CN115207088A - 一种横向沟槽型mosfet器件及其制造方法 - Google Patents

一种横向沟槽型mosfet器件及其制造方法 Download PDF

Info

Publication number
CN115207088A
CN115207088A CN202210830224.XA CN202210830224A CN115207088A CN 115207088 A CN115207088 A CN 115207088A CN 202210830224 A CN202210830224 A CN 202210830224A CN 115207088 A CN115207088 A CN 115207088A
Authority
CN
China
Prior art keywords
type
conductive type
epitaxial layer
metal
longitudinal groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210830224.XA
Other languages
English (en)
Inventor
朱袁正
杨卓
黄薛佺
张允武
陆扬扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Silicon Integrated Circuit Technology Wuxi Co ltd
Wuxi NCE Power Co Ltd
Original Assignee
State Silicon Integrated Circuit Technology Wuxi Co ltd
Wuxi NCE Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Silicon Integrated Circuit Technology Wuxi Co ltd, Wuxi NCE Power Co Ltd filed Critical State Silicon Integrated Circuit Technology Wuxi Co ltd
Priority to CN202210830224.XA priority Critical patent/CN115207088A/zh
Publication of CN115207088A publication Critical patent/CN115207088A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种横向沟槽型MOSFET器件及其制造方法。本发明在第一导电类型衬底上方设有第一导电类型外延层,在第一导电类型外延层内设有纵向沟槽,纵向沟槽内设有栅极,在第一导电类型外延层表面设有第二导电类型体区,第二导电类型体区在第一导电类型外延层的深度大于纵向沟槽的深度,第二导电类型体区中设有第一导电类型源极和第二导电类型源极,第一导电类型源极和纵向沟槽相接,第二导电类型体区中还设有与纵向沟槽相邻的第一导电类型漏极。本发明提供的横向沟槽型MOSFET器件及其制造方法和传统纵向沟槽型MOSFET器件的制造方法完全兼容,可以在不增加额外光刻版、不另外增加额外工艺步骤的情况下实现横向器件,便于器件之间的集成。

Description

一种横向沟槽型MOSFET器件及其制造方法
技术领域
本发明涉及一种半导体器件及其制作方法,尤其是一种横向沟槽型MOSFET器件及其制造方法。
背景技术
半导体制造工艺是集成电路实现的手段,也是集成电路设计的基础。通常情况下,对于集成电路或数字电路而言,使用一套工艺流程就能实现诸多器件的制造,如常见的BCD工艺就可以实现Bipolar(双极性器件)、CMOS(互补金属氧化物半导体,通常包含NMOS和PMOS)和DMOS(双扩散金属氧化物半导体场效应管,通常为LDMOS)等器件,电路设计者可以灵活使用这些器件来设计电路,由于器件的可选择性多,利用该工艺实现的电路也就有了较多的功能和较高的复杂性。
对于实现纵向功率器件的工艺而言,由于其制造的纵向功率器件的高压侧在芯片背面,很难实现多种不同类型器件的互联,因此一般情况下这种工艺只能实现单一器件的制造,
想要实现带驱动或者保护功能的功率器件,一般情况下可以通过以下两种方式来实现:其一是使用两种不同的工艺分别实现集成电路和功率器件两款芯片的制造,然后将这两款芯片封装成一款芯片以实现集成的功能;其二是使用一套纵向功率器件和横向器件可以集成在一起的工艺,同时制造纵向功率器件和横向的集成电路,这样就可以实现带复杂功能的功率器件。
对于一套既能实现纵向功率器件和横向器件的工艺方法,要求其能最大程度的减少光刻版(即掩膜窗口)数量,因为光刻版数量和生产成本直接相关,光刻版的数量越少,其生产成本也就越低。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种横向沟槽型MOSFET器件及其制作方法,完全兼容传统的纵向沟槽型功率MOSFET器件的制造工艺,便于实现纵向功率器件和横向器件的集成。
为实现以上技术目的,本发明的技术方案是:一种横向沟槽型MOSFET器件,包括衬底金属,在所述衬底金属上设有第一导电类型衬底,在所述第一导电类型衬底上设有第一导电类型外延层,在所述第一导电类型外延层中设有由二氧化硅绝缘材质组成的纵向沟槽,所述纵向沟槽内还设有由多晶硅材质组成的栅极,所述第一导电类型外延层表面还设有第二导电类型体区,所述第二导电类型体区在第一导电类型外延层的深度大于所述纵向沟槽的深度,在所述第二导电类型体区表面还设有重掺杂的第一导电类型源极和第二导电类型源极,所述重掺杂的第一导电类型源极一侧与所述纵向沟槽相接,所述重掺杂的第一导电类型源极另一侧与所述重掺杂的第二导电类型源极相接,在纵向沟槽水平延伸的方向上,在所述第一导电类型外延层表面还设有第一导电类型漏极,所述第一导电类型漏极与所述纵向沟槽相接。
在本发明的一种实施方式中,所述第一导电类型外延层和纵向沟槽表面还设有绝缘介质,所述绝缘介质表面还设有源极金属和漏极金属。
在本发明的一种实施方式中,所述源极金属穿过绝缘介质和重掺杂的第一导电类型源极和第二导电类型源极相连,所述漏极金属穿过绝缘介质和重掺杂的第一导电类型漏极相连。
在本发明的一种实施方式中,对于N型功率半导体器件,所述第一导电类型为N型,所述第二导电类型为P型;对于P型功率半导体器件,所述第一导电类型为P型,所述第二导电类型为N型。
一种横向沟槽型MOSFET器件的制作方法,包括如下步骤:
步骤一:选取第一导电类型衬底材料并在其表面外延生长第一导电类型外延层;
步骤二:利用掩膜窗口,在所述第一导电类型外延层的上表面选择性刻蚀出纵向沟槽;
步骤三:在纵向沟槽内生长由二氧化硅材质组成的氧化层,在所述纵向沟槽内填充多晶硅至第一导电类型外延层表面,形成栅极,并将多余的多晶硅去除;
步骤四:在所述第一导电类型外延层表面注入第二导电类型离子,经高温退火形成第二导电类型体区;
步骤五:利用掩膜窗口,在第二导电类型体区表面分别注入高浓度的第一导电类型离子和第二导电类型离子,经高温退火后,形成重掺杂的第一导电类型源极、第一导电类型漏极和第二导电类型源极;
步骤六:在所述第一导电类型外延层表面和所述纵向沟槽表面淀积绝缘介质,然后在绝缘介质上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属、栅极金属和漏极金属,在第一导电类型衬底下方淀积金属形成衬底金属。
本发明上述技术方案相比现有技术具有以下优点:在原有纵向沟槽型功率MOSFET器件制造方法的基础上,通过调整器件的版图,就能实现横向功率MOSFET器件的制造,不需要增加掩模窗口的数量,实现了纵向功率器件和横向器件的集成,便于功率器件通过横向电路部分扩展更多的功能,提高了芯片的集成度。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明器件结构去除绝缘介质和表面金属的三维结构图。
图2为本发明器件结构的三维结构图。
图3为传统沟槽型功率MOSFET器件结构去除绝缘介质和表面金属的三维结构图。
图4为传统沟槽型功率MOSFET器件结构的三维结构图。
图5为不同宽度的纵向沟槽在相同反应时间内的沟槽深度剖面图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。下面将参考附图并结合实施例来详细说明本发明。
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合具体附图和实施例对本发明作进一步说明。
实施例1
一种横向沟槽型MOSFET器件,当所述器件为N型MOSFET器件时,所述第一导电类型为N型,所述第二导电类型为P型;当所述器件为P型MOSFET器件时,所述第一导电类型为P型,所述第二导电类型为N型。本实施例以N型MOSFET器件为例,如图1和图2所示,包括衬底金属101,在所述衬底金属101上设有N型衬底102,在所述N型衬底102上设有N型外延层103,在所述N型外延层103中设有由二氧化硅绝缘材质组成的纵向沟槽105,所述纵向沟槽105内还设有由多晶硅材质组成的栅极108,所述N型外延层103表面还设有P型体区104,所述P型体区104在N型外延层103的深度大于所述纵向沟槽105的深度,在所述P型体区104表面还设有重掺杂的N型源极107和P型源极109,所述重掺杂的N型源极107一侧与所述纵向沟槽105相接,所述重掺杂的N型源极107另一侧与所述重掺杂的P型源极109相接,在纵向沟槽105水平延伸的方向上,在所述N型外延层103表面还设有N型漏极110,所述N型漏极110与所述纵向沟槽105相接,所述N型外延层103和纵向沟槽105表面还设有绝缘介质111,所述绝缘介质111表面还设有源极金属112和漏极金属113,所述源极金属112穿过绝缘介质111和重掺杂的N型源极107和P型源极109相连,所述漏极金属113穿过绝缘介质111和重掺杂的N型漏极110相连。
本实施例提供的漏极位于器件表面,方便器件之间的集成。本发明纵向沟槽的深度小于P型体区的深度,器件在导通时,就不会形成从N型源极到N型外延层的纵向电流通道,电流也就不会流入位于器件背面的N型衬底。相反,栅极两侧的P型体区反型成N型沟道,会形成位于器件表面的N型源极到N型漏极的电流通道。
传统纵向沟槽型功率MOSFET器件如图3、图4所示,包括漏极金属201,在所述漏极金属201上设有N型衬底202,在所述N型衬底202上设有N型外延层203,在所述N型外延层203中设有由二氧化硅绝缘材质组成的纵向沟槽205,所述纵向沟槽205内还设有由多晶硅材质组成的栅极208,所述N型外延层203表面还设有P型体区204,所述P型体区204在N型外延层203的深度小于所述纵向沟槽205的深度,在所述P型体区204表面还设有重掺杂的N型源极207和P型源极209,所述重掺杂的N型源极207一侧与所述纵向沟槽205相接,所述重掺杂的N型源极207另一侧与所述重掺杂的P型源极209相接,所述N型外延层203和纵向沟槽205表面还设有绝缘介质210,所述绝缘介质210表面还设有源极金属211,所述源极金属211穿过绝缘介质210和重掺杂的N型源极207和P型源极209相连。
从器件结构上来看,本发明提供的横向沟槽型MOSFET器件和传统沟槽型功率MOSFET器件的差异主要体现在两个方面:其一,本发明结构的纵向沟槽深度小于传统结构,这是为了确保本发明提供的横向沟槽型MOSFET器件不会形成纵向沟道;其二,本发明结构相较于传统纵向结构而言,在表面额外设置了N型漏极和漏极金属。
以上两点差异可以通过调整器件的版图(即设计图)来实现,而不需要额外增加光刻版,具体地,通过本发明的制造方法来具体分析。
基于本实施例的制造方法,包括如下步骤:
步骤一:选取N型衬底102材料并在其表面外延生长N型外延层103;
步骤二:利用掩膜窗口,在所述N型外延层103的上表面选择性刻蚀出纵向沟槽105;
步骤三:在纵向沟槽105内生长由二氧化硅材质组成的氧化层,在所述纵向沟槽内填充多晶硅至N型外延层表面,形成栅极108,并将多余的多晶硅去除;
步骤四:在所述N型外延层103表面注入P型离子,经高温退火形成P型体区104;
步骤五:利用掩膜窗口,在P型体区104表面分别注入高浓度的N型离子和P型离子,经高温退火后,形成重掺杂的N型源极107、N型漏极110和P型源极109。
步骤六:在所述N型外延层103表面和所述纵向沟槽105表面淀积绝缘介质111,然后在绝缘介质111上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属112、栅极金属和漏极金属113,在N型衬底102下方淀积金属形成衬底金属101。
在实现纵向沟槽工艺时,通常使用干法刻蚀的工艺来实现。首先利用光刻版(掩膜窗口)来实现不同宽度的纵向沟槽窗口,然后使用等离子体来轰击晶圆表面,对于宽度较宽的纵向沟槽,等离子体和晶圆表面的反应面积也就较大,对于宽度较小的纵向沟槽,等离子提和晶圆表面的反应面积较小,这就使得在相同反应时间内,宽度小的纵向沟槽其刻蚀出来的深度也就较小。图5为不同宽度的纵向沟槽在相同反应时间内的沟槽深度,从图中可以看出,沟槽宽度越大,其深度也就越深。因此,利用同一块光刻版就能制备不同深度的纵向沟槽。
对于本发明所提供的横向沟槽型MOSFET器件和传统沟槽型功率MOSFET器件而言,如图1和3所示,只要在设计器件时,确保w1<w2,在最后形成的器件中,横向沟槽型MOSFET器件的沟槽深度就会比传统沟槽型功率MOSFET器件的沟槽深度小,再通过P型体区的注入条件和退火条件,就能确保在横向沟槽型MOSFET器件中,纵向沟槽的深度小于P型体区的深度。
将N型漏极和漏极金属制备在器件表面,由于N型漏极和N型源极可以使用相同的光刻版来形成,在版图中只要绘制N型漏极的注入窗口即可。对于漏极金属的形成,其和源极金属使用相同的光刻版形成,因此也只要在版图中绘制需要保留漏极金属的区域即可在工艺中实现。
综上所述,本发明提供的横向沟槽型MOSFET器件的制造方法与传统沟槽型功率MOSFET器件的制造方法完全兼容,可以在不增加额外光刻版,不另外增加额外工艺步骤的情况下形成横向沟槽型MOSFET器件,便于横向器件之间的集成,形成具有一定功能的电路来保护或者驱动纵向功率MOSFET器件。
以上对本发明及其实施方式进行了描述,该描述没有限制性,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1.一种横向沟槽型MOSFET器件,包括衬底金属,在所述衬底金属上设有第一导电类型衬底,在所述第一导电类型衬底上设有第一导电类型外延层,在所述第一导电类型外延层中设有由二氧化硅绝缘材质组成的纵向沟槽,所述纵向沟槽内还设有由多晶硅材质组成的栅极,所述第一导电类型外延层表面还设有第二导电类型体区;
其特征在于,所述第二导电类型体区在第一导电类型外延层的深度大于所述纵向沟槽的深度,在所述第二导电类型体区表面还设有重掺杂的第一导电类型源极和第二导电类型源极,所述重掺杂的第一导电类型源极一侧与所述纵向沟槽相接,所述重掺杂的第一导电类型源极另一侧与所述重掺杂的第二导电类型源极相接,在纵向沟槽水平延伸的方向上,在所述第一导电类型外延层表面还设有第一导电类型漏极,所述第一导电类型漏极与所述纵向沟槽相接。
2.根据权利要求1所述的一种横向沟槽型MOSFET器件,其特征在于,所述第一导电类型外延层和纵向沟槽表面还设有绝缘介质,所述绝缘介质表面还设有源极金属和漏极金属。
3.根据权利要求2所述的一种横向沟槽型MOSFET器件,其特征在于,所述源极金属穿过绝缘介质和重掺杂的第一导电类型源极和第二导电类型源极相连,所述漏极金属穿过绝缘介质和重掺杂的第一导电类型漏极相连。
4.根据权利要求1-3任一项所述的一种横向沟槽型MOSFET器件,其特征在于,对于N型功率半导体器件,所述第一导电类型为N型,所述第二导电类型为P型;对于P型功率半导体器件,所述第一导电类型为P型,所述第二导电类型为N型。
5.一种横向沟槽型MOSFET器件的制作方法,基于权利要求1-4任一项所述的一种横向功率MOSFET器件,其特征在于,包括如下步骤:
步骤一:选取第一导电类型衬底材料并在其表面外延生长第一导电类型外延层;
步骤二:利用掩膜窗口,在所述第一导电类型外延层的上表面选择性刻蚀出纵向沟槽;
步骤三:在纵向沟槽内生长由二氧化硅材质组成的氧化层,在所述纵向沟槽内填充多晶硅至第一导电类型外延层表面,形成栅极,并将多余的多晶硅去除;
步骤四:在所述第一导电类型外延层表面注入第二导电类型离子,经高温退火形成第二导电类型体区;
步骤五:利用掩膜窗口,在第二导电类型体区表面分别注入高浓度的第一导电类型离子和第二导电类型离子,经高温退火后,形成重掺杂的第一导电类型源极、第一导电类型漏极和第二导电类型源极;
步骤六:在所述第一导电类型外延层表面和所述纵向沟槽表面淀积绝缘介质,然后在绝缘介质上选择性刻蚀出通孔,接着淀积金属并选择性刻蚀金属,形成源极金属、栅极金属和漏极金属,在第一导电类型衬底下方淀积金属形成衬底金属。
CN202210830224.XA 2022-07-15 2022-07-15 一种横向沟槽型mosfet器件及其制造方法 Pending CN115207088A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210830224.XA CN115207088A (zh) 2022-07-15 2022-07-15 一种横向沟槽型mosfet器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210830224.XA CN115207088A (zh) 2022-07-15 2022-07-15 一种横向沟槽型mosfet器件及其制造方法

Publications (1)

Publication Number Publication Date
CN115207088A true CN115207088A (zh) 2022-10-18

Family

ID=83582431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210830224.XA Pending CN115207088A (zh) 2022-07-15 2022-07-15 一种横向沟槽型mosfet器件及其制造方法

Country Status (1)

Country Link
CN (1) CN115207088A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016593A (zh) * 2024-04-09 2024-05-10 合肥晶合集成电路股份有限公司 一种半导体结构及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016593A (zh) * 2024-04-09 2024-05-10 合肥晶合集成电路股份有限公司 一种半导体结构及其制备方法

Similar Documents

Publication Publication Date Title
KR100420534B1 (ko) 얕은 트렌치 분리 구조의 반도체 장치와 일관된 임계전압을 갖는 모스 트랜지스터 제조 방법
KR100363353B1 (ko) 반도체 장치 및 그 제조 방법
KR100657098B1 (ko) 전계 효과 트랜지스터 및 전계 효과 트랜지스터 제조 방법
KR0169275B1 (ko) 소자분리영역용의 트렌치구조를 갖춘 반도체장치
KR101466846B1 (ko) Mos 트랜지스터 및 그 형성 방법
JP2009540579A (ja) 自己整合ゲートjfet構造及びその製造方法
CN103915502A (zh) 半导体器件及制造方法
TWI414023B (zh) 用於製造一半導體器件的方法
CN105428241A (zh) 具有屏蔽栅的沟槽栅功率器件的制造方法
JP6770177B2 (ja) デプレッションモード接合電界効果トランジスタと統合されたデバイスおよび該デバイスを製造するための方法
CN110265359B (zh) 半导体器件及其制造方法
CN105977285A (zh) 半导体器件及其制造方法
CN115207088A (zh) 一种横向沟槽型mosfet器件及其制造方法
KR20140001087A (ko) 수직 파워 mosfet 및 그 제조 방법
KR101530579B1 (ko) 반도체 소자 및 이의 제조 방법
US5854099A (en) DMOS process module applicable to an E2 CMOS core process
CN116525450A (zh) 一种ldmos器件及其制造方法
JPH0389555A (ja) 半導体装置及びその製法
JPH01130542A (ja) 素子間分離領域を有する半導体装置の製造方法
CN112466950A (zh) 一种抗边缘漏电soi mos结构及其形成方法
CN112309853A (zh) 屏蔽栅极沟槽结构的制备方法
KR100587605B1 (ko) 고전압 트랜지스터 및 그 제조방법
KR100640650B1 (ko) 반도체 메모리 소자 및 그 제조 방법
CN114597264B (zh) 一种功率mosfet器件及其制作方法
KR100997679B1 (ko) 바이폴라 트랜지스터와 그 형성 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination