CN115244187A - 多组织共培养微流体装置平台中筛选高靶向特异性适配体的方法 - Google Patents

多组织共培养微流体装置平台中筛选高靶向特异性适配体的方法 Download PDF

Info

Publication number
CN115244187A
CN115244187A CN202180018915.3A CN202180018915A CN115244187A CN 115244187 A CN115244187 A CN 115244187A CN 202180018915 A CN202180018915 A CN 202180018915A CN 115244187 A CN115244187 A CN 115244187A
Authority
CN
China
Prior art keywords
aptamers
culture
target
microfluidic device
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180018915.3A
Other languages
English (en)
Inventor
E·德西蒙莫利纳
E·高尔维斯莫雷托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putamos Biological Research And Development Co ltd
Original Assignee
Putamos Biological Research And Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putamos Biological Research And Development Co ltd filed Critical Putamos Biological Research And Development Co ltd
Publication of CN115244187A publication Critical patent/CN115244187A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/08Chemical, biochemical or biological means, e.g. plasma jet, co-culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/13Applications; Uses in screening processes in a process of directed evolution, e.g. SELEX, acquiring a new function
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种用于开发个性化靶向抗癌治疗的方法,该方法基于适配体并在微流体装置中对个体进行系统建模。在一种实施方式中,本发明提供了用于开发靶向治疗的方法,该方法包括使用模块化布置在封闭系统内的微流体装置来维持靶向癌细胞与非靶标非癌细胞共培养以开发适配体。在另一种实施方式中,本发明提供了一种用于开发靶向治疗的方法,该方法包括使用模块化布置在封闭系统中的微流体装置来维持靶细胞与非靶细胞共培养。在这方面,本发明提供了用于相关靶标的适配体的开发,该靶标与通过和非靶细胞共培养调节的流体组分保持稳态平衡。

Description

多组织共培养微流体装置平台中筛选高靶向特异性适配体的 方法
技术领域
本文所述的发明涉及个体化医疗领域中适配体和靶向治疗的特异性。更具体地说,涉及一种或多种微流体装置、方法、组件和系统,通过SELEX技术对所期望的靶标进行细胞培养并开发具有更高特异性的适配体。特别是,它涉及对侵袭性癌症进行建模,为患者开发个性化适配体。
背景技术
癌症包括一组疾病,这些疾病通常具有不受控制的细胞分裂,并有可能扩散到身体的其他部位。特别是对于侵袭性更强的疾病类型,常规化疗是导致患者生存不相容的主要原因。
有不同类型的靶向癌症疗法,根据它们的性质和效果进行分组。一般而言,靶向治疗通过针对支持癌细胞存活和生长的差异而起作用。新的抗癌化合物的鉴定可以通过组合分子库和配体进化过程来完成。在这方面,一种称为SELEX的技术,来自SystematicEvolution of Ligands by EXponential enrichment,在识别和选择被称为适配体的分子方面非常突出。
从拉丁语Aptus(连接)与希腊语Meros(部分)结合,适配体由合成分子组成,即非天然存在的,与靶分子具有特异性相互作用。从策略上讲,通过这种相互作用,通过SELEX从最能与感兴趣的靶标结合的物种的暴露、捕获和扩增的连续步骤中富集核酸组合文库的亲和力。在这方面,适配体与靶标(在这种情况下是癌细胞)相互作用并产生期望的反应,能够改变它们的功能活性,甚至定位、引导、安装和传递其他具有治疗意义的化合物。
在传统的SELEX对适配体开发过程中,可以引入针对非靶标的阴性选择步骤,例如,治疗目的之外的细胞类型。在这种情况下,组合文库与阴性靶标一起孵育,目的是丢弃与其结合的分子,以扩增可称为非配体的物种。理想情况下,阴性选择会产生特定于感兴趣靶标的适配体,而对阴性靶标没有亲和力。然而,已证明适配体的特异性程度不足以在实践中区分细胞群,即使在SELEX期间的阴性选择步骤之后也是如此。
至于SELEX的体内变体,尽管通过在豚鼠中引入筛选的适配体而获得了特异性,但还是基于对异种动物模型扭曲的靶标和非靶标的亲和力来选择适配体。
另一方面,癌症治疗的个性化已成为最成功的治疗途径。由于个体的独特性和每种生物体病理学的特殊演变,被诊断患有相同类型癌症的患者对类似治疗表现出不同的反应。鉴于区分细胞群(例如癌性和非癌性)的特异性获得了提高,本创新的精确度包括为每个患者开发特定和个性化的适配体。为此,本发明提出了一种基于微流体装置的新的筛选技术。
发明内容
本发明描述了结合生物工程和分子生物学技术的个性化靶向癌症治疗的精确度。特别是,它体现在复制患者个体系统模型的微流体装置中,从而提高了识别个性化治疗分子的特异性程度。
本发明提供了一种治疗癌症的方法,包括通过培养患者的癌细胞和非癌细胞对患者进行离体建模,同时考虑到用于开发个性化靶向治疗的系统特性的出现。
一方面,本发明规定了一种根据癌细胞的位置对患者进行全身建模的方法,考虑到装置中不同细胞群之间相互作用的配置和组成,允许扫描所期望的分子。
此外,它提供了一种筛选具有更高特异性的适配体的方法,并展示了该技术在以更高的精度和个性化水平靶向癌细胞的实用性。
考虑到所期望分子的阳性和阴性靶标之间的竞争,并根据不同细胞群的组成和连接,本发明还提供了一种有利于在相关环境中所期望的分子的结合亲和力和解离常数之间平衡的方法。
最后,它产生了一种替代、减少和改进使用基于动物实验的临床前开发模型的方法,从而可以预测疗效、分布和毒性的初步结果。
在以下部分和附录中描述了本发明的其他示例性方面和实施例。
附图说明
图1说明了根据本发明的微流体装置的一般结构,并显示了基板的细节,该基板形成了具有可渗透底部和用于隔离所期望靶标的支架功能的中央腔室。
图2说明了构成衬底的材料层,并显示了用于连接入口和出口的中央腔室通道的细节。
图3说明了用于根据细胞培养物之间的连接对患者进行系统建模的装置组合的示例,并显示了由蠕动泵控制的装置中的流动操作。
图4说明了串联和并联组合装置的连接。
具体实施方式
词汇表
核酸和寡核苷酸
无论何时在本文中使用,术语“核酸”或“寡核苷酸”是指DNA、RNA或任何“XNA”分子,被理解为任何具有化学修饰,但不会阻止其通过生化方法(例如PCR或顺序化学合成)进行复制的寡核苷酸。这些修饰的示例包括但不限于:用卤素或甲基醚基团取代核苷酸的羟基;使用手性核苷酸;使用异种核酸等。
靶标
如本文所用,术语“靶标”是指具有所期望目标的任何实体。为了说明但不限制可能性的范围,靶标可以是:所期望的细胞群,在这种情况下,靶标或分子复合物可以位于细胞表面或内部结构中;或直接是有机或无机分子,尤其是蛋白质、多肽、脂质、脂蛋白或糖蛋白。
适配体
术语“适配体”是指折叠成三维结构的非天然存在的核酸,在三维结构上获得针对靶分子的特异性相互作用。适配体的特异性相互作用可以赋予与靶标结合和改变功能活性的反应等效果,能够诱导激活、抑制和促进靶标与其他分子之间的反应。
分子库
本文件通篇提到的“分子库”是指包含不同数量的不同化学物质的化合物组。该文库可以显示不同程度的多样性,如组合寡核苷酸文库。分子库也可以具有随机性,从某种意义上说,通常几乎所有由分子自由度给出的三维构型的可能性都由库的配体实现。该文库可以使用本领域技术人员已知的各种方法合成,或从第三方商业购买。
癌症
对于“癌症”,本发明,尤其是在其应用范围内,是指具有共同不受控制的细胞分裂并有可能形成局部实体瘤并转移到身体其他部位的一组疾病。它也指自发或来自环境因素的肿瘤、癌细胞和恶性转化细胞。
细胞
如本文所用,“细胞”是指细胞群,尤其是但不限于外植体、穿刺、活检、原代培养物、永生化或原代细胞系、解离型、组织型甚至器官型细胞培养物。它还特别指(但不限于)可能来自或不来自特定患者的哺乳动物细胞。
非癌细胞
如本文所用,“非癌细胞”,特别是在其应用范围内,是指处于生理环境中且未恶性转化的细胞,其可能来源于外植体、穿刺、活检、原代培养物、永生化或非永生化细胞系、解离型、组织型甚至器官型细胞培养物。它还特别指(但不限于)可能来自或可能不来自特定患者的哺乳动物细胞。
物种
如本文所用,术语“物种”是指构成用于开发适配体的组合文库的不同核酸分子。
外植体
在本文的上下文中,“外植体”是指实验室培养的哺乳动物组织,其可以通过手术提取或不通过手术提取从特定患者中获得,对于这些患者,本发明可用于产生抗癌适配体。它还指在实验室中培养或通过手术提取的任何其他动物组织。
流体
“流体”被理解为微流体系统中循环的液体介质,其可以包括但不限于缓冲溶液、培养基、人或动物来源的血浆。
插件
本发明中的“插件”是指用于容纳和限制细胞培养物,而不限制通过流体循环与细胞共培养物的相通的半透膜。本发明包括在底部包含半透性插件的中央腔室,该插件起到锚定或支架作用以培养所期望的细胞并且还用于固定以展示分子库。本发明中的腔室可以根据设计的支架具有不同的尺寸和形状。
配体
本发明中使用的术语“配体”是指具有能够与其他化学物质结合的特定三维结构的任何化学物质。本发明上下文中配体的实例是但不限于:寡核苷酸、肽和蛋白质。
分子
在本文中,术语“分子”表示一组原子,它们可以相同或不同,通过共价键排列。它被用作物质组成物种的参考,可以通过化学反应转化产生新的化学物种。
微流体
当用于描述本发明时,“微流体”及其语法派生词是指本领域技术人员熟知的技术,其利用设备和工具以协调和计划的方式精确控制流体的流动路径,溶液成分的比例及其组合与任何过程或物理和化学分析相关或不相关,在皮米、纳米、微米或毫升尺度下工作。
非靶标或阴性靶标
如本文所用,术语“非靶标”或“阴性靶标”是指“靶标”的相反描述,即不旨在建立物种间相互作用的描述。阴性靶标用于去除具有与靶标以外的物质相互作用的不良功能的配体物质。
适当时期
如本文中所使用的,术语“适当时期”及其语言变体是指实现流程目标所需的任何特定时间间隔。如本文所述,这些时间段可能是已知的,或者可以根据需要在本发明范围内的某些特定应用情况下获得令人满意的结果来确定。
SELEX
SELEX一词源自于Systematic Evolution of Ligands by EXponentialenrichment的英文首字母缩写词,用于参考组合库中涉及体外进化实验的技术。
基板
本文中的“基板”是指构成微流控装置的材料,可以是但不限于:液晶聚合物、聚二甲基硅氧烷、聚苯乙烯、低温共烧陶瓷、光聚合增材制造、3D打印等。
方法
在此提出的本发明体现在微流体装置、系统、组件和方法中,这些装置、系统、组件和方法用作开发适配体的平台,提高了对期望靶标的分子特异性程度。一方面,提供了一种或多种方法作为工具来改进特异性的适配体的筛选,以用于在生物复杂环境中的相关应用。另一方面,该方法尤其可应用于但不限于筛选化合物的迭代过程,例如用于适配体开发的SELEX技术。
根据本文提出的本发明,规定包括:
a)形成连接入口和出口的通道的基板;
b)形成具有可渗透底部和用于细胞培养的支架功能的腔室的基板;
c)形成微流体装置单元的基板的组合;
d)通过封闭系统中装置单元的模块化组合排列的有机体建模;
e)用于根据要靶向的阳性和阴性所期望的靶标引导流体循环流动的装置;
f)平台,用于保持温度、压力和pH值与生理兼容的模块化布置;
g)允许在复杂的生物环境中暴露分子库的平台。
在本发明中,如图1所示,器件的基板由不同材料的层构成,这些层通过不同的物理和化学处理保持连接。当使用玻璃、有机硅基有机聚合物(PDMS)、光固化树脂、共烧陶瓷器件(LTCC)或聚苯乙烯(PS)等不同材料时,它们通过暴露于等离子体将每种材料的层结合起来,然后立即进行适当的接触,将每一层相互挤压一段时间。在另一个技术方面,当通过3D打印技术使用光固化的树脂构建时,使用宽紫外(UV)光谱中的光来聚合装置。当使用光固化树脂通过3D打印生产时,该设备甚至可以将其通道涂有疏水性溶液。关于微流体通道,当用光固化树脂印刷时,它们会用异丙醇处理,以使表面保持良好的平整度。当使用LTCC层构建时,用不同浓度的EDTA洗涤通道。
为了最大限度地减少设备在操作过程中的流体泄漏,特别是在插件和装置之间的连接中,设备正常运行的另一项改进包括使用直径为10毫米、厚度为l.7mm的密封环或有机硅聚合物,正确插入支撑槽。密封环的尺寸不限于上述尺寸,而是可以根据在本文所述的本发明范围内的可能性而变化,主要取决于插件的技术规格,该技术规格可以变化。插件槽仅由3D打印的光固化树脂制成,并包括一个用于容纳密封环的凹槽,以便连接设备和插件。
在本发明中,微流体装置包括中央腔室,其底部包含半渗透插件,该插件具有限制或支架功能,用于培养所期望的细胞。此外,在暴露分子文库以进行适配体选择的情况下,插件还用于进行目标固定。本发明中的腔室可以有不同的尺寸和形状,并根据设计的插入支架,直径范围从4到120mm,深度从3到30m,或根据细胞培养孔的标准尺寸规定。在本发明中,配件支撑锚定半渗透插件以容纳细胞培养物,插件可以由聚对苯二甲酸乙二醇酯、聚碳酸酯或其他生物惰性材料制成,并且插件的孔可以在1至8μM之间变化。
如图2所示,说明了由材料层组成的基板,以及用于连接入口和出口的中央腔室的通道。通道和中央腔室之间形成的交叉点,以便将装置流体通过容纳在底部的半渗透插件引导到腔室中,确保通道流体连续流动以填充腔室。根据期望的细胞培养物的特定需要,可以使用不同的通道直径来达到所需的流速和局部压力,并且该装置能够充分适应这些变化,同时通过局部改变每个腔室之前的通道的口径来保持相同的流量,其内部圆形截面可以从0.4到1.5mm2不等。
该平台包括由硅胶管连接的装置,该硅胶管通过装置表面上的突起固定,其中一个装置的出口开口与至少一个其他装置和蠕动泵的入口开口连接。如图3所示,这些装置模块化布置在一个封闭的系统中,借助泵引导循环流动,从而使流体在装置之间不断地被推动循环。限制在装置中央腔室内的靶细胞与其他非靶细胞共培养,即装置在一个封闭的系统中保持连接,通过循环液交换信号分子,也就是说,除了流体成分外,培养物还暴露于自身或系统中调节流体介质的其他细胞分泌的信号分子。微流体装置中使用的流体可以是但不限于磷酸盐盐水溶液、Hanks平衡盐溶液、HEPES等缓冲溶液;细胞培养基,例如MEM、DMEM、F-12、RPMI,调节至pH7。流体可以由添加了生长因子或添加了胎牛血清或患者血清浓缩物的限定培养基组成。本发明的微流体系统包括具有蠕动运动的泵以控制通过装置的流量,该流量可以在0.5mL/min和3mL/min之间连续变化或在5到180min的程序化周期内变化。
如图4所示,根据阳性靶标在生物体内的原位定位,将培养期望细胞的装置通过串联和/或并联连接与阴性靶标组合排列。可以使用不同的组合,以参考个体中的血液循环流动的感兴趣细胞的布置。从广义上讲,本发明的方法提供了将患者建模为外部封闭系统,其中装置针对每个特定个体以不同组合排列,而无需制造特定的新装置。例如但不限于此例,针对胰腺肿瘤的靶向治疗的开发,装置的流动必须经过一个带有肺细胞培养的装置1,然后分成两个并联的装置,一个是装置3,其中包含胰腺癌细胞培养物,另一个是装置4,包含肿瘤周围细胞或非恶性转化胰腺细胞培养物。流体被汇集并进入包含肝细胞培养物的装置5,然后被引导到包含骨髓培养物的装置6。最后,流体被引导至蠕动泵并再次引导至装置1。
对于可以安排设备以组织阳性和阴性靶标的所有方式,必须限制感兴趣的细胞培养物以动员流体成分,包括来自组合文库的分子,用于适配体选择和配体结合物质的回收。对于平台操作,在通过装置排列的循环过程中流体处于37℃的温度、潮湿的大气中和5%的CO2下。经过足够的时间以平衡通过靶标循环的流体成分的结合和解离速率,并在阴性和阳性靶标之间建立稳态平衡后,引入核酸组合文库以通过参考技术SELEX筛选适配体。分子库可以将通过本发明使用SELEX筛选适配体的应用来举例说明。核酸文库可以通过顺序化学合成和/或酶促反应产生,由约109至1015个随机寡核苷酸组成。此类寡核苷酸包含70至100个核苷酸,并具有一个中央随机区域,其两侧为用于引物杂交和聚合酶链式反应扩增的保守区域。
在核酸文库暴露一段时间后,收集靶细胞培养物以提取配体分子。可以通过改变配体三维结构的程序突出显示粘附的配体,例如温度(70-95℃)、高浓度盐(如KCl、NaCl、MgCl2等)、通过用酸性或碱性溶液、变性剂如尿素、溴化乙锭、苯酚-氯仿法等或通过化学键竞争法(与高浓度咪唑、谷胱甘肽或已知靶标单克隆抗体)处理来改变pH值。回收的分子通过聚合酶链式反应进行扩增,并以单链形式重组,然后可以对其进行后续的选择循环或进行适配体的鉴定。当进行一些循环时,显示出更高亲和力的配体的更多拷贝趋于通过结合竞争富集,在所提出的发明中需要3至8个循环以获得适配体。通过本发明,平台所体现的方法对SELEX技术意味着新的技术效果,为适配体在生物复杂和相关环境中的应用提供特异性,例如但不限于个性化靶向癌症治疗。相反,将SELEX技术应用于与稳态平衡断开的相应阳性和阴性靶标,导致治疗应用的特异性水平不能令人满意。
根据本发明,所开发的适配体的特异性模拟了通过SELEX技术在动物豚鼠体内获得的程度,其优势是同时提供源自患者自身的用于治疗目的的靶标和环境。
在此描述的发明规定了一种通过靶细胞筛选具有高特异性的适配体的方法:
a)在设备基板上,在中央腔室中固定一个支架,该腔室包含用于限制感兴趣的细胞类型的具有适当的孔隙率的插件;
b)通过将基板的突起与连接器和硅胶管耦合,通过串联和/或并联的组合连接将装置模块化地布置在封闭系统中;
c)在37℃下用流体填充设备的通道和腔室系统;
d)将感兴趣的细胞培养物容纳在设备的各个中央腔室中;
e)使系统中的流体循环足够长的时间,该时间可以在10到72小时之间变化;
f)将分子组合库注入系统进行循环,持续10至90分钟;
g)在37℃下丢弃并更换系统中循环的流体;
h)收集限制在装置中央腔室中的靶细胞培养物;
i)从与靶细胞结合的组合库中提取分子;
j)从靶细胞中提取的分子组的扩增和重组;
k)鉴定适配体的候选分子。
工业适用性
在临床应用中,当来自癌症患者的外植体样品被共培养并排列成靶标和非靶标时,该方法可以收集足够必要的特殊性,以便为该患者开发个性化的适配体。通过本发明针对给定患者的癌细胞开发的适配体可用于该患者的靶向抗癌疗法,例如充当放射疗法、化学疗法、免疫疗法和基因疗法的载体。
参考文献
Ahmad,Kareem M.,Seung Soo Oh,Seon Kim,Forrest M.McClellen,Yi Xiao,andH.Tom Soh.2011.“Probing the Limits of Aptamer Affinity with a MicrofluidicSELEX Platform.”Edited by Maxim Antopolsky.PLoS ONE 6(11):e27051.https://doi.org/10.1371/journal.pone.0027051.
Beck,Alain,Liliane Goetsch,Charles Dumontet,and Nathalie
Figure BDA0003831433280000111
2017.“Strategies and Challenges for the next Generation of Antibody-DrugConjugates.”Nature Reviews Drug Discovery.Nature Publishing Group.https://doi.org/10.1038/nrd.2016.268.
Birch,Christina M.,Han Wei Hou,Jongyoon Han,and Jacquin C.Niles.2015.“Identification of Malaria Parasite-Infected Red Blood Cell Surface Aptamersby Inertial Microfluidic SELEX(I-SELEX).”Sci Rep.5(1):11347.https://doi.org/10.1038/srep11347.
Chen,Dana,Yaron Orenstein,Rada Golodnitsky,Michal Pellach,DoritAvrahami,Chaim Wachtel,Avital Ovadia-Shochat,et al.2016.“SELMAP-SELEXAffinity Landscape MAPping of Transcription Factor Binding Sites UsingIntegrated Microfluidics.”Sci Rep.6(1):33351.https://doi.org/10.1038/srep33351.
Cheng,Congsheng,Yong Hong Chen,Kim A.Lennox,Mark A.Behlke,and BeverlyL.Davidson.2013.“In Vivo SELEX for Identification of Brain-PenetratingAptamers.”Mol Ther Nucleic Acids 2(November 2012):e67.https://doi.org/10.1038/mtna.2012.59.
Cho,M.,Y.Xiao,J.Nie,R.Stewart,A.T.Csordas,S.S.Oh,J.A.Thomson,andH.T.Soh.2010.“Quantitative Selection of DNAAptamers through MicrofluidicSelection and High-Throughput Sequencing.”Proc Natl Acad Sci U S A.107(35):15373–78.https://doi.org/10.1073/pnas.1009331107.
Civit,Laia,Seyed Mohammad Taghdisi,Anna Jonczyk,Silvana K.Haβel,Carsten
Figure BDA0003831433280000121
Michael Blank,H.James Stunden,et al.2018.“SystematicEvaluation of Cell-SELEX Enriched Aptamers Binding to Breast Cancer Cells.”Biochimie 145:53–62.https://doi.org/10.1016/j.biochi.2017.10.007.
Craighead,Harold,G.,T.Lis,John,So Youn Kim,and SeungminPark.2010.Device for rapid identification of nucleic acids for binding tospecific chemical targets.WO2010019969,issued February 18,2010.
Danke,Xu,Li Hui,Liu Xiaohui,and Chen Zhu.2018.Method for screeningaptamer by using microarray microfluidic chip.WO2018068448,issued 2018.
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180419&DB=EPODOC&locale=en_EP&CC=WO&NR=2018068448A1&KC=A1&ND=4.
Dassie,Justin P.,Xiu Ying Liu,Gregory S.Thomas,Ryan M.Whitaker,Kristina W.Thiel,Katie R.Stockdale,David K.Meyerholz,Anton P.McCaffrey,JamesO.McNamara,and Paloma H.Giangrande.2009.“Systemic Administration of OptimizedAptamer-SiRNA Chimeras Promotes Regression of PSMA-Expressing Tumors.”NatureBiotechnology 27(9):839–46.https://doi.org/10.1038/nbt.1560.
David,Griffiths Andrew,Weitz David,Link Darren Roy,and BibetteJerome.2017.Compartmentalised screening by microfluidic control.US2017102381,issued 2017.https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=13&ND=3&adjacent=true&locale=en_EP&FT=D&date=20170413&CC=US&NR=2017102381A1&KC=A1.
Eusik,Yoon,Zhang Zhixiong,and Chen Yu Chih.2018.Systems and methodsfor high throughput screening.WO2018067802,issued 2018.https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=4&ND=3&adjacent=true&locale=en_EP&FT=D&date=20180412&CC=WO&NR=2018067802A1&KC=A1.
Gopinathan,Priya,Lien-Yu Hung,Chih-Hung Wang,Nai-Jung Chiang,Yu-ChunWang,Yan-Shen Shan,and Gwo-Bin Lee.2017.“Automated Selection of Aptamersagainst Cholangiocarcinoma Cells on an Integrated Microfluidic Platform.”Biomicrofluidics 11(4):044101.https://doi.org/10.1063/1.4991005.
Huang,Chao-June,Hsin-I.Lin,Shu-Chu Shiesh,and Gwo-Bin Lee.2010.“Integrated Microfluidic System for Rapid Screening of CRP Aptamers UtilizingSystematic Evolution of Ligands by Exponential Enrichment(SELEX).”BiosensBioelectron.25(7):1761–66.https://doi.org/10.1016/j.bios.2009.12.029.
Huang,Chao-Jyun,Hsin-I.Lin,Shu-Chu Shiesh,and Gwo-Bin Lee.2012.“AnIntegrated Microfluidic System for Rapid Screening of Alpha-Fetoprotein-Specific Aptamers.”BiosensBioelectron.35(1):50–55.https://doi.org/10.1016/j.bios.2012.02.024.
Hung,Lien-Yu,Chien-Yu Fu,Chih-Hung Wang,Yuan-Jhe Chuang,Yi-ChengTsai,Yi-Ling Lo,Pang-Hung Hsu,et al.2018.“Microfluidic Platforms for RapidScreening of Cancer Affinity Reagents by Using Tissue Samples.”Biomicrofluidics 12(5):054108.https://doi.org/10.1063/1.5050451.
Hung,Lien-Yu,Chih-Hung Wang,Yu-Jui Che,Chien-Yu Fu,Hwan-You Chang,Kuan Wang,and Gwo-Bin Lee.2015.“Screening of Aptamers Specific to ColorectalCancer Cells and Stem Cells by Utilizing On-Chip Cell-SELEX.”Sci Rep.5(1):10326.https://doi.org/10.1038/srep10326.
Hung,Lien Yu,Chih Hung Wang,Keng Fu Hsu,Cheng Yang Chou,and Gwo BinLee.2014.“An On-Chip Cell-SELEX Process for Automatic Selection of High-Affinity Aptamers Specific to Different Histologically Classified OvarianCancer Cells.”Lab on a Chip 14(20):4017–28.https://doi.org/10.1039/c4lc00587b.
Hybarger,Glen,Joseph Bynum,Robert F.Williams,James J.Valdes,and JamesP.Chambers.2006.“A Microfluidic SELEX Prototype.”Anal Bioanal Chem.384(1):191–98.https://doi.org/10.1007/s00216-005-0089-3.
Kim,Jinho,Timothy R.Olsen,Jing Zhu,John P.Hilton,Kyung-Ae Yang,RenjunPei,Milan N.Stojanovic,and Qiao Lin.2016.“Integrated Microfluidic Isolationof Aptamers Using Electrophoretic Oligonucleotide Manipulation.”Sci Rep.6(1):26139.https://doi.org/10.1038/srep26139.
Lai,Hsien-Chih,Chih-Hung Wang,Tong-MiinLiou,and Gwo-Bin Lee.2014.“Influenza A Virus-Specific Aptamers Screened by Using an IntegratedMicrofluidic System.”Lab Chip.14(12):2002–13.https://doi.org/10.1039/c4lc00187g.
Lin,Hsin-I,Ching-Chu Wu,Ching-Hsuan Yang,Ko-Wei Chang,Gwo-Bin Lee,andShu-Chu Shiesh.2015.“Selection of Aptamers Specific for Glycated Hemoglobinand Total Hemoglobin Using On-Chip SELEX.”Lab Chip 15(2):486–94.https://doi.org/10.1039/c4lc01124d.
Liu,Haoran,Junhua Mai,Jianliang Shen,Joy Wolfram,Zhaoqi Li,GuodongZhang,Rong Xu,et al.2018.“A Novel DNA Aptamer for Dual Targeting ofPolymorphonuclear Myeloid-Derived Suppressor Cells and Tumor Cells.”Theranostics 8(1):31–44.https://doi.org/10.7150/thno.21342.
Liu,Xiaohui,Hui Li,Wenchao Jia,Zhu Chen,and Danke Xu.2016.“Selectionof Aptamers Based on a Protein Microarray Integrated with a MicrofluidicChip.”Lab Chip.17(1):178–85.https://doi.org/10.1039/c6lc01208f.
Lou,X.,J.Qian,Y.Xiao,L.Viel,A.E.Gerdon,E.T.Lagally,P.Atzberger,T.M.Tarasow,A.J.Heeger,and H.T.Soh.2009.“Micromagnetic Selection of Aptamersin Microfluidic Channels.”Proc Natl Acad Sci U S A.106(9):2989–94.https://doi.org/10.1073/pnas.0813135106.
Mayer,Günter.2009.“The Chemical Biology of Aptamers.”Angew Chem IntEd Engl.48(15):2672–89.https://doi.org/10.1002/anie.200804643.
Mi,Jing,Yingmiao Liu,Zahid N.Rabbani,Zhongguang Yang,JohannesH.Urban,Bruce A.Sullenger,and Bryan M.Clary.2010.“In Vivo Selection of Tumor-Targeting RNAMotifs.”Nat Chem Biol.6(1):22–24.https://doi.org/10.1038/nchembio.277.
Mi,Jing,Partha Ray,Jenny Liu,Chien TsunKuan,Jennifer Xu,David Hsu,Bruce A.Sullenger,Rebekah R.White,and Bryan M.Clary.2016.“In Vivo SelectionAgainst Human Colorectal Cancer Xenografts Identifiesan Aptamer That TargetsRNA Helicase Protein DHX9.”Mol Ther Nucleic Acids 5(October 2015):e315.https://doi.org/10.1038/mtna.2016.27.
Oh,Seung Soo,Kareem M.Ahmad,Minseon Cho,Seon Kim,Yi Xiao,and H.TomSoh.2011.“Improving Aptamer Selection Efficiency through Volume Dilution,Magnetic Concentration,and Continuous Washing in Microfluidic Channels.”AnalChem.83(17):6883–89.https://doi.org/10.1021/ac201269f.
Olsen,Timothy,Jing Zhu,Jinho Kim,Renjun Pei,Milan N Stojanovic,andQiao Lin.2017.“An Integrated Microfluidic SELEX Approach Using CombinedElectrokinetic and Hydrodynamic Manipulation.”SLAS Technol.22(1):63–72.https://doi.org/10.1177/2211068216659255.
Park,Jee-Woong,SuJin Lee,Shuo Ren,Sangwook Lee,Soyoun Kim,and ThomasLaurell.2016.“Acousto-Microfluidics for Screening of SsDNA Aptamer.”Sci Rep.6(1):27121.https://doi.org/10.1038/srep27121.
Park,Seung-min,Ji-Young Ahn,Minjoung Jo,Dong-ki Lee,John T.Lis,HaroldG.Craighead,and Soyoun Kim.2009.“Selection and Elution of Aptamers UsingNanoporous Sol-Gel Arrays with Integrated Microheaters.”Lab Chip.9(9):1206.https://doi.org/10.1039/b814993c.
Qian,Jiangrong,Xinhui Lou,Yanting Zhang,Yi Xiao,and H.Tom Soh.2009.“Generation of Highly Specific Aptamers via Micromagnetic Selection.”Anal.Chem.81(13):5490–95.https://doi.org/10.1021/ac900759k.
Sinha,Anirban,Priya Gopinathan,Yi-Da Chung,Hsin-Ying Lin,Kuang-HsienLi,Hsi-Pin Ma,Po-Chiun Huang,Shu-Chu Shiesh,and Gwo-Bin Lee.2018.“AnIntegrated Microfluidic Platform to Perform Uninterrupted SELEX Cycles toScreen Affinity Reagents Specific to Cardiovascular Biomarkers.”BiosensBioelectron.122(December):104–12.https://doi.org/10.1016/j.bios.2018.09.040.
So,Youn Kim,Ji-Young AhnMinjoung,and Kyung Kim Tae.2012.Multiplexmicrofluidic device for selecting nucleic acid aptamers,and high throughputselection method for nucleic acid aptamers using same.
CN102639720,issued 2012.
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=2&ND=3&adjacent=true&locale=en_EP&FT=D&date=20120815&CC=CN&NR=102639720A&KC=A.
Stoll,Heidi,Heiko Kiessling,Martin Stelzle,Hans Peter Wendel,JuliaSchütte,Britta Hagmeyer,and MeltemAvci-Adali.2015.“Microfluidic Chip Systemfor the Selection and Enrichment of Cell Binding Aptamers.”Biomicrofluidics 9(3):034111.https://doi.org/10.1063/1.4922544.
Tuerk,C,and Larry Gold.1990.“Selection of RNA Molecules That Bind toT4 DNA-Polymerase.”Science 249:505–510.
Wang,Hanlu,Yibang Zhang,Haiping Yang,Meng Qin,Xinxin Ding,Rihe Liu,and Yongping Jiang.2018.“In Vivo SELEX of an Inhibitory NSCLC-Specific RNAAptamer from PEGylated RNA Library.”Mol Ther Nucleic Acids 10(March):187–98.
https://doi.org/10.1016/j.omtn.2017.12.003.
Wang,Qing,Wei Liu,Yuqian Xing,Xiaohai Yang,Kemin Wang,Rui Jiang,PeiWang,and Qing Zhao.2014.“Screening of DNA Aptamers against Myoglobin Using aPositive and Negative Selection Units Integrated Microfluidic Chip and ItsBiosensing Application.”Anal Chem.86(13):6572–79.https://doi.org/10.1021/ac501088q.
Weng,Chen-Hsun,I-Shan Hsieh,Lien-Yu Hung,Hsin-I Lin,Shu-Chu Shiesh,Yuh-Ling Chen,and Gwo-Bin Lee.2013.“An Automatic Microfluidic System forRapid Screening of Cancer Stem-like Cell-Specific Aptamers.”MicrofluidNanofluidics.14(3–4):753–65.
https://doi.org/10.1007/s10404-012-1095-3.
Yang,Xiaohai,Qing Wang,Kemin Wang,YuqianXink,and RuiJiang.2012.Nucleic acid aptamer capable of detecting myohemoglobin,microfluidic chip for screening and screening method andapplication.CN102703454,issued 2012.
https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=1&ND=3&adjacent=true&locale=en_EP&FT=D&date=20121003&CC=CN&NR=102703454A&KC=A.
Yasuda,Kenji,Hideyuki Terazono,Kentetsu Kin,Masahito Hayashi,andAkihiro Hattori.2011.Selection method for nucleic acid specifically bondingto target molecule of target cell surface.JP2012196197A,issued May 13,2011.
Ye,Mao,Jun Hu,Minyuan Peng,Jing Liu,Jun Liu,Huixia Liu,Xielan Zhao,and Weihong Tan.2012.“Generating Aptamers by Cell-SELEX for Applications inMolecular Medicine.”Int J Mol Sci.13(3):3341–53.https://doi.org/10.3390/ijms13033341.

Claims (6)

1.在用于多组织共培养的微流体装置平台中筛选具有高靶特异性的适配体的方法,其中,具有SELEX技术与微流体装置的布置的结合,所述微流体装置用于共培养从患者身上移植的癌性靶细胞和非癌性非靶细胞。
2.根据权利要求1所述的在用于多组织共培养的微流体装置平台中筛选具有高靶特异性的适配体的方法,其中,用于细胞共培养的方法包括封闭的模块化布置,所述模块化布置具有由并联和/或串联连接的微流体装置的组合引导的流体循环。
3.根据权利要求1所述的在用于多组织共培养的微流体装置平台中筛选具有高靶特异性的适配体的方法,其中,靶细胞适配体的开发是在封闭系统中并且在流体成分之间动态平衡的条件下完成的,流体成分之间的动态平衡通过与非靶细胞共培养来调节。
4.根据权利要求1所述的在用于多组织共培养的微流体装置平台中筛选具有高靶特异性的适配体的方法,其中,该方法是基于为特定患者开发的适配体开发靶向治疗载体的方法,具有在如化疗、放疗、免疫治疗和抗癌基因治疗的递送中的应用。
5.微流体装置,该装置包括来自特定生物体的外植体培养物,其中,该特定生物体包括所需靶标和其非靶标。
6.微流体装置,包括:
I.形成连接入口和出口开口的通道的基板;
II.沿整个装置形成并通过连接通道连接的多个培养室,其中可将用于细胞培养物或外植体的可渗透塑料支架牢固地固定在这些培养室中;和
III.用于细胞培养物或非靶标和靶标外植体的培养室的连接模式,以模拟血液从人体组织到局部肿瘤的全身循环流动。
CN202180018915.3A 2020-03-05 2021-03-05 多组织共培养微流体装置平台中筛选高靶向特异性适配体的方法 Pending CN115244187A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BR102020004436A BR102020004436A8 (pt) 2020-03-05 2020-03-05 Dispositivo microfluídico
BR1020200044362 2020-03-05
PCT/BR2021/050096 WO2021174327A1 (pt) 2020-03-05 2021-03-05 Método para seleção de aptâmeros com alta especificidade pelo alvo em plataforma de dispositivos microfluídicos para co-cultivo de tecidos múltiplos

Publications (1)

Publication Number Publication Date
CN115244187A true CN115244187A (zh) 2022-10-25

Family

ID=77612518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180018915.3A Pending CN115244187A (zh) 2020-03-05 2021-03-05 多组织共培养微流体装置平台中筛选高靶向特异性适配体的方法

Country Status (6)

Country Link
US (1) US20230159988A1 (zh)
EP (1) EP4116433A1 (zh)
CN (1) CN115244187A (zh)
BR (1) BR102020004436A8 (zh)
MX (1) MX2022010876A (zh)
WO (1) WO2021174327A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
CN102186992A (zh) 2008-08-15 2011-09-14 康奈尔大学 用于快速鉴定与特定化学靶点结合的核酸的装置
US8748180B2 (en) * 2009-07-29 2014-06-10 Cornell University Microfluidic device for pharmacokinetic-pharmacodynamic study of drugs and uses thereof
KR101423032B1 (ko) 2010-10-05 2014-07-28 동국대학교 산학협력단 핵산 압타머 선별을 위한 멀티플렉스 미세 유체 장치 및 이를 이용한 핵산 압타머의 고속 선별방법
JP2012196197A (ja) 2011-03-04 2012-10-18 Kanagawa Acad Of Sci & Technol 標的細胞表面の標的分子に特異的に結合する核酸の選択法
CN102703454B (zh) 2012-06-27 2014-02-26 湖南大学 可用于检测肌红蛋白的核酸适体、筛选用微流控芯片及其筛选方法和应用
US20200038861A1 (en) 2016-10-07 2020-02-06 The Regents Of The University Of Michigan Systems and methods for high throughput screening
CN106480039B (zh) 2016-10-13 2019-11-12 南京大学 一种利用微阵列微流控芯片筛选适配体的方法

Also Published As

Publication number Publication date
BR102020004436A8 (pt) 2022-11-22
BR102020004436A2 (pt) 2022-04-26
MX2022010876A (es) 2022-11-07
EP4116433A1 (en) 2023-01-11
WO2021174327A1 (pt) 2021-09-10
US20230159988A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
Shim et al. Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor–lymph node interaction
US9952212B2 (en) In Vitro capture and analysis of circulating tumor cells
CN101061213B (zh) 灌注的三维细胞/组织疾病模型
US9115340B2 (en) Microfluidic continuous flow device
ES2887105T3 (es) Plataforma integrada para el análisis de células individuales
US11745183B2 (en) Microtiter plate and uses thereof
Menon et al. Microfluidics for personalized drug screening of cancer
Li et al. Injection molded microfluidics for establishing high-density single cell arrays in an open hydrogel format
US20190376013A1 (en) Microfluidic devices, systems, and methods for investigating three-dimensional cellular structures
Kenney et al. 3D cellular invasion platforms: how do paper-based cultures stack up?
Liu et al. Evaluation of microfluidic ceiling designs for the capture of circulating tumor cells on a microarray platform
Macaraniag et al. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters
Joshi Cells and organs on chip—A revolutionary platform for biomedicine
Sato Microdevice in cellular pathology: microfluidic platforms for fluorescence in situ hybridization and analysis of circulating tumor cells
US20230356213A1 (en) Analyte inspection apparatus and analyte inspection method using same
Puleo et al. Applications of MEMS technologies in tissue engineering
Davaran et al. Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer
ZHANG et al. Advances of microfluidic technologies applied in bio-analytical chemistry
US20230159988A1 (en) Method for selecting aptamers with high target specificity in a microfluidic device platform for co-culture of multiple tissues
Takagi et al. A multiscale, vertical-flow perfusion system with integrated porous microchambers for upgrading multicellular spheroid culture
He et al. Recent development of cell analysis on microfludics
van Vliet et al. Microfluidic droplets and their applications: diagnosis, drug screening and the discovery of therapeutic enzymes
KR20120092985A (ko) 3차원 세포칩 기판 및 이를 이용한 세포 공동배양 방법
Sheng et al. The design basis and application in urology of the tumor-on-a-chip platform
Mayo et al. Microfluidics, CTC Capture, Analysis and Expansion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination