械。
本发明的第一个目的是提供一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,包括以下步骤:
(1)首先对Zn–Cu–Li三元锌合金表面进行研磨、抛光以降低粗糙度从而增加表面改性层均匀性,再对样品表面进行清洗,干燥后备用;
(2)将干燥后的样品置于离子注入机中,在真空环境或特定气氛环境(氮气、氧气等)下,以10~80kV的电压,0.5~1.5mA的束流和1*1014~5*1017ion/cm2的注入剂量把离子注入到合金表面,形成深度和微观结构各异的表面改性层,因此获得适用于不同植入部位的降解速率。
优选地,所述研磨采用5000目及以上的不同连续粒度的SiC砂纸,研磨后进行机械抛光和悬浮抛光试样的注入效果最佳,随后酒精超声清洗10min,在空气中干燥。
优选地,所述清洗为去离子水和有机溶剂清洗或采用酒精超声清洗。
优选地,所述离子加速电压应注意区分KeV与KV单位的差异,不同的电压将影响注入离子浓度峰值的深度。
优选地,所述离子束流越大,注入时间越短,但试样表面局部热量越高。
优选地,所述注入剂量影响注入时间、离子深度和离子分布特点。注入剂量越小,注入时间越短,注入深度越浅。
优选地,所述离子注入在配备目标注入元素阴极电弧源的离子注入机上进行,采用水冷靶搭载试样,以避免注入过程的热量造成基体微观结构变化。
优选地,所述离子为Cu、Ag、Mg、Ca、Sr、P的至少一种。注入Cu或Ag元素后,合金的抗菌性能提高,满足术后感染风险较高人群对可降解材料的需求。注入Mg、Ca、Sr或P元素后,可以提高材料的生物相容性以降低毒性。
优选地,所述改性层厚度为0.01微米~5微米。过薄的改性层难于有效地调控基底材料的表面性能,过厚的改性层有可能损坏基底材料原始的优良性能,适中厚度的改性层能在实现表面功能化和维持原始优良性能两方面达到平衡。
本发明的第二个目的是提供所述Zn–Cu–Li三元锌合金材料离子注入表面改性方法,所述Zn–Cu–Li三元锌合金的制备方法包括以下步骤:
(1)将Zn 93.8~99.5%、Cu 0.5~6.0%和Li 0.01~0.2%按照质量百分比配料得到混合物;
(2)将混合物原料放入真空熔炼炉中加热熔化,搅拌均匀,经浇注、冷却获得Zn–Cu–Li合金铸锭材料;
(3)对所属合金铸锭进行均质、热轧和冷轧变形处理,获得力学性能优良的Zn–Cu–Li合金板材。
优选地,所述Zn、Cu和Li原料均为纯金属,纯度按质量百分比算均≥99.95%。
本发明所述合金主要由锌元素和铜元素组成,并添加微量锂作为次要合金元素,以提高合金强度并减少断裂延伸率损失,期待达到最佳的合金元素配比和力学性能。铜在免疫系统中起着重要作用,具有优异的抗菌性能。锂则能改善造血功能,对中枢神经功能具有一定调节作用,是有效的情绪稳定剂。
本发明利用锌可以在人体内降解的特点,选择人体必需微量元素铜和锂作为合金元素改善纯锌的力学性能和抗菌性能,并采用离子注入表面改性技术调控合金降解行为,在愈合早期缓慢降解以提供足够的力学支撑,并在愈合后期以相对较块的速度降解以避免长期炎症。本发明所述Zn–Cu–Li合金的力学性能符合医用植入物强度和塑性的门槛要求;降解速率和降解模式有利于受伤组织的修复和植入物体内的完全降解;优异的抗菌性能将避免易受术后感染患者遭受细菌入侵风险。
优选地,所述Zn–Cu–Li三元合金,合金元素按质量百分比计算:
(1)由97.4~99.5%的Zn,0.5~2.5%的Cu和0.01~0.1%Li组成;
(2)由97.3~99.4%的Zn,0.5~2.5%的Cu和0.1~0.2%Li组成;
(3)由95.4~97.5%的Zn,2.5~4.5%的Cu和0.01~0.1%Li组成;
(4)由95.3~97.4%的Zn,2.5~4.5%的Cu和0.1~0.2%Li组成;
(5)由93.9~95.5%的Zn,4.5~6.0%的Cu和0.01~0.1%Li组成
(6)由93.8~95.4%的Zn,4.5~6.0%的Cu和0.1~0.2%Li组成。
所述锌合金具有两种合金化元素,其中铜合金元素具备增加锌合金抗菌性能、保持合金良好塑性和改善降解模式的优势;另一种锂合金元素则是具备显著提高锌合金力学强度的性能。
优选地,步骤(2)所述的加热熔化温度为550~750℃,保温时间10~50分钟,在保证合金流动性的同时避免过多缺陷的产生,随后浇铸成锭。
优选地,步骤(3)所述均质的处理温度为250~350℃,处理时间为12~48小时,使合金的成分和组织均匀化,减少偏析现象。
优选地,步骤(3)所述的热轧的起始温度为320~400℃,热轧终止温度不低于220~300℃,以控制材料的微观结构,通过多道次(3~20道次)轧制实现不低于90%(80~99%)的轧下量,最终空冷至室温。
优选地,步骤(3)所述的冷轧在室温下进行,通过多道次(1~10道次)轧制实现90~99%的轧下量。
优选地,所述Zn–Cu–Li三元合金的屈服强度为230~280MPa,抗拉强度为300~380MPa,断裂延伸率为30~55%,腐蚀速率为20~80微米/年。
与现有技术相比,本发明具有以下有益效果:
(1)本发明设计的可降解Zn–Cu–Li合金选用Cu作为主要合金元素减少塑性损失,选用Li作为次要合金元素提高强度,选用轧制作为塑性变形工艺改善基体和第二相间的变形不协调性,从而显著提高力学性能。合金的屈服强度为230~280MPa,抗拉强度为300~380MPa,断裂延伸率为30~55%,符合可降解植入物的室温拉伸力学性能标准,能为受伤组织提供有效的力学支撑。
(2)本发明设计的可降解Zn–Cu–Li合金由Zn、Cu和Li组成,都是人体必需微量元素。合金在受伤部位修复后能被人体体液逐渐腐蚀降解,最终被人体自然代谢吸收,具有生物安全性。合金在模拟体液中浸泡30天后的降解速率为20~80微米/年,相对其他合金体系具有更适宜的降解速率,以保证材料降解前受伤部位已经完成组织修复。
(3)本发明设计的可降解Zn–Cu–Li合金选用Cu作为主要合金元素,同时选择轧制作为塑性变形工艺,两者配合有效改善纯锌的局部腐蚀问题。轧制改变CuZn4第二相形状,造成层状CuZn4腐蚀保护屏障的形成,最终导致Zn–Cu–Li合金均匀的腐蚀降解模式,避免了局部降解带来植入失效的情况,大大保护了患者的生命安全。
(4)本发明设计的可降解Zn–Cu–Li合金选用Cu作为主要合金元素,大幅度提高植入物的抗菌性能,满足术后感染风险较高患者的抗菌性需求,尤其是免疫系统受损的患者。
(5)本发明设计的可控降解Zn–Cu–Li合金选用离子注入技术作为主要表面改性方式,通过引入外来元素更精准地调控其降解性能(例Cu、Ca、Sr元素)、生物相容性(例P元素)和生理功能性(例Cu元素),能更自由地实现合金表面功能化。
附图说明
图1为本发明实施例1制备的离子注入Zn–3.8Cu–0.02Li合金的拉伸应力–应变曲线;
图2是为本发明实施例2制备的离子注入Zn–3.8Cu–0.02Li合金、对比例1以及对比例2纯锌对金黄色葡萄球菌的抑菌作用示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
下述实施例中所述试验方法或测试方法,如无特殊说明,均为常规方法;所述原料和助剂,如无特殊说明,均从常规商业途径获得,或以常规方法制备。
Zn–Cu–Li三元合金材料的制备方法如下:
以高纯Zn(99.95%)、高纯Cu(99.95%)、高纯Li(99.95%)作为原料,按照96.18%Zn、3.8%Cu和0.02%Li质量百分比混合。混合料倒入ZG-0.01真空感应炉中,在氩气保护下熔化。熔体在670℃下保持1小时,随后倒入石墨模具,在空气中冷却获得铸锭。铸锭在300℃下均质处理15小时,随后在空气中冷却。按照实施例1中提供的方法接着制备Zn–3.8Cu–0.02Li三元合金板材,最终板材厚度为2mm,总轧下率为95%。
也可参照S.Y.Huang,L.N.Wang,Y.F.Zheng,L.J.Qiao,Y.Yan.In vitrodegradation behavior of novel Zn–Cu–Li alloys:Roles of alloy composition androlling processing.Materials&Design 212(2021)110288.制备Zn–Cu–Li三元合金材料。
实施例1
一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,具体步骤如下:
离子注入试样为上述Zn–3.8Cu–0.02Li三元合金,通过线切割切取10×10×2mm块体、φ10×2mm圆盘和标距尺寸为10mm的拉伸样品。注入试样和不注入对照试样均使用不同连续粒度的SiC砂纸研磨,酒精超声清洗10min后在空气中干燥。在配备Cu阴极电弧源的FM2000金属离子注入机上进行Cu离子注入,加速电压为40kV,真空室压强为2.0–6.0×10- 4Pa。试样放置于水冷靶,离子注入剂量为5×1016ion/cm2,注入束流控制在1.0±0.2mA。
性能测试:
(1)拉伸试验
采用万能材料力学试验机在室温下进行拉伸测试,实验温度为室温,拉伸速率为10-3s-1。离子注入三元合金板材的拉伸工程应力应变曲线如图1所示,屈服强度为266MPa,抗拉强度为311MPa,断裂延伸率为37%。
(2)静态浸泡试验
浸泡溶液为模拟体液,溶液体积与样品面积之比为20mL/cm2。将10×10×2mm试样置于100mL离心管中,并在37℃下浸泡在70mL的模拟体液中21天。每两天更换一次模拟体液以限制离子消耗和快速pH值变化。测得的离子注入三元合金的腐蚀速率为47微米/年。
实施例2
一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,具体步骤如下:
离子注入试样为上述Zn–3.8Cu–0.02Li三元合金,通过线切割切取10×10×2mm块体、φ10×2mm圆盘和标距尺寸为10mm的拉伸样品。注入试样和不注入对照试样均使用不同连续粒度的SiC砂纸研磨,酒精超声清洗10min后在空气中干燥。在配备Cu阴极电弧源的FM2000金属离子注入机上进行Cu离子注入,加速电压为40kV,真空室压强为2.0–6.0×10- 4Pa。试样放置于水冷靶,离子注入剂量为2×1017ion/cm2,注入束流控制在1.0±0.2mA。
性能测试:
(1)拉伸试验
采用万能材料力学试验机在室温下进行拉伸测试,实验温度为室温,拉伸速率为10-3s-1。离子注入三元合金板材的屈服强度为239MPa,抗拉强度为273MPa,断裂延伸率为43%。
(2)静态浸泡试验
浸泡溶液为模拟体液,溶液体积与样品面积之比为20mL/cm2。将10×10×2mm试样置于100mL离心管中,并在37℃下浸泡在70mL的模拟体液中21天。每两天更换一次模拟体液以限制离子消耗和快速pH值变化。测得的离子注入三元合金的腐蚀速率为33微米/年。
(3)抗菌试验
首先复苏金黄色葡萄球菌,将LB肉汤粉(10g/L蛋白胨、5g/L酵母提取粉、10g/LNaCl)添加至950mL去离子水中,完全溶解后使用0.1mol/LNaOH溶液调节pH至7.0-7.2,最后采用去离子水定容成1000mL的培养基。将金黄色葡萄球菌置于LB液体培养基中,在恒温摇动器中摇动24h备用。随后制备琼脂培养基平板,将灭菌后的试样和固体培养皿在无菌台上紫外消毒30min待用。最后用移液管将500μL的细菌悬浮液均匀涂在琼脂培养基表面,再将样品置于平板上,在37℃下培养48h后观察抑菌区直径。结果如图2所示,Cu离子注入显著提高Zn–3.8Cu–0.02Li合金的抗菌效果。
对比例1
可降解Zn–3.8Cu–0.02Li三元合金板材的制备和性能测试
以高纯Zn(99.95%)、高纯Cu(99.95%)、高纯Li(99.95%)作为原料,按照96.18%Zn、3.8%Cu和0.02%Li质量百分比混合。混合料倒入ZG-0.01真空感应炉中,在氩气保护下熔化。熔体在670℃下保持1小时,随后倒入石墨模具,在空气中冷却获得铸锭。铸锭在300℃下均质处理15小时,随后在空气中冷却。按照实施例1中提供的方法接着制备Zn–3.8Cu–0.02Li三元合金板材,最终板材厚度为2mm,总轧下率为95%。
性能测试:
(1)静态浸泡试验
浸泡溶液为模拟体液,溶液体积与样品面积之比为20mL/cm2。将10×10×2mm试样置于100mL离心管中,并在37℃下浸泡在70mL的模拟体液中21天。每两天更换一次模拟体液以限制离子消耗和快速pH值变化。测得的Zn–3.8Cu–0.02Li三元合金的腐蚀速率为58微米/年。
(2)抗菌试验
首先复苏金黄色葡萄球菌,将LB肉汤粉(10g/L蛋白胨、5g/L酵母提取粉、10g/LNaCl)添加至950mL去离子水中,完全溶解后使用0.1mol/LNaOH溶液调节pH至7.0-7.2,最后采用去离子水定容成1000mL的培养基。将金黄色葡萄球菌置于LB液体培养基中,在恒温摇动器中摇动24h备用。随后制备琼脂培养基平板,将灭菌后的试样和固体培养皿在无菌台上紫外消毒30min待用。最后用移液管将500μL的细菌悬浮液均匀涂在琼脂培养基表面,再将样品置于平板上,在37℃下培养48h后观察抑菌区直径。结果如图2所示,离子注入样品具有最好的抗菌效果,Zn–3.8Cu–0.02Li三元合金次之。
对比例2纯Zn的抗菌效果最差。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,包括以下步骤:
(1)首先对Zn–Cu–Li三元锌合金表面进行研磨、抛光,再对样品表面进行清洗,干燥后备用;
(2)将干燥后的样品置于离子注入机中,以10~80kV的电压,0.5~1.5mA的束流和1*1014~5*1017ion/cm2的注入剂量把离子注入到合金表面,形成改性层。
2.根据权利要求1所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,所述研磨采用5000目砂纸。
3.根据权利要求1所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,所述离子为Cu、Ag、Mg、Ca、Sr、P中的至少一种。
4.根据权利要求1所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,所述改性层厚度为0.01微米~5微米。
5.根据权利要求1所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,所述Zn–Cu–Li三元锌合金的制备方法包括以下步骤:
(1)将Zn93.8~99.5%、Cu0.5~6.0%和Li0.01~0.2%按照质量百分比配料得到混合物;
(2)将混合物原料放入真空熔炼炉中加热熔化,搅拌均匀,经浇注、冷却获得Zn–Cu–Li合金铸锭材料;
(3)对所属合金铸锭进行均质、热轧和冷轧变形处理,获得Zn–Cu–Li合金板材。
6.根据权利要求5所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,步骤(2)所述的加热熔化温度为550~750℃,保温时间10~50分钟,随后浇铸成锭。
7.根据权利要求5所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,步骤(3)所述均质的处理温度为250~350℃,处理时间为12~48小时。
8.根据权利要求5所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,步骤(3)所述的热轧的起始温度为320~400℃,热轧终止温度220~300℃,通过多道次轧制实现80~99%的轧下量,最终空冷至室温。
9.根据权利要求5所述的Zn–Cu–Li三元锌合金材料离子注入表面改性方法,其特征在于,步骤(3)所述的冷轧在室温下进行,通过多道次轧制实现90~99%的轧下量。
CN202210905158.8A 2022-07-29 2022-07-29 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法 Pending CN115261812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210905158.8A CN115261812A (zh) 2022-07-29 2022-07-29 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210905158.8A CN115261812A (zh) 2022-07-29 2022-07-29 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法

Publications (1)

Publication Number Publication Date
CN115261812A true CN115261812A (zh) 2022-11-01

Family

ID=83771709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210905158.8A Pending CN115261812A (zh) 2022-07-29 2022-07-29 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法

Country Status (1)

Country Link
CN (1) CN115261812A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851042A (zh) * 2006-06-01 2006-10-25 上海交通大学 镁合金表面离子注入改性方法
CN101070592A (zh) * 2007-06-14 2007-11-14 上海交通大学 铜及其合金的复合离子注入表面改性的方法
CN101665931A (zh) * 2009-09-29 2010-03-10 北京科技大学 长效抗菌不锈钢薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1851042A (zh) * 2006-06-01 2006-10-25 上海交通大学 镁合金表面离子注入改性方法
CN101070592A (zh) * 2007-06-14 2007-11-14 上海交通大学 铜及其合金的复合离子注入表面改性的方法
CN101665931A (zh) * 2009-09-29 2010-03-10 北京科技大学 长效抗菌不锈钢薄膜的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SHIYU HUANG ET.AL: "In vitrodegradation behavior of novel Zn-Cu-Li alloys:Roles of alloy composition androlling processing", 《MATERIALS & DESIGN》 *
于杰等: ""Cu 离子注入A304 不锈钢抗菌机理研究"", 《材料热处理技术》 *
刘璠: ""钛基合金表面离子注入磷元素改善生物学性质的研究"", 《硬质合金》, pages 73 *
王鲁宁;孟瑶;刘丽君;董超芳;岩雨;: "可降解锌基生物材料的研究进展", 金属学报, no. 10 *
许承惠,蔡伟平,田薇: "多元素离子注入形成表层耐蚀合金的研究", 微细加工技术, no. 03 *

Similar Documents

Publication Publication Date Title
Wątroba et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material
CN109680195B (zh) 一种Mg-RE系镁合金及其制备方法与应用
CN107557632B (zh) 一种可降解生物医用Mg-Zn-Zr-Nd合金材料及其制备方法
CN108754232B (zh) 一种高强高塑可生物降解Zn-Mn-Li系锌合金及其用途
CN101015711A (zh) 一种可体液降解的医用植入体及其制备方法
CN108315583B (zh) 一种Zn-Li-Mn系锌合金及其制备方法与应用
CN109602960B (zh) 一种具备超塑性的医用锌合金棒材制备方法
CN110317973B (zh) 一种生物可降解LiZn4-Zn复相材料及其制备方法
CN102258806B (zh) 一种可降解镁基骨科植入生物医用材料及制备方法
CN109112377B (zh) 一种耐蚀生物医用镁合金及其制备方法和应用
CN108165782B (zh) 一种医用锌基合金带材及其制备方法
CN108677074A (zh) 一种植入心脏的医用可降解耐腐蚀镁合金支架及其制备方法
Luo et al. Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application
CN114086011B (zh) 一种可控降解的成分梯度镁基植入材料的制备方法
CN110656260A (zh) 一种可降解医用Zn合金材料及其制备方法
CN108950443B (zh) 一种具有抗菌和骨诱导活性功能的医用钛合金棒材
Xiao et al. Investigation of zinc-silver alloys as biodegradable metals for orthopedic applications
EP3395971B1 (en) Alloy material and application thereof
CN115261812A (zh) 一种Zn–Cu–Li三元锌合金材料离子注入表面改性方法
KR20160025898A (ko) 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법
CN112192919B (zh) 具有抗菌功能、可降解、强韧性的复合材料及其制备方法
CN110106413B (zh) Mg-Si-Ca-Zn系镁合金及其制备方法与应用
CN109778037B (zh) 一种抗菌镁合金骨科材料及其制备方法
CN112371983A (zh) 具有抗菌性、强韧性的合金材料及其制备方法和应用
CN111154992B (zh) 一种锌铜过饱和固溶体血管支架材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination