CN115259850A - 多晶yag烧结体及其制造方法 - Google Patents
多晶yag烧结体及其制造方法 Download PDFInfo
- Publication number
- CN115259850A CN115259850A CN202210783204.1A CN202210783204A CN115259850A CN 115259850 A CN115259850 A CN 115259850A CN 202210783204 A CN202210783204 A CN 202210783204A CN 115259850 A CN115259850 A CN 115259850A
- Authority
- CN
- China
- Prior art keywords
- sintered body
- less
- yag sintered
- sintering
- polycrystalline yag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7706—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/663—Oxidative annealing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Lasers (AREA)
Abstract
本发明涉及多晶YAG烧结体及其制造方法。一种多晶YAG烧结体,其特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,最大值(A,B,C)小于等于150mm,最小值(A,B,C)大于20mm且小于等于40mm,并且在使波长300nm~1500nm(但是,不包括存在由添加元素引起的吸收的波长)的光透过时的光损耗系数为0.002cm‑1以下。另外,一种多晶YAG烧结体,其特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,最大值(A,B,C)大于150mm且小于等于300mm,最小值(A,B,C)大于5mm且小于等于40mm,并且在使波长300nm~1500nm(但是,不包括存在由添加元素引起的吸收的波长)的光透过时的光损耗系数为0.002cm‑1以下。本发明的实施方式的课题在于提供一种大型且透明的多晶YAG烧结体及其制造方法。
Description
本申请是申请日为2018年10月29日、申请号为201880036770.8的中国专利申请的分案申请。
技术领域
本发明涉及多晶YAG(钇铝石榴石)烧结体及其制造方法。
背景技术
YAG(钇铝石榴石)为包含钇和铝的复合氧化物(Y3Al5O12)的石榴石结构的晶体。一直以来,已知:1)通过添加在稀土元素中的从原子序数57的Ce至原子序数70的Yb的元素而使构成YAG的Y元素进行置换固溶;或者2)通过添加在过渡金属中的从原子序数22的Ti至原子序数28的Ni的元素而使构成YAG的Al元素进行置换固溶,由此置换后的元素成为发光中心并且具有强荧光,并且使用其制作了荧光体、激光介质等。另外,由于不添加任何元素的YAG自身在可见光区域中是透明的且坚硬(硬度8.5),因此可以用作能够在严苛环境(等离子体等)下使用的窗(窗口)用材料。
迄今为止,这样的YAG陶瓷通过将容易制作的粉末形状包埋在树脂中而使用、或者通过生长单晶而使用。但是,虽然容易制作粉末,但是发光容易被散射,发光效率不高。另一方面,虽然单晶的散射少从而发光效率高,但是由于在单晶的生长时在接近2000℃的高温下从氧化物的熔融液中生长单晶,因此需要使用在高温下具有抗氧化性的极其昂贵的铱,并且生长速度也必须设定为极慢的约1mm/小时,否则会产生大量缺陷,从而使透射性变差、晶体自身的强度也变差。另外,所生长的单晶中存在大量微裂纹,存在在加工成所要求的形状时发生预料外的破裂的问题。
近年来,已经实现了通过使用与制作普通的陶瓷时同样的成型烧结的方法来制作尽可能抑制存在于晶界处的孔隙(空隙)的多晶YAG,并且已知该多晶YAG显示出优异的透射特性,尽管略逊色于单晶。另外,由于通过与陶瓷同样的粉末烧结而制作,因此没有在单晶的熔融液生长中观察到的添加元素的偏析现象(在所生长的锭中在添加元素的浓度方面观察到梯度的现象),并且由于添加元素的固溶极限也比单晶生长时高,因此能够制作抵消比单晶差的透射特性的程度的明亮的荧光体、发光强度高的激光介质。作为涉及多晶YAG烧结体的发明,例如可以列举专利文献1、2。
由于激光能够产生高的光量密度,因此能够对物质施加局部极强的电磁场,近年来,进行了大量的应用激光的研究。例如,金属等的切割(激光加工);通过对熔融锡等的液滴照射激光而形成等离子体,并利用该等离子体生成极远紫外光从而应用于超微细光刻用光源;利用激光有效地进行重粒子加速,并对患部照射进行加速后的重粒子从而有助于癌症治疗;等。在这样的领域中使用的激光器被称为高功率激光器,是在激光器中光强度特别强的激光器,由于大型品的制作比较容易,因此迄今为止使用添加了钕或镱的玻璃等作为高功率激光器用的激光介质。
然而,添加了钕等的玻璃等的机械强度弱、导热性也差,因此一旦振荡时,冷却要花费数小时,在连续使用上存在问题。在这一点上,由于上述的YAG的机械强度高并且导热性也良好,因此特别适合作为高功率激光器用激光介质。另外,激光介质越大,越能够构建高输出功率的激光器,此外,由于通过粉末烧结而制作,因而容易大型化,因此可以说在质量上可与单晶媲美的多晶YAG(烧结体)是最佳的激光介质。另一方面,自1995年首次制作激光振荡的多晶YAG以来已经20年以上,但是迄今为止最大的尺寸为约φ100mm。
现有技术文献
专利文献
专利文献1:日本专利第4237707号
专利文献2:日本专利第5019380号
发明内容
发明所要解决的问题
本发明的课题在于提供一种大型且透明的多晶YAG烧结体及其制造方法。
用于解决问题的手段
本发明的实施方式为一种多晶YAG烧结体,其特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,A、B、C中的最大值小于等于150mm,A、B、C中的最小值大于20mm且小于等于40mm,并且在使波长300nm~1500nm(但是,不包括存在由添加元素引起的吸收的波长)的光透过时的光损耗系数为0.002cm-1以下。
另外,本发明的实施方式为一种多晶YAG烧结体,其特征在于,A、B、C中的最大值大于150mm且小于等于300mm,A、B、C中的最小值大于5mm且小于等于40mm,并且在使波长300nm~1500nm(但是,不包括存在由添加元素引起的吸收的波长)的光透过时的光损耗系数为0.002cm-1以下。
另外,本发明的实施方式为一种多晶YAG烧结体的制造方法,其为上述多晶YAG烧结体的制造方法,其特征在于,将含有Y2O3粉末和Al2O3粉末的混合粉末成型而制作相对密度为60%以上的成型体,在对该成型体进行烧结时,在升温工序和保持工序中将真空度保持在1×10-2Pa以下的同时在1600℃~1900℃下进行烧结,在烧结后,将冷却速度设定为100℃/小时以下直至1100℃。
发明效果
根据本发明的实施方式,能够稳定地制造大型且透明的多晶YAG烧结体。
附图说明
图1为本发明的实施方式所涉及的散射光测定系统的示意图。
附图标记
1:光源(卤素灯)
2:分光器
3:透镜
4:透镜
5:斩波器
6:积分器
7:挡板
8:光检测器(光电倍增管)
9:光检测器(光电倍增管)
10:锁定放大器
11:试样
12:信号
13:信号
14:信号
具体实施方式
近年来,正在进行将激光应用于材料加工等的研究,并且要求输出功率更高的激光器。一直以来,使用添加了Nd、Yb等的YAG陶瓷作为激光介质,但是如果能够制作比以往更大型的YAG陶瓷,则能够发出更多的激发光,因此能够制作高输出功率的激光器。
由于多晶YAG通过粉末烧结而制作,因此本来能够制作成任意的形状。然而,随着烧结体逐渐大型化,在其中心部残留烧结不均,从整体来看成为不透明的烧结体。例如,在现有技术中,烧结体的一边(或直径)大至100mm时,另一边(或厚度)优选为约10mm,并且20mm为极限。另外,烧结体的一边(或直径)大于150mm时,制作另一边(或厚度)大于5mm的烧结体变得非常困难。
通过对大型的YAG烧结体的烧结工艺进行了深入研究发现,由于烧结从外周部分开始,因此容易在中心部残存残留孔(烧结不均),随着大型化而其变得显著。而另一方面,发现:不是如专利文献1中所示通过事先制作具有YAG组成的粉体并对该粉体进行烧结而制作多晶YAG,而是使用由混合Y2O3、Al2O3等单独的原料而得到的粉末制作成型体并在对其进行加热而使其反应的同时制作多晶YAG的反应烧结有利于大型化。
基于这样的发现,本发明的实施方式所涉及的YAG烧结体的特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,A、B、C中的最大值小于等于150mm,A、B、C中的最小值大于20mm且小于等于40mm;或者A、B、C中的最大值大于150nm且小于等于300mm,A、B、C中的最小值大于5mm且小于等于40mm,并且在使波长300nm~1500nm(但是,不包括存在由添加元素引起的吸收的波长)的光透过时的光损耗系数为0.002cm-1以下。如果光损耗系数为0.002cm-1以下,则可以说透射特性优异,能够制作明亮的荧光体、发光强度高的激光介质。这样的大型且透明的多晶YAG烧结体可以说是迄今为止不存在的新型烧结体。
上述YAG烧结体为通过粉末烧结法制作的烧结体,包含多晶,并且具有包含钇和铝的复合氧化物(Y3Al5O12)的石榴石结构的晶体。可以通过添加在稀土元素中的从原子序数57的Ce至原子序数70的Yb的元素而使构成上述YAG的Y元素进行置换固溶;也可以通过添加在过渡金属中的从原子序数22的Ti至原子序数28的Ni的元素而使构成YAG的Al元素进行置换固溶。在本公开中,将这些元素称为“添加元素”。置换后的元素成为发光中心,并且能够具有强荧光。当然,本发明的实施方式所涉及的YAG烧结体也可以是不添加任何元素的YAG本身。
对于本发明的实施方式所涉及的YAG烧结体而言,在将包围该烧结体的最小的长方体(假想)的尺寸设为Amm×Bmm×Cmm时,A、B、C中的最大值、即A、B、C中最大的值小于等于150mm;A、B、C中的最小值、即A、B、C中最小的值大于20mm且小于等于40mm。更优选大于等于30mm。或者,A、B、C中的最大值、即A、B、C中最大的值大于150mm且小于等于300mm;A、B、C中的最小值、即A、B、C中最小的值大于5mm且小于等于40mm。更优选大于等于10mm。在本申请中,将该尺寸的烧结体称为“大型的”或“大型化的”烧结体。另外,上述烧结体的尺寸为烧结后(烧结刚结束后)的尺寸,但是在不脱离本发明的主旨的范围内也包含通过对该烧结体进行切割等而使尺寸变小后的烧结体。另外,作为烧结体的形状,不仅可以为圆盘状,也可以为长方体。
迄今为止已知的多晶YAG的激光介质的直径为约100mm、厚度为约10mm,在想要将其大型化的情况下,由于烧结体包含多种原料(成分),并且各自的物性不同,因此进行均匀的烧结反应是困难的。此外,由于像激光介质那样在整个面内要求高透明性,因此与其它用途相比YAG烧结体的大型化极其困难。然而,本发明中,通过后述的方法首次实现了大幅提高其尺寸、并且光损耗系数小的烧结体。因此,通过使用这样的大型的激光介质,能够构建高输出功率的激光器。
本发明的实施方式中的光损耗系数为在使没有由添加元素引起的吸收的波长的光透过的情况下的光损耗系数。例如在不引入任何添加元素的情况下,测量在波长300nm~1500nm的范围内的光损耗系数。另外,例如在添加了Nd的情况下,由于在波长300nm~1000nm的范围内存在光的吸收,因此测量除上述范围以外的波长、例如波长1064nm的光损耗系数。在烧结体由于烧结不均等而变得不透明的情况下,在测定波长范围(300nm~1500nm)的整个范围内光损耗系数降低,因此即使如上所述除去存在由添加元素引起的光的吸收的波长范围的光损耗系数,也不会产生特别的问题。需要说明的是,例如通过制作引入了添加元素的YAG单晶并对其进行吸收测定,能够事先掌握由添加元素引起的光的吸收波长。
在本发明的实施方式中,光损耗系数的测定如下所述进行。
图1中示出了散射光测定系统的示意图。来自光源1(卤素灯)的光通过分光器2而成为所选择的特定波长的单色光并发射出。利用2片透镜3、4使该光成为平行光并入射到积分球6中。在穿过该积分球6的位置处设置光检测器(光电倍增管)9,观测透射光强度。将其信号14输入到锁定放大器10中。
另一方面,在积分球内与透射光的行进方向成90度的位置处隔着挡板7设置另一个光检测器(光电倍增管)8。该光检测器8观测散射光强度。另一方面,挡板7为了消除由于散射光直接进入、测定对象的散射光存在方向依赖性而导致的强度偏差而插入。将来自该光检测器8的信号13也输入到锁定放大器10中。在透镜3、4之间放入斩波器5,以恒定的周期(频率f)打开/关闭光,将其信号12作为参照信号输入到锁定放大器10中。
由此,将测定信号以在频率f下进行调制后的状态输入,并利用锁定放大器10除去调制成分,从而得到想要求出的信号强度。通常,在自然界中包含被称为1/f波动的噪声成分,频率f越小则噪声越大,频率f越大则噪声越小。为了通过利用斩波器的调制而在大的频率f下进行测定从而减少来自外界的噪声的影响、能够进行更准确的测定,采用这样的构成。
将作为测定对象的试样11设置在积分球的中心,但是在此之前,首先在不放置试样的情况下测定透射光强度I(T)0、背景散射光强度I(S)0。接着,将对表面进行了整面研磨的圆筒形的厚度不同的多个试样11(厚度Ln(n=1,2…))以透射光与圆筒形的底面垂直的方式设置在积分球的中心,并测定透射光强度I(T)n、散射光强度I(S)n。然后,利用最小二乘法对下式进行拟合处理,由此求出表面散射系数R(T)、R(S)、光损耗系数A(T)、A(S)。
然后,在所求出的A(T)、A(S)中,采用值较大的一方作为光损耗系数值。
[数学式1]
[数学式2]
接着,对本发明的实施方式所涉及的多晶YAG烧结体的制造方法进行说明。
(关于原料粉末)
准备Y2O3粉末、Al2O3粉末作为原料。另外,根据需要准备含有上述添加元素的氧化物粉末(例如Nd2O3粉末)。这些原料粉末优选使用平均粒径为0.3μm~10μm的粉末。原料粉末的纯度优选为4N以上,但是对于添加元素而言,在添加比例小的情况下,可以根据添加元素的量降低纯度。例如,在使Nd置换1%的Y的情况下,即使在Nd2O3原料粉末中含有1%的杂质,在与Y2O3、Al2O3合并的情况下,Nd2O3的杂质量变为整体的0.01%,相当于4N。
另外,准备含有Ca、Mg、Si、Zr、La的氧化物(CaO、MgO、SiO2、ZrO2、La2O3)、氟化物(CaF2等)、碳酸盐(CaCO3)、复合氧化物(MgAl2O4等)的粉末作为烧结助剂。
(关于混合)
将上述Y2O3粉末、Al2O3粉末和根据需要的含有添加元素的氧化物粉末、烧结助剂投入球磨机等混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行4小时~20小时的湿式混合。此时,为了抑制由原料粉末的聚集导致的混合不均,优选添加适当的量的分散剂。混合时间根据所使用的原料粉末的粒径、溶剂以及介质相对于原料的比率、介质直径从上述范围内确定。
混合后,可以向从混合粉碎机中取出的浆料中进一步添加液体状态的烧结助剂。例如,可以添加溶解在水中的金属盐(Ca(C3H5O3)2、CaCl2、乳酸钙水溶液)等。此外,相对于浆料中含有的粉体量,可以以达到0.005重量%~0.01重量%的方式添加聚乙烯醇、丙烯酸类胶粘剂、碱性氯化铝(Al2(OH)nCl6-n)m(0<n<6、m≤10)、乳酸铝作为粘结剂。
(关于造粒、成型)
接着,对混合后的浆料进行干燥,然后利用筛子强制过筛,或者进行喷雾干燥而制作造粒粉。可以在该时刻添加烧结助剂。例如可以添加有机金属化合物Si(OC2H5)4)、溶解在水中的金属盐(Ca(C3H5O3)2、CaCl2、乳酸钙水溶液)等。此外,相对于粉体量,可以以达到0.005重量%~0.01重量%的方式添加聚乙烯醇、丙烯酸类胶粘剂、碱性氯化铝(Al2(OH)nCl6-n)m(0<n<6、m≤10)、乳酸铝作为粘结剂。
将其放入模具(例如,φ150mm×40mm)中,进行冷压,然后,在150MPa~200MPa下进行CIP成型。在制作成型体时,可以使用上述的聚乙烯醇、丙烯酸类胶粘剂作为粘结剂,但是有时在烧结时这些有机成分消失,其部分成为间隙从而使烧结性变差。另一方面,碱性氯化铝、乳酸铝在干燥时凝胶化从而使周围的粉体粘结,另外,在烧结后成为氧化铝成分而残留从而能够减小间隙,通过仅使用碱性氯化铝、乳酸铝、或者与聚乙烯醇、丙烯酸类胶粘剂混合使用,能够显著有助于后述的烧结前时刻的相对密度的提高,能够提高烧结性。
(关于预加热)
接着,为了除去水分,在大气中、在100℃~300℃下将上述成型体加热4小时~6小时。然后,为了除去烧结助剂、粘结剂等中含有的有机成分等,在800℃~1000℃下加热1小时~3小时,使成型体的相对密度达到60%以上。如上所述,虽然为了除去多余的成分而进行加热,但是急剧地在高的温度下进行加热(在800℃~1000℃下进行加热)时,有时由于水分的急剧膨胀而导致成型体破裂,因此优选如上所述以两个阶段进行加热。以这样的方式在烧结前的时刻使成型体的相对密度达到60%以上是重要的。
(关于烧结、HIP)
在对成型体进行烧结时,在升温工序和保持工序中,优选将真空度保持在1×10- 2Pa以下。认为在升温工序和保持工序中使真空度降低的最大原因为残留水分。用作多晶YAG的主要原料的Y2O3具有吸收性,另外,Al2O3虽然不具有像Y2O3一样程度的吸收性,但是也具有吸收性。认为原因是在成型体的制作时或在加热装置的填充时吸收空气中的水分。特别是在大型成型体的情况下,不会在每个部位都均匀地吸水,存在局部差异。这会导致反应烧结时的加热不均,其结果是,发生由烧结后的密度不均、热应变引起的翘曲和不透明区域。因此,为了进行均匀的烧结,以这样的方式调节真空度是重要的。
具体而言,在真空加热炉中填充成型体,然后在使旋转泵工作的同时在200℃~300℃下加热约半天。几个小时后,真空度急剧变差,有时超过100Pa,但是逐渐稳定并达到1Pa以下。在200℃~300℃下的加热处理后,冷却至常温,确认真空度不变差后进行烧结。关于烧结,在1700℃~1900℃下烧结10小时~20小时。此时,在含有氮气的气氛下进行烧结时,由于氮气残留在烧结体中而导致密度降低,因此优选在真空、还原性气氛、或不含有氮气的氧气气氛下进行烧结。
另外,在1700℃~1900℃的高温下进行加热时,关闭加热器后的冷却速度快,特别是靠近炉侧面的部分的冷却速度显著快,特别是在大型化的情况下,烧结体内部的热分布变大,从而由于在内部产生的热应变而导致烧结体发生破裂。因此,优选将降温时的冷却速度保持在100℃/小时以下直至1100℃。
然后,在Ar等非活性气氛下、在1600℃~1800℃、100MPa~200MPa下进行HIP(热等静压)1小时~4小时。
(关于退火)
然后,在大气中、在1300℃~1500℃下将上述得到的烧结体加热5小时~15小时。由此,能够使在HIP后的烧结体中残留的内部应力松弛,另外,在进行真空加热的情况下,产生了氧缺损,因此可以补充不足的氧。
由此,能够得到大型且透明的多晶YAG烧结体。
[实施例]
以下,基于实施例和比较例进行说明。需要说明的是,本实施例只不过是一个例子,并不受该例任何限制。即,本发明仅受权利要求书限制,包含本发明所包含的实施例以外的各种变形。
(实施例1)
称量规定量的平均粒径为5μm的Y2O3粉末、平均粒径为0.4μm的Al2O3粉末、作为添加元素的平均粒径为5μm的Nd2O3粉末,投入混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行5小时的湿式混合,从而得到了浆料。在该浆料中添加乳酸铝作为粘结剂并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为25μm的造粒粉。再向其中添加烧结助剂(Si(OC2H5)4)并进行混合。
接着,将该造粒粉放入模具(φ210mm×60mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中在100℃下将其加热5小时,然后在900℃下加热2小时。在该时刻相对密度达到60%。
接着,在真空加热炉中在200℃下在进行抽真空的同时将该成型体加热约半天,然后在保持1×10-2Pa以下的真空度的同时在1750℃下进行20小时的烧制,然后以100℃/小时以下的降温速度冷却至1100℃,然后进行缓慢冷却。接着,在Ar气氛中、在1750℃、147MPa、4小时的条件下进行HIP,然后在大气炉中在1300℃下加热10小时,从而制作了φ150mm×40mm的多晶YAG烧结体。
关于通过以上方式得到的多晶YAG烧结体,从面内随机选择10个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,在任何一个位置处,其光损耗系数都为0.002cm-1以下。
(实施例2)
称量规定量的平均粒径为5μm的Y2O3粉末、平均粒径为0.4μm的Al2O3粉末、作为添加元素的平均粒径为5μm的Nd2O3粉末,投入混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行5小时的湿式混合,从而得到了浆料。在该浆料中添加乳酸铝作为粘结剂并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为25μm的造粒粉。再向其中添加烧结助剂(Si(OC2H5)4)并进行混合。
接着,将该造粒粉放入模具(φ280mm×40mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中在100℃下将其加热5小时,然后在900℃下加热2小时。在该时刻相对密度达到60%。
接着,在真空加热炉中在200℃下在进行抽真空的同时将该成型体加热约半天,然后在保持1×10-2Pa以下的真空度的同时在1750℃下进行20小时的烧制,然后以100℃/小时以下的降温速度冷却至1100℃,然后进行缓慢冷却。接着,在Ar气氛中、在1750℃、147MPa、4小时的条件下进行HIP,然后在大气炉中在1300℃下加热10小时,从而制作了φ200mm×20mm的多晶YAG烧结体。
关于通过以上方式得到的多晶YAG烧结体,从面内随机选择10个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,在任何一个位置处,其光损耗系数都为0.002cm-1以下。
(实施例3)
称量规定量的平均粒径为5μm的Y2O3粉末、平均粒径为0.4μm的Al2O3粉末、作为添加元素的平均粒径为5μm的Nd2O3粉末,投入混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行5小时的湿式混合,从而得到了浆料。在该浆料中添加乳酸铝作为粘结剂并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为25μm的造粒粉。再向其中添加烧结助剂(Si(OC2H5)4)并进行混合。
接着,将该造粒粉放入模具(φ400mm×40mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中在100℃下将其加热5小时,然后在900℃下加热2小时。在该时刻相对密度达到60%。
接着,在真空加热炉中在200℃下在进行抽真空的同时将该成型体加热约半天,然后在保持1×10-2Pa以下的真空度的同时在1750℃下进行20小时的烧制,然后以100℃/小时以下的降温速度冷却至1100℃,然后进行缓慢冷却。接着,在Ar气氛中、在1750℃、147MPa、4小时的条件下进行HIP,然后在大气炉中在1300℃下加热10小时,从而制作了φ300mm×20mm的多晶YAG烧结体。
关于通过以上方式得到的多晶YAG烧结体,从面内随机选择15个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,在任何一个位置处,其光损耗系数都为0.002cm-1以下。
(比较例1)
称量规定量的通过共沉淀法合成的平均粒径为1μm的(Y1-xNdx)3Al5O3(x=0.01)粉末,投入混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行5小时的湿式混合,从而得到了浆料。在该浆料中添加聚乙烯醇水溶液作为粘结剂并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为20μm的造粒粉。再向其中添加烧结助剂(Si(OC2H5)4)并进行混合。
接着,将该造粒粉放入模具(φ210mm×40mm、φ210mm×50mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中在100℃下将其加热5小时,然后在900℃下加热2小时。在该时刻相对密度都为60%以上。
接着,在真空加热炉中在1800℃下对该成型体进行10小时的烧制,然后在Ar气氛中、在1750℃、147MPa、4小时的条件下进行HIP,然后在大气炉中在1300℃下加热10小时,由此制作了φ150mm×20mm、φ150mm×30mm的多晶YAG烧结体。
关于通过以上方式得到的多晶YAG烧结体,从面内随机选择10个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,φ150mm×20mm的多晶YAG烧结体的光损耗系数大于0.002cm-1,φ150mm×30mm的多晶YAG烧结体的光损耗系数为0.05cm-1。
(比较例2)
称量规定量的平均粒径为5μm的Y2O3粉末、平均粒径为0.4μm的Al2O3粉末、作为添加元素的平均粒径为5μm的Nd2O3粉末,投入混合粉碎机中,利用以水作为溶剂、以氧化铝作为介质的球磨机进行5小时的湿式混合,从而得到了浆料。在该浆料中添加聚乙烯醇水溶液作为粘结剂并进行搅拌,然后使其干燥,然后通过喷雾干燥而得到了平均粒径为25μm的造粒粉。再向其中添加烧结助剂(Si(OC2H5)4)并进行混合。需要说明的是,未向上述浆料中添加包含碱性氯化铝、乳酸铝的粘结剂。
接着,将该造粒粉放入模具(φ210mm×40mm、φ210mm×50mm)中并进行冷压,然后在176MPa下进行CIP成型。接着,在大气炉中在100℃下将其加热5小时,然后在900℃下加热2小时。在该时刻相对密度都为约57%。
接着,在真空加热炉中在200℃下在进行抽真空的同时将该成型体加热约半天,然后在保持1×10-2Pa以下的真空度的同时在1750℃下在真空加热炉中进行20小时的烧制,然后以100℃/小时以下的降温速度冷却至1100℃,然后进行缓慢冷却。接着,在Ar气氛中、在1750℃、147MPa、4小时的条件下进行HIP,然后在大气炉中在1300℃下加热10小时,从而制作了φ150mm×20mm、φ150mm×30mm的多晶YAG烧结体。
关于通过以上方式得到的多晶YAG烧结体,从面内随机选择10个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,φ150mm×20mm的多晶YAG烧结体的光损耗系数为0.01cm-1,φ150mm×30mm的多晶YAG烧结体的光损耗系数为0.1cm-1。
(比较例3)
利用与实施例1相同的方法对成型体(φ210mm×60mm)进行烧结,但是烧结后以100℃/小时以下的降温速度冷却至1400℃,然后进行缓慢冷却。取出的烧结体发生了破裂。然后,与实施例1同样地进行HIP处理、大气加热处理,结果虽然发生了破裂,但是能够得到透明的YAG烧结体。另外,关于所得到的多晶YAG烧结体,从面内随机选择10个点,测定该位置的光损耗系数,结果在没有由Nd引起的吸收的波长1064nm下,在任何一个位置处,其光损耗系数都为0.002cm-1以下。
(比较例4)
利用与实施例1相同的方法对成型体(φ210mm×60mm)进行烧结,但是未进行在真空加热炉中在200℃~300℃下约半天的加热处理,而是直接在1700℃~1900℃下进行10小时的烧制。在升温中,真空度变差至约数Pa,在达到1700℃时附近真空度稳定在1×10-2Pa以下。烧制后,取出的烧结体存在足以观察到的翘曲,放置在平行面上时的各个位置的高度差为5mm。然后,与实施例1同样地进行HIP处理、大气热处理,结果得到了根据位置而观察到不透明的不均的YAG烧结体。特别是,越是观察到翘曲的部位,越不透明。而且,在不透明的部分,光不能透过,不能进行光散射系数测定。
产业实用性
根据本发明,能够稳定地制造大型且透明的多晶YAG烧结体。本发明所涉及的多晶YAG烧结体在添加了添加元素的情况下,在荧光体、激光介质等中是有用的,在不添加添加元素的情况下,作为能够在严苛环境(等离子体等)下使用的窗(窗口)用材料是有用的。
Claims (10)
1.一种多晶YAG烧结体,其特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,最大值(A,B,C)小于等于150mm,最小值(A,B,C)大于20mm且小于等于40mm,并且在使波长300nm~1500nm的光透过时的光损耗系数为0.002cm-1以下,其中,波长300nm~1500nm的范围中不包括存在由添加元素引起的吸收的波长。
2.如权利要求1所述的多晶YAG烧结体,其特征在于,所述最小值(A,B,C)大于等于30mm且小于等于40mm。
3.一种多晶YAG烧结体,其特征在于,在将包围YAG烧结体的最小的长方体的尺寸设为Amm×Bmm×Cmm时,最大值(A,B,C)大于150mm且小于等于300mm,最小值(A,B,C)大于5mm且小于等于40mm,并且在使波长300nm~1500nm的光透过时的光损耗系数为0.002cm-1以下,其中,波长300nm~1500nm的范围中不包括存在由添加元素引起的吸收的波长。
4.如权利要求3所述的多晶YAG烧结体,其特征在于,所述最小值(A,B,C)大于等于20mm且小于等于40mm。
5.一种多晶YAG烧结体的制造方法,其特征在于,将含有Y2O3粉末和Al2O3粉末的混合粉末成型而制作相对密度为60%以上的成型体,在对该成型体进行烧结时,在升温工序和保持工序中将真空度保持在1×10-2Pa以下的同时在1600℃~1900℃下进行烧结,在烧结后,将冷却速度设定为100℃/小时以下直至1100℃。
6.一种权利要求1~4中任一项所述的多晶YAG烧结体的制造方法,其特征在于,将含有Y2O3粉末和Al2O3粉末的混合粉末成型而制作相对密度为60%以上的成型体,在对该成型体进行烧结时,在升温工序和保持工序中将真空度保持在1×10-2Pa以下的同时在1600℃~1900℃下进行烧结,在烧结后,将冷却速度设定为100℃/小时以下直至1100℃。
7.如权利要求5或6所述的多晶YAG烧结体的制造方法,其特征在于,在制作所述成型体时,添加包含碱性氯化铝或乳酸铝的粘结剂。
8.如权利要求5~7中任一项所述的多晶YAG烧结体的制造方法,其特征在于,在对所述成型体进行烧结前,在100℃~300℃下将所述成型体加热4小时~6小时。
9.如权利要求5~8中任一项所述的多晶YAG烧结体的制造方法,其特征在于,在1600℃~1800℃、100MPa~200MPa的条件下对冷却后的烧结体进行HIP处理。
10.如权利要求9所述的多晶YAG烧结体的制造方法,其特征在于,在HIP处理后,在大气中、1300℃~1500℃的条件下进行退火处理。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018066842 | 2018-03-30 | ||
JP2018-066842 | 2018-03-30 | ||
CN201880036770.8A CN110709368B (zh) | 2018-03-30 | 2018-10-29 | 多晶yag烧结体及其制造方法 |
PCT/JP2018/040023 WO2019187287A1 (ja) | 2018-03-30 | 2018-10-29 | 多結晶yag焼結体及びその製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880036770.8A Division CN110709368B (zh) | 2018-03-30 | 2018-10-29 | 多晶yag烧结体及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115259850A true CN115259850A (zh) | 2022-11-01 |
Family
ID=66166686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210783204.1A Pending CN115259850A (zh) | 2018-03-30 | 2018-10-29 | 多晶yag烧结体及其制造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6502595B1 (zh) |
CN (1) | CN115259850A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1735572A (zh) * | 2003-01-27 | 2006-02-15 | 神岛化学工业株式会社 | 稀土类石榴石烧结体及其制造方法 |
CN102211942A (zh) * | 2010-04-09 | 2011-10-12 | 中国科学院上海硅酸盐研究所 | Er:YAG多晶透明陶瓷材料制备方法 |
US20150069299A1 (en) * | 2013-09-11 | 2015-03-12 | Nitto Denko Corporation | Phosphor Ceramics and Methods of Making the Same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005035154A (ja) * | 2003-07-14 | 2005-02-10 | Toshiba Ceramics Co Ltd | Yagの鋳込み成型方法 |
JP2006315878A (ja) * | 2005-05-10 | 2006-11-24 | Sumitomo Electric Ind Ltd | 透光性セラミックスおよびその製造方法 |
JP5919961B2 (ja) * | 2012-03-30 | 2016-05-18 | 宇部興産株式会社 | セラミック複合体の製造方法 |
-
2018
- 2018-10-29 JP JP2019503364A patent/JP6502595B1/ja active Active
- 2018-10-29 CN CN202210783204.1A patent/CN115259850A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1735572A (zh) * | 2003-01-27 | 2006-02-15 | 神岛化学工业株式会社 | 稀土类石榴石烧结体及其制造方法 |
ATE486826T1 (de) * | 2003-01-27 | 2010-11-15 | Konoshima Chemical | Seltenerdmetallgranat-sinterkörper |
CN102211942A (zh) * | 2010-04-09 | 2011-10-12 | 中国科学院上海硅酸盐研究所 | Er:YAG多晶透明陶瓷材料制备方法 |
US20150069299A1 (en) * | 2013-09-11 | 2015-03-12 | Nitto Denko Corporation | Phosphor Ceramics and Methods of Making the Same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019187287A1 (ja) | 2020-04-30 |
JP6502595B1 (ja) | 2019-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
An et al. | Fabrication of transparent lutetium oxide by spark plasma sintering | |
CN110709368B (zh) | 多晶yag烧结体及其制造方法 | |
US9862648B2 (en) | Transparent metal fluoride ceramic | |
JP6015780B2 (ja) | 透光性金属酸化物焼結体の製造方法 | |
CN110526704B (zh) | 制备可烧结复合氧化物粉末和制造透明陶瓷 | |
JP5919961B2 (ja) | セラミック複合体の製造方法 | |
JP5000934B2 (ja) | 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス | |
Thoř et al. | Dense ceramics of lanthanide-doped Lu2O3 prepared by spark plasma sintering | |
US7449238B1 (en) | LiF-coated doped and undoped yttrium oxide | |
JP6341284B2 (ja) | 透明セラミックスの製造方法 | |
JPH05330913A (ja) | レーザ用多結晶透明y2o3セラミックス | |
JP3463941B2 (ja) | レーザ用多結晶透明セラミックス | |
Yi et al. | Microstructural and optical properties of Pr3+:(Ca0. 97Gd0. 03) F2. 03 transparent ceramics sintered by vacuum hot-pressing method | |
CN115259850A (zh) | 多晶yag烧结体及其制造方法 | |
JPH05294709A (ja) | レーザ用多結晶透明セラミックス | |
Liu et al. | Transparent hexagonal Yb: Sr5 (PO4) 3F ceramics fabricated by hot pressing sintering with LiF doping | |
Valiev et al. | Fabrication and properties of novel multilayered Y3Al5O12/MgAl2O4 ceramics doped with rare-earth ions | |
JP2020158329A (ja) | Yagセラミックス及びその製造方法 | |
JPH06211563A (ja) | レーザ核融合用多結晶透明セラミックス | |
Liu et al. | Enhanced visible luminescence intensities in hot-pressed Pr, La: SrF2 transparent ceramics by co-doping with LaF3 | |
JP2014234340A (ja) | セラミックス成型体の脱脂方法 | |
JPH05301769A (ja) | レーザ用多結晶透明セラミックス | |
JPH05330912A (ja) | レーザ用多結晶透明y2o3セラミックス | |
Aleksandrov et al. | Influence of nanopowders sedimentation on characteristics of Yb-doped Y2O3 transparent ceramics | |
Goto et al. | Transparent High-Density Oxide Ceramics Prepared by Spark Plasma Sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |