CN115260556A - 一种纳米银线抗静电聚酯薄膜的制备方法 - Google Patents

一种纳米银线抗静电聚酯薄膜的制备方法 Download PDF

Info

Publication number
CN115260556A
CN115260556A CN202211078449.0A CN202211078449A CN115260556A CN 115260556 A CN115260556 A CN 115260556A CN 202211078449 A CN202211078449 A CN 202211078449A CN 115260556 A CN115260556 A CN 115260556A
Authority
CN
China
Prior art keywords
parts
polyester film
nano
silver wire
antistatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211078449.0A
Other languages
English (en)
Inventor
林壁鹏
赵成海
秦柏威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xiliu Photoelectroicite Technic Co ltd
Original Assignee
Shenzhen Xiliu Photoelectroicite Technic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xiliu Photoelectroicite Technic Co ltd filed Critical Shenzhen Xiliu Photoelectroicite Technic Co ltd
Priority to CN202211078449.0A priority Critical patent/CN115260556A/zh
Publication of CN115260556A publication Critical patent/CN115260556A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种纳米银线抗静电聚酯薄膜的制备方法,包括如下步骤:步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯70份,聚对苯二甲酸乙二醇酯30份,相容剂7.5份,碳纳米管6.5份,Fe3O4纳米线7.5份,石墨烯4份,纳米银线3份,表面处理剂0.8份,抗氧剂0.75份;步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内进行熔融混合成颗粒状;步骤三:将混料送入至干燥塔内进行烘干结晶;步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以冷却,将冷却后的固体进行纵向拉伸和横向拉伸,最后热定型,得到抗静电聚酯薄膜。本发明制备的抗静电聚酯薄膜通过四种填料实现了在聚合物基体中填料的低接触电阻、高导电网络的有效搭建。

Description

一种纳米银线抗静电聚酯薄膜的制备方法
技术领域
本发明涉及聚酯薄膜的制备领域,具体是一种纳米银线抗静电聚酯薄膜的制备方法。
背景技术
传统的抗静电聚酯薄膜加工工艺为:将抗静电剂/液通过涂布法涂覆在片材基层表面上,形成抗静电层;在聚酯薄膜基层上直接涂覆的涂布法具有见效快、用料省、对抗静电剂的耐热性要求低等优点,但抗静电效果不能持久,经过摩擦、紫外线光照、较高温存放后,抗静层表面电阻在3-5年后可能会逐步变化至7-9次方欧姆或更高,导致抗静电功能减弱或丧失,抗静电持久性差。因此,需一种持久抗静电聚酯薄膜材料,扩展聚酯薄膜的应用。
发明内容
本发明的目的是提供一种纳米银线抗静电聚酯薄膜的制备方法,来解决实际使用中,遇到的问题。
为实现上述目的,本发明提供如下技术方案:
一种纳米银线抗静电聚酯薄膜的制备方法,包括如下步骤:
步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯60~80份,聚对苯二甲酸乙二醇酯20~40份,相容剂5~10份,碳纳米管5~8份,Fe3O4纳米线5~10份,石墨烯3~5份,纳米银线1~5份,表面处理剂0.6~1份,抗氧剂0.5~1份;
步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内,由双螺杆共混造粒机将组分进行熔融混合成颗粒状,双螺杆共混造粒机的加热温度为280度,真空度为100Pa;
步骤三:将混料送入至干燥塔内进行烘干结晶,干燥塔预热温度为175℃,干燥至含水率≤200ppm;
步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以72℃/min速度冷却,将冷却后的固体在110-115℃条件下进行纵向拉伸,在130-145℃条件下进行横向拉伸,在200-235℃进行热定型,得到抗静电聚酯薄膜。
优选的:Fe3O4纳米线通过以下制备方法得到:
步骤一:称取硫代硫酸钠和硫酸亚铁加入PEG和水的混合溶液中,用NaOH调节pH为1l,然后倒入反应釜内衬中;
步骤二:密封反应釜,在180℃下保温8h,反应结束冷却至室温;
步骤三:将黑色沉淀物用去离子水洗涤,去除多余的离子杂质,用磁铁进行沉降收集,60℃真空干燥,得到Fe3O4纳米线。
优选的:所述石墨烯的制备方式为将氧化石墨在600-1000℃,0.5-3min条件下还原剥离。
优选的:所述纳米银线的制备步骤为:在10-400mL0.1-0.5mMFeCl3的乙二醇溶液中,加入0.15-0.75M的PVP,搅拌至PVP完全溶解后,再逐滴加入10-400mL0.1-0.5M的AgNO3溶液,搅拌10-20分钟。然后把混合液转移至水热合成反应釜内,在160℃下反应2-4小时。自然冷却,即得到纳米银线。
优选的:所述相容剂由马来酸酐接枝丙烯腈-丁二烯-苯乙烯三元共聚物、马来酸酐接枝乙烯-辛烯共聚物、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元无规共聚物中的一种或多种按任意配比混合组成。
优选的:所述表面处理剂由硅烷偶联剂、甲基硅油、硅酮粉中的一种或多种按任意配比混合组成。
优选的:所述抗氧剂由抗氧剂1010、抗氧剂168中的一种或两种按任意配比混合组成。
优选的:所述碳纳米管直径10-15nm,长度1-10μm;Fe3O4纳米线直径20-50nm,长度10-50μm。
优选的:所述石墨烯的厚度为0.35~20nm,直径为1~20μm。
优选的:所述纳米银线的直径为40~500nm,长度为5~50μm。
与现有技术相比,本发明的有益效果是:
本发明中纳米银线有很高的长径比,在体系中起桥梁作用,可以有效降低银填料的含量。有研究报道通过模板法制备纳米银线,并以此合成了各向同性导电胶,与传统导电胶相比,这种各向同性导电胶在纳米银线含量较低时就能具有更低的体积电阻率和较高的剪切强度,并利用场隧道效应发射理论解释了此体系的导电机理。石墨烯是当前最受瞩目的新型材料。自2004年Novoselov和Geim制备出石墨烯后,石墨烯的出现立刻引起了科学界的广泛关注,这种新型碳材料成为继富勒烯、碳纳米管后材料和物理学领域的又一个研究热点,各国学者都对石墨烯结构和性能展开大量研究。石墨烯是一种结晶度高并且能够稳定存在的单原子厚度碳膜,由碳原子六元环紧密构成的两维晶体,具有重复周期的蜂窝状点阵结构,可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆积成三维的石墨。由于这种特殊的结构,石墨烯具备许多优异性能。通过碳纳米管、Fe3O4纳米线和石墨烯、纳米银线构筑形成复合抗静电材料,四种填料实现了在聚合物基体中填料的低接触电阻、高导电网络的有效搭建。突破性的采用二维和一维的金属纳米材料协同改性聚酯薄膜的抗静电性能,利用两者各自的优异性能的同时,也利用到它们一起产生的协同效应,因此使制备的复合材料具有优异的抗静电性能。通过检测,本发明申请制备的抗静电材料表面电阻率低至105~6Ω,同时抗静电能力持久。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本发明实施例中,一种纳米银线抗静电聚酯薄膜的制备方法,包括如下步骤:
步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管5份,Fe3O4纳米线5份,石墨烯3份,纳米银线1份,表面处理剂0.6份,抗氧剂0.5份;
步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内,由双螺杆共混造粒机将组分进行熔融混合成颗粒状,双螺杆共混造粒机的加热温度为280度,真空度为100Pa;
步骤三:将混料送入至干燥塔内进行烘干结晶,干燥塔预热温度为175℃,干燥至含水率≤200ppm;
步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以72℃/min速度冷却,将冷却后的固体在110-115℃条件下进行纵向拉伸,在130-145℃条件下进行横向拉伸,在200-235℃进行热定型,得到抗静电聚酯薄膜。
需要说明的是,Fe3O4纳米线通过模板剂诱导从而控制各向异性生长最终形成线性结构,Fe3O4纳米线通过以下制备方法得到:
步骤一:称取硫代硫酸钠和硫酸亚铁加入PEG和水的混合溶液中,用NaOH调节pH为1l,然后倒入反应釜内衬中;
步骤二:密封反应釜,在180℃下保温8h,反应结束冷却至室温;
步骤三:将黑色沉淀物用去离子水洗涤,去除多余的离子杂质,用磁铁进行沉降收集,60℃真空干燥,得到Fe3O4纳米线。
所述石墨烯的制备方式为将氧化石墨在600-1000℃,0.5-3min条件下还原剥离。
所述纳米银线的制备步骤为:在10-400mL0.1-0.5mMFeCl3的乙二醇溶液中,加入0.15-0.75M的PVP,搅拌至PVP完全溶解后,再逐滴加入10-400mL0.1-0.5M的AgNO3溶液,搅拌10-20分钟。然后把混合液转移至水热合成反应釜内,在160℃下反应2-4小时。自然冷却,即得到纳米银线。
所述相容剂由马来酸酐接枝丙烯腈-丁二烯-苯乙烯三元共聚物、马来酸酐接枝乙烯-辛烯共聚物、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元无规共聚物中的一种或多种按任意配比混合组成。
所述表面处理剂由硅烷偶联剂、甲基硅油、硅酮粉中的一种或多种按任意配比混合组成。
所述抗氧剂由抗氧剂1010、抗氧剂168中的一种或两种按任意配比混合组成。
所述碳纳米管直径10-15nm,长度1-10μm;Fe3O4纳米线直径20-50nm,长度10-50μm。
所述石墨烯的厚度为0.35~20nm,直径为1~20μm。
所述纳米银线的直径为40~500nm,长度为5~50μm。
所述碳纳米管直径10-15nm,长度1-10μm;Fe3O4纳米线直径20-50nm,长度10-50μm。
实施例2
一种纳米银线抗静电聚酯薄膜的制备方法,包括如下步骤:
步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯70份,聚对苯二甲酸乙二醇酯30份,相容剂7.5份,碳纳米管6.5份,Fe3O4纳米线7.5份,石墨烯4份,纳米银线3份,表面处理剂0.8份,抗氧剂0.75份;
步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内,由双螺杆共混造粒机将组分进行熔融混合成颗粒状,双螺杆共混造粒机的加热温度为280度,真空度为100Pa;
步骤三:将混料送入至干燥塔内进行烘干结晶,干燥塔预热温度为175℃,干燥至含水率≤200ppm;
步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以72℃/min速度冷却,将冷却后的固体在110-115℃条件下进行纵向拉伸,在130-145℃条件下进行横向拉伸,在200-235℃进行热定型,得到抗静电聚酯薄膜。
实施例3
一种纳米银线抗静电聚酯薄膜的制备方法,包括如下步骤:
步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯80份,聚对苯二甲酸乙二醇酯40份,相容剂10份,碳纳米管8份,Fe3O4纳米线10份,石墨烯5份,纳米银线5份,表面处理剂1份,抗氧剂1份;
步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内,由双螺杆共混造粒机将组分进行熔融混合成颗粒状,双螺杆共混造粒机的加热温度为280度,真空度为100Pa;
步骤三:将混料送入至干燥塔内进行烘干结晶,干燥塔预热温度为175℃,干燥至含水率≤200ppm;
步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以72℃/min速度冷却,将冷却后的固体在110-115℃条件下进行纵向拉伸,在130-145℃条件下进行横向拉伸,在200-235℃进行热定型,得到抗静电聚酯薄膜。
对比例1
步骤一中准备的原料重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管5份,Fe3O4纳米线5份,石墨烯3份,纳米银线0份,表面处理剂0.6份,抗氧剂0.5份。
对比例2
步骤一中准备的原料重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管5份,Fe3O4纳米线5份,石墨烯0份,纳米银线1份,表面处理剂0.6份,抗氧剂0.5份。
对比例3
步骤一中准备的原料重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管5份,Fe3O4纳米线0份,石墨烯3份,纳米银线1份,表面处理剂0.6份,抗氧剂0.5份。
对比例4
步骤一中准备的原料重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管0份,Fe3O4纳米线5份,石墨烯0份,纳米银线1份,表面处理剂0.6份,抗氧剂0.5份。
对比例5
步骤一中准备的原料重量组分分别为聚对苯二甲酸丁二醇酯60份,聚对苯二甲酸乙二醇酯20份,相容剂5份,碳纳米管5份,Fe3O4纳米线5份,石墨烯0份,纳米银线1份,表面处理剂0.6份,抗氧剂0.5份。
性能检测
将实施例1-5中制备的抗静电聚酯薄膜:用GB/T1410-2006进行表面电阻率测定。
表1性能检测结果
实施例1 10<sup>6~7</sup>Ω
实施例2 10<sup>5~6</sup>Ω
实施例3 10<sup>6~7</sup>Ω
对比例1 10<sup>8~9</sup>Ω
对比例2 10<sup>8~9</sup>Ω
对比例3 10<sup>8~9</sup>Ω
对比例4 10<sup>8~9</sup>Ω
对比例5 10<sup>8~9</sup>Ω
表1
由表1可知本发明申请制备的纳米银线复合抗静电聚酯薄膜表面电阻率最低可达105~6Ω,具有良好的抗静电性能。
本发明制备的抗静电聚酯薄膜通过碳纳米管、Fe3O4纳米线和石墨烯、纳米银线构筑形成复合抗静电材料,四种填料实现了在聚合物基体中填料的低接触电阻、高导电网络的有效搭建。突破性的采用二维和一维的金属纳米材料协同改性聚酯薄膜的抗静电性能,利用两者各自的优异性能的同时,也利用到它们一起产生的协同效应,因此使制备的复合材料具有优异的抗静电性能。通过检测,本发明申请制备的抗静电材料表面电阻率低至105 -6Ω,同时抗静电能力持久。

Claims (10)

1.一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,包括如下步骤:
步骤一:准备原料,原料的重量组分分别为聚对苯二甲酸丁二醇酯60~80份,聚对苯二甲酸乙二醇酯20~40份,相容剂5~10份,碳纳米管5~8份,Fe3O4纳米线5~10份,石墨烯3~5份,纳米银线1~5份,表面处理剂0.6~1份,抗氧剂0.5~1份;
步骤二:将上述原料混合均匀后加入到双螺杆共混造粒机内,由双螺杆共混造粒机将组分进行熔融混合成颗粒状,双螺杆共混造粒机的加热温度为280度,真空度为100Pa;
步骤三:将混料送入至干燥塔内进行烘干结晶,干燥塔预热温度为175℃,干燥至含水率≤200ppm;
步骤四:干燥后的混料通过熔融挤出设备中挤出成型后以72℃/min速度冷却,将冷却后的固体在110-115℃条件下进行纵向拉伸,在130-145℃条件下进行横向拉伸,在200-235℃进行热定型,得到抗静电聚酯薄膜。
2.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,Fe3O4纳米线通过以下制备方法得到:
步骤一:称取硫代硫酸钠和硫酸亚铁加入PEG和水的混合溶液中,用NaOH调节pH为1l,然后倒入反应釜内衬中;
步骤二:密封反应釜,在180℃下保温8h,反应结束冷却至室温;
步骤三:将黑色沉淀物用去离子水洗涤,去除多余的离子杂质,用磁铁进行沉降收集,60℃真空干燥,得到Fe3O4纳米线。
3.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述石墨烯的制备方式为将氧化石墨在600-1000℃,0.5-3min条件下还原剥离。
4.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述纳米银线的制备步骤为:在10-400mL0.1-0.5mMFeCl3的乙二醇溶液中,加入0.15-0.75M的PVP,搅拌至PVP完全溶解后,再逐滴加入10-400mL0.1-0.5M的AgNO3溶液,搅拌10-20分钟,然后把混合液转移至水热合成反应釜内,在160℃下反应2-4小时,自然冷却,即得到纳米银线。
5.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述相容剂由马来酸酐接枝丙烯腈-丁二烯-苯乙烯三元共聚物、马来酸酐接枝乙烯-辛烯共聚物、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯三元无规共聚物中的一种或多种按任意配比混合组成。
6.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述表面处理剂由硅烷偶联剂、甲基硅油、硅酮粉中的一种或多种按任意配比混合组成。
7.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述抗氧剂由抗氧剂1010、抗氧剂168中的一种或两种按任意配比混合组成。
8.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述碳纳米管直径10-15nm,长度1-10μm;Fe3O4纳米线直径20-50nm,长度10-50μm。
9.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述石墨烯的厚度为0.35~20nm,直径为1~20μm。
10.根据权利要求1所述的一种纳米银线抗静电聚酯薄膜的制备方法,其特征在于,所述纳米银线的直径为40~500nm,长度为5~50μm。
CN202211078449.0A 2022-09-05 2022-09-05 一种纳米银线抗静电聚酯薄膜的制备方法 Pending CN115260556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211078449.0A CN115260556A (zh) 2022-09-05 2022-09-05 一种纳米银线抗静电聚酯薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211078449.0A CN115260556A (zh) 2022-09-05 2022-09-05 一种纳米银线抗静电聚酯薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN115260556A true CN115260556A (zh) 2022-11-01

Family

ID=83755473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211078449.0A Pending CN115260556A (zh) 2022-09-05 2022-09-05 一种纳米银线抗静电聚酯薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115260556A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144150A (zh) * 2023-01-04 2023-05-23 三峡大学 Fe3O4/FeSiAl/GR复合增强PLA基3D打印吸波线材及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992781A (zh) * 2015-07-10 2015-10-21 上海纳米技术及应用国家工程研究中心有限公司 一种石墨烯基三元复合材料的制备方法
CN106890996A (zh) * 2017-02-23 2017-06-27 重庆市科学技术研究院 一种纳米银线及其制备方法
CN112940464A (zh) * 2021-02-03 2021-06-11 浙江通力新材料科技股份有限公司 一种高性能pbt/pet电磁屏蔽复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992781A (zh) * 2015-07-10 2015-10-21 上海纳米技术及应用国家工程研究中心有限公司 一种石墨烯基三元复合材料的制备方法
CN106890996A (zh) * 2017-02-23 2017-06-27 重庆市科学技术研究院 一种纳米银线及其制备方法
CN112940464A (zh) * 2021-02-03 2021-06-11 浙江通力新材料科技股份有限公司 一种高性能pbt/pet电磁屏蔽复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144150A (zh) * 2023-01-04 2023-05-23 三峡大学 Fe3O4/FeSiAl/GR复合增强PLA基3D打印吸波线材及制备方法
CN116144150B (zh) * 2023-01-04 2024-05-28 三峡大学 Fe3O4/FeSiAl/GR复合增强PLA基3D打印吸波线材及制备方法

Similar Documents

Publication Publication Date Title
An et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections
Ma et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review
Wang et al. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation
Ma et al. Nanofibrillated Cellulose/MgO@ rGO composite films with highly anisotropic thermal conductivity and electrical insulation
Cao et al. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
Patel et al. Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/graphene nanoplatelets composites
CN108165018A (zh) 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
EP3360629B1 (en) Method for preparing new silver nanowires with uniform aspect ratio and nodes
CN115260556A (zh) 一种纳米银线抗静电聚酯薄膜的制备方法
CN103242630B (zh) 一种聚对苯二甲酸乙二酯(pet)基电磁屏蔽复合材料及其制备方法
CN106671386B (zh) 轴径双向电导率可控导电聚合物管及其制备方法
CN105254993B (zh) 一种导电高分子材料及其制备方法
Wang et al. Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites
KR20150041400A (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재를 이용한 고분자 나노복합체 및 그 제조방법
Wang et al. Design of rGO-BN hybrids for enhanced thermal management properties of polyurethane composites fabricated by 3D printing
CN114874485B (zh) 一种高导热聚四氟乙烯纳米纤维膜及其制造工艺
Ouyang et al. Preparation of branched Al2O3 and its synergistic effect with carbon nanotubes on the enhancement of thermal conductive and electrical insulation properties of silicone rubber composites
CN107189103B (zh) 一种导电填料、其制备方法及用途
CN111303521A (zh) 一种柔性高导热聚合物纳米复合膜及制备方法
CN110229473B (zh) 一种pet纳米复合材料及其制备方法
Hayasaki et al. Effect of the uniaxial orientation on the polymer/filler nanocomposites using phosphonate-modified single-walled carbon nanotube with hydro-or fluorocarbons
Zhang et al. Great thermal conductivity enhancement of silicone composite with ultra-long copper nanowires
CN112876789A (zh) 一种导电粒子填充聚合物层状复合介电材料及其制备方法
Du et al. Homogeneously dispersed urchin-structured Fe3O4 with graphitic carbon spines inside poly (vinylidene fluoride) for efficient thermal conduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 518129 1st-3rd floors of No.6 workshop of JiangHao (Bantian) industrial plant, Bantian street, Longgang District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Xilu New Material Technology Co.,Ltd.

Address before: 518129 1st-3rd floors of No.6 workshop of JiangHao (Bantian) industrial plant, Bantian street, Longgang District, Shenzhen City, Guangdong Province

Applicant before: SHENZHEN XILIU PHOTOELECTROICITE TECHNIC CO.,LTD.

Country or region before: China