CN115190840A - 阻气性膜及其制造方法 - Google Patents

阻气性膜及其制造方法 Download PDF

Info

Publication number
CN115190840A
CN115190840A CN202080097742.4A CN202080097742A CN115190840A CN 115190840 A CN115190840 A CN 115190840A CN 202080097742 A CN202080097742 A CN 202080097742A CN 115190840 A CN115190840 A CN 115190840A
Authority
CN
China
Prior art keywords
gas barrier
film
coating
resin
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080097742.4A
Other languages
English (en)
Inventor
神永纯一
武井辽
越山良树
西川健
福上美季
田中步实
柳泽恭行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020038062A external-priority patent/JP6809622B1/ja
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Publication of CN115190840A publication Critical patent/CN115190840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/108Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/16Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

一种阻气性膜,具备:树脂基材、在树脂基材的至少一个面上具有的氧气阻隔性覆膜、以及在树脂基材与氧气阻隔性覆膜之间的基底层和/或无机氧化物层,通过下述测定方法测定的一个面的黑色面积率为0.15%以下。<测定方法>利用光学显微镜拍摄树脂基材的一个面的1281μm见方的任意区域,获取1024×1024像素的拍摄图像,使用图像分析软件将拍摄图像转换为256灰度的单色图像,将单色图像的亮度的最频值减去30而得的值作为阈值,将小于阈值的设为黑色、将阈值以上的设为白色以将亮度2值化,将1281μm见方的区域中的尺寸为100μm2以上的黑色区域的总面积的比例作为黑色面积率。

Description

阻气性膜及其制造方法
技术领域
本公开涉及阻气性膜及其制造方法。
背景技术
为了抑制内容物的变质和腐败等、并且保持它们的功能和性质,用于食品、药品等的包装的包装材料需要具有防止使内容物变质的气体(水蒸气、氧气等)进入的性质,即阻气性。因此,这些包装材料使用具有阻气性的膜材料(阻气性膜)。
作为阻气性膜,已知将由具有阻气性的材料构成的阻气层设置在树脂基材的表面上。作为阻气层,已知金属箔或金属蒸镀膜、利用湿涂法形成的覆膜。作为覆膜,即表现出氧气阻隔性的膜,已知有:由含有水溶性高分子、聚偏二氯乙烯等树脂的涂布剂形成的树脂膜;由含有水溶性高分子和无机层状矿物的涂布剂形成的无机层状矿物复合树脂膜(专利文献1)。此外,作为阻气层,还提出了以下方案:依次层叠由无机氧化物构成的蒸镀薄膜层、和含有水性高分子、无机层状化合物以及金属醇盐的阻气性复合覆膜而成的阻气层(专利文献2);含有作为聚羧酸系聚合物的羧基与多价金属化合物的反应产物的羧酸的多价金属盐的阻气层(专利文献3)。
为了提高阻气性,例如,在专利文献4中提出了以下阻气性膜:在基材的至少一个面上形成覆膜,所述覆膜的表面的表面粗糙度参数Rt/Ra为20以下。在此,Rt是表面粗糙度曲线的最大的峰与最深的谷之间的距离。Ra是中心线平均粗糙度。根据专利文献4的阻气性膜,意图改善阻气性。
现有技术文献
专利文献
[专利文献1]日本专利第6191221号公报
[专利文献2]日本特开2000-254994号公报
[专利文献3]日本专利第4373797号公报
[专利文献4]日本特开平9-150484号公报
发明内容
[发明所要解决的课题]
但是,利用湿涂法、蒸镀法、溅射法在树脂基材的表面上设置覆膜而得的阻气性膜有时会因生产批次的不同而导致氧气阻隔性不稳定。具体而言,阻气性膜的氧气阻隔性比本来的氧气阻隔性,即根据构成覆膜的材料和覆膜的厚度假定的氧气阻隔性差。特别是当覆膜的厚度变薄时,倾向于容易产生这样的问题。因此,必须将阻气层的厚度增加到所需厚度以上,存在生产性差和材料成本过高的问题。
另外,有时在阻气性膜的表面上进行印刷。因此,要求阻气性膜容易在表面上进行印刷(印刷适性)。
本公开是鉴于上述情况而完成的,其目的在于提供即使用于赋予氧气阻隔性的覆膜的厚度变薄也能够充分地表现出本来的氧气阻隔性而表现出优异的阻气性、并且印刷适性良好的阻气性膜及其制造方法。
[用于解决课题的方案]
本公开涉及的阻气性覆膜具备:树脂基材、设置在树脂基材的至少一个面侧的氧气阻隔性覆膜、以及设置在树脂基材与氧气阻隔性覆膜之间的基底层和无机氧化物层中的任意一者或两者,树脂基材的一个面通过下述测定方法测定的黑色面积率为0.15%以下。
<测定方法>
利用光学显微镜对树脂基材的一个面的1281μm见方的任意区域进行拍摄,获得1024×1024像素的拍摄图像,使用图像分析软件将拍摄图像转换为256灰度的单色图像,将单色图像中的亮度的最频值减去30而得的值作为阈值,将小于阈值的设为黑色、将阈值以上的设为白色以将亮度2值化,将1281μm见方的区域中的尺寸为100μm2以上的黑色区域的总面积的比例作为黑色面积率。
本公开涉及的阻气性膜的制造方法具有:通过上述测定方法测定树脂基材原材的表面的黑色面积率、并准备至少一个面的黑色面积率为0.15%以下的树脂基材原材作为树脂基材的工序;以及在树脂基材的至少一个面上涂布涂布剂以至少形成氧气阻隔性覆膜的工序。
发明的效果
根据本公开的阻气性膜,即使氧气阻隔性覆膜的厚度变薄,生产批次之间的性能偏差也小,能够稳定地表现出本来的氧气阻隔性,从而能够发挥出优异的阻气性,并且可以使印刷适性良好。
附图说明
[图1]图1为实施方式1的阻气性膜的剖面图。
[图2]图2为利用光学显微镜拍摄实施方式1的树脂基材的一个面而得的拍摄图像。
[图3]图3为计算黑色面积率时所使用的直方图的一个例子。
[图4]图4为实施方式2的阻气性膜的剖面图。
[图5]图5为说明测定树脂基材的第一面的突起个数的测定装置的示意图。
[图6]图6为说明检测突起部分的原理的示意图。
[图7]图7为示出实施例的树脂基材的第一面的拍摄图像和从该图像中检测到的突起部的分析图像。
[图8]图8为示出在树脂基材的存在AB剂的区域中产生了覆膜缺陷的、利用聚焦离子/电子束加工观察装置拍摄而得的剖面电子显微镜图像。
具体实施方式
(实施方式1)
为了研究上述问题的原因,本发明人利用光学显微镜或电子显微镜详细地观察了氧气阻隔性差的阻气性膜的表面和剖面。在用于防止树脂基材的粘连而添加的防粘连剂(以下也记为“AB剂”)的存在区域中,利用聚焦离子/电子束加工观察装置进行剖面电子显微镜观察,结果确认了在AB剂高高地突出的区域中覆膜中产生了宽度为数μm的缺陷。据认为:该缺陷会成为气体透过的通路,从而无法充分地表现出氧气阻隔性。
树脂基材的表面存在由AB剂产生的各种尺寸的凸部。据认为:AB剂的突出高度和突出密度因树脂基材的生产批次不同而存在偏差,在该树脂基材表面涂布阻气性覆膜时,在大的凸部的位置处局部地不形成覆膜而产生缺陷,从而氧气阻隔性变得不稳定。
另外,通过利用显微镜详细地观察阻气性膜的高光印刷部中所产生的微细点的转印不良(有时也称为漏点),从而确认了所述AB剂容易在高高突出的位置处产生漏点。
因此,本发明人设计了在短时间内准确地把握影响阻气性膜的氧气阻隔性和印刷适性的树脂基材的大范围内的表面状态的方法,发现当对树脂基材的表面的光学显微镜图像进行2值化处理而使100μm2以上的黑色区域的总面积率(以下,称为黑色面积率)为0.15%以下时,氧气阻隔性能优异并且阻气性膜上的印刷适性良好,从而完成了本公开。
对于本公开的阻气性膜,示出实施方式并进行说明。
图1为实施方式1涉及的阻气性膜1的示意性剖面图。为了便于说明,图1中的尺寸比与实际的尺寸比不同。
阻气性膜1具有:树脂基材10、基底层30、无机氧化物层40以及氧气阻隔性覆膜20。需要说明的是,可以不存在基底层30和无机氧化物层40中的任一者。
基底层30与树脂基材10的一个面12接触而层叠,基底层30的与树脂基材10接触的面的相反面上层叠有无机氧化物层40。无机氧化物层40与基底层30接触而层叠,氧气阻隔性覆膜20与无机氧化物层40的与基底层30接触的面的相反面接触并位于其上。需要说明的是,在不设置基底层30的情况下,无机氧化物层40层叠在树脂基材10的一个面12上。另外,在不设置无机氧化物层40的情况下,氧气阻隔性覆膜20层叠在基底层30上。
<树脂基材>
树脂基材10含有树脂。作为构成树脂基材10的树脂,例如可以列举出:聚乙烯、聚丙烯、碳原子数为2~10的烯烃聚合物、丙烯-乙烯共聚物等烯烃系树脂;聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯等聚酯系树脂;尼龙6、尼龙66等脂肪族系聚酰胺、聚己二酰间苯二甲胺等芳香族聚酰胺等聚酰胺系树脂;聚苯乙烯、聚乙酸乙烯酯、乙烯-乙酸乙烯酯共聚物、聚乙烯醇、乙烯-乙烯醇共聚物等乙烯基系树脂;聚甲基丙烯酸甲酯、聚丙烯腈等(甲基)丙烯酸系单体的均聚物或共聚物等丙烯酸系树脂;赛璐玢;聚碳酸酯、聚酰亚胺等工程塑料等。这些树脂可以单独使用1种,也可以2种以上并用。
作为树脂基材10,可以列举出由单一的树脂构成的单层膜、使用了多种树脂的单层或层叠膜等。另外,还可以使用将上述树脂层叠在其他基材(金属、木材、纸、陶瓷等)上而成的层叠基材。树脂基材10可以是单层,也可以是2层以上。作为树脂基材10,优选聚烯烃系树脂膜(特别是,聚乙烯膜、聚丙烯膜等)、聚酯系树脂膜(特别是,聚对苯二甲酸乙二醇酯系树脂膜)、聚酰胺系树脂膜(特别是,尼龙膜)等。
树脂基材10可以是未拉伸膜,也可以是单轴或双轴拉伸定向膜。作为树脂基材10,从水蒸气阻隔性优异的观点来看,优选聚乙烯膜、聚丙烯膜、特别优选双轴拉伸聚丙烯膜(OPP)。OPP可以是将选自均聚物、无规共聚物以及嵌段共聚物中的至少一种聚合物加工成膜状而得的。均聚物是仅由丙烯单体构成的聚丙烯。无规共聚物是使作为主单体的丙烯和与丙烯不同的少量的共聚单体进行无规共聚而成为均质相的聚丙烯。嵌段共聚物是使作为主单体的丙烯与上述共聚单体进行嵌段共聚、或者以橡胶状聚合而成为非均质相的聚丙烯。在树脂基材10为OPP的情况下,OPP可以为1层,也可以为2层以上。
可以对树脂基材10的一个面12进行化学品处理、溶剂处理、电晕处理、低温等离子体处理、臭氧处理等表面处理,以提高与基底层30或无机氧化物层40的密合性。
树脂基材10可以含有填料、防粘连剂、防静电剂、增塑剂、润滑剂、抗氧化剂等添加剂。这些添加剂可以单独使用任意1种,也可以2种以上并用。
在树脂基材10含有防粘连剂(以下,也称为“AB剂”)的情况,在树脂基材10的一个面12上形成来自于AB剂的凹凸。树脂基材10中,通过含有AB剂而对树脂基材10的表面赋予凸部,从而可以抑制上述膜发生粘连。即,树脂基材10通过含有AB剂,提高了上述膜的耐粘连性。因此,可以容易地卷取上述膜,从而可以提高上述膜的加工特性。因此,树脂基材10优选含有AB剂。另一方面,当在树脂基材10的一个面12上形成大的凸部时,在其上形成的基底层30、无机氧化物层40以及氧气阻隔性覆膜20中容易产生作为气体透过的通路的缺陷。因此,阻气性膜1的氧气阻隔性可能会降低。
在树脂基材10含有AB剂的情况下,AB剂分散在树脂基材10中。树脂基材10的一个面12或另一个面14上分别局部地存在来自于AB剂的多个突起部。在一个面12和另一个面14中,AB剂可以露出,也可以被树脂覆盖。
AB剂为固体粒子,可以列举出有机系粒子、无机系粒子等。作为有机系粒子,可以列举出聚甲基丙烯酸甲酯粒子、聚苯乙烯粒子、聚酰胺粒子等。这些有机系粒子例如可以通过乳化聚合或悬浮聚合等得到。作为无机系粒子,可以列举出氧化硅粒子、沸石、滑石、高岭土、长石等。这些AB剂可以单独使用任意1种,也可以2种以上并用。
当考虑到阻气性膜1的外观、透明性、AB剂的脱落可能性、防粘连性能时,AB剂的平均粒径例如优选为0.1~5μm。AB剂的平均粒径是通过Coulter法测定的重量平均直径。
在树脂基材10含有AB剂的情况下,相对于100质量份的构成树脂基材10的树脂,AB剂的含量例如优选为0.05~0.5质量份。当AB剂的含量为上述下限值以上时,容易提高作为树脂基材10的原料的膜的加工特性。当AB剂的含量为上述上限值以下时,容易抑制阻气性膜1的氧气阻隔性的降低。
树脂基材10的一个面12的黑色面积率为0.15%以下、更优选为0.12%以下、进一步优选为0.10%以下。当黑色面积率为上述上限值以下时,容易进一步提高阻气性膜1的氧气阻隔性。另外,当黑色面积率为上述上限值以下时,特别容易使使用了聚丙烯膜、聚对苯二甲酸乙二醇酯系树脂膜的阻气性膜1的印刷适性良好。对黑色面积率的下限值没有特别地限定,为0%以上。
在此,“使印刷适应良好”是指:在阻气性膜的氧气阻隔性覆膜20上进行凹版印刷时,抑制高光部(网点面积率低的印刷部)处的油墨遗漏(インク抜け)(有时也称为漏点)。黑色面积率例如可以根据树脂基材10中所含的AB剂的材质、平均粒径以及含量、以及形成树脂基材10的一个面12的树脂的特性和膜的制造条件等来调整。
当对树脂基材10的表面的亮度进行2值化处理并且利用电子显微镜观察看起来为黑色的区域(黑点)时,存在突起物。黑点的尺寸越大,突起物的高度倾向于相对越高,特别是在存在尺寸为100μm2以上的黑点(突起物)的区域中,容易发生氧气阻隔性覆膜的涂膜缺陷和印刷的油墨遗漏。即,黑色面积率越小,在树脂基材10的一个面12上对氧气阻隔性和印刷适性产生不良影响的突起物越少,可以进一步提高阻气性膜1的氧气阻隔性并且使印刷适性良好。
本说明书中的黑色面积率可以通过下述测定方法测定。
<测定方法>
利用光学显微镜拍摄树脂基材10的一个面12的1281μm见方的任意区域,以获得1024×1024像素的拍摄图像。拍摄图像的一个例子如图2所示。
图2为利用光学显微镜拍摄树脂基材10的一个面12而得的拍摄图像。在图2中,100表示平坦部,110表示突起物。作为突起物110的例子,可以列举出异物、AB剂、树脂的溶解残留等。如图2所示,平坦部100看起来是灰色的、突起物110看起来是黑色的。平坦部100的亮度对应于后述的亮度的最频值。
接着,使用图像分析软件,将获得的1024×1024像素的拍摄图像转换为256灰度的单色图像。绘制转换后的单色图像的亮度分布以制作直方图。直方图的一个例子如图3所示。
在图3中,横轴表示转换为256灰度的单色图像后的亮度。单色图像中的亮度为0~255的整数。纵轴表示亮度的频率。在图3中,分布的亮度的最小值为26、最大值为255。亮度的最频值是单色图像中分布最多的亮度的值。图3中的P表示亮度的最频值。在图3中,P=160。
接着,将亮度的最频值减去30而得的值作为阈值,将小于阈值的设为黑色、将阈值以上的设为白色以将单色图像中的亮度2值化。在图3的单色图像中,作为黑色与白色的分界的阈值是亮度的最频值减去30而得的值(P-30)。在图3中,阈值为130。即,在图3中,将亮度小于130的设为“黑色”、将亮度为130以上的设为“白色”以进行2值化处理。
从提高黑色面积率的值的精度的观点来看,获得图像的亮度直方图优选为尖锐的形状。在此,“尖锐的形状”例如可以通过直方图的最频值P的峰高H的一半的高度(H/2)的直方图的宽度(以下,也称为“半值宽度”)W的大小来进行判断。半值宽度W例如优选为30以下、更优选为20以下、进一步优选为10以下。当半值宽度W为上述上限值以下时,直方图为尖锐的形状,黑色面积率的值的精度得以提高。对半值宽度W的下限值没有特别地限定,但是实质上为2以上。
根据上述2值化后的1281×1281μm(1024×1024像素)的图像,将尺寸为100μm2以上的黑色区域的总面积的比例作为黑色面积率。另外,黑色面积率是在任意的3个区域中求出的值的算术平均值。
作为光学显微镜,优选奥林巴斯株式会社制造的光学显微镜“OLS-4000”。作为图像分析软件,优选Scion公司的“Scion ImageJ”。
对图像获得条件进行说明。
(图像获取条件)
将想要求出黑色面积率的树脂基材10的要涂布涂布剂的一侧的面(一个面12)朝上,使用黑色膜双面胶带(寺冈制作所、7694)将树脂基材10粘贴到载玻片上。使用光学显微镜(奥林巴斯公司制、OLS-4000),并使用倍率为10倍的物镜(MPFLN10),从载玻片上的树脂基材10的任意3处获取范围为1281μm×1281μm的图像以作为1024×1024像素的图像。拍摄图像时的光量是任意的,但是优选调整光量使得在256灰度中图像亮度的最频值控制在80~200的范围内。
图像分析条件如下所述。
(图像分析条件)
·颜色信息破坏:8bit。
·2值化的阈值:亮度的最频值减去30而得的值。
·范围设定:设定像素的范围距离(Set Scale Distance in pixel):1024、已知距离(Known distance):1281、长度单位(Unit of length):μm
·面积测定:分析颗粒尺寸(Analyze Particles Size):100-无穷大(Infinity)(μm2)、包括孔(Include Holes)、总结(Summarize)检查。
在上述图像分析条件下,对于从树脂基材10的任意3处获取的拍摄图像分别计算%Area值,将这些%Area值的算术平均值作为黑色面积率。
本说明书中的黑色面积率是通过在平面上观察树脂基材10的一个面12来计算的。因此,与传统的表面粗糙度的测定相比,可以在面上而不是在线上观察表面的状态。
传统的表面粗糙度的数值因测定的方法和范围而发生变化。当测定面积较窄时,无法测定数量少的突起,因此粗糙度可能会被低估。另外,即使如中心线平均粗糙度那样在某一长度的直线范围内测定粗糙度时,在测定了大的突起的情况下,粗糙度会被估计得较大,但是在不是这种情况时,仍然会将粗糙度估计得较小。
如本说明书那样,通过用黑色面积率来规定树脂基材的表面状态,可以减小树脂基材的表面状态的偏差并对树脂基材的表面状态进行评价。因此,可以抑制氧气阻隔性的偏差,从而可以容易地进一步提高阻气性膜1的氧气阻隔性。
对于利用光学显微镜图像的2值化处理来管理黑色面积率,由于测定范围宽并且可以用简便的方法发现突起物,因此适用于氧气阻隔性和印刷适性的管理方法。
对树脂基材10的厚度没有特别地限定,可以考虑作为包装材料的适性和其他覆膜的层叠适性并且根据价格和用途适当地选择。树脂基材10的厚度实质上优选为3μm~200μm、更优选为5μm~120μm、进一步优选为6μm~100μm、特别优选为10μm~30μm。
<基底层>
基底层30设置在树脂基材10与无机氧化物层40或氧气阻隔性覆膜20之间。
基底层30是含有有机高分子为主要成分的层,也被称为底漆层。通过设置基底层30,可以提高无机氧化物层40或氧气阻隔性覆膜20的成膜性和密合强度。
基底层30中的有机高分子的含量例如可以为70质量%以上、也可以为80质量%以上。作为所述有机高分子,可以列举出:聚丙烯酸树脂、聚酯树脂、聚碳酸酯树脂、聚氨酯树脂、聚酰胺树脂、聚烯烃树脂、聚酰亚胺树脂、三聚氰胺树脂、酚醛树脂等,当考虑树脂基材10与无机氧化物层40或氧气阻隔性覆膜20之间的密合强度的耐热水性时,优选含有聚丙烯酸系树脂、多元醇系树脂、聚氨酯系树脂、聚酰胺系树脂、或者这些有机高分子的反应产物中的至少1种。另外,基底层30也可以含有硅烷偶联剂、有机钛酸酯、或改性硅油。
作为所述有机高分子,可以进一步优选地列举出:通过在高分子末端具有2个以上羟基的多元醇类与异氰酸酯化合物的反应生成的具有氨基甲酸酯键的有机高分子;和/或包含在高分子末端具有2个以上羟基的多元醇类与硅烷偶联剂或其水解物那样的有机硅烷化合物的反应产物的有机高分子。
作为多元醇类,例如可以列举出选自丙烯酸多元醇、聚乙烯醇缩醛、聚苯乙烯多元醇、以及聚氨酯多元醇等中的至少一种。丙烯酸多元醇可以是通过使丙烯酸衍生物单体聚合而得到的,也可以是通过使丙烯酸衍生物单体与其他单体共聚而得到的。作为丙烯酸衍生物单体,可以列举出:甲基丙烯酸乙酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、以及甲基丙烯酸羟丁酯等。作为与丙烯酸衍生物单体共聚的单体,可以列举出苯乙烯等。
异氰酸酯化合物具有通过与多元醇发生反应而生成氨基甲酸酯键来提高树脂基材10与无机氧化物层40或者氧气阻隔性覆膜20之间的密合性的作用。即,异氰酸酯化合物起到交联剂或固化剂的作用。作为异氰酸酯化合物,例如可以列举出:芳香族系的甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI);脂肪族系的苯二亚甲基二异氰酸酯(XDI)、六亚甲基二异氰酸酯(HMDI);以及异佛尔酮二异氰酸酯(IPDI)等单体类,它们的聚合物以及它们的衍生物。上述异氰酸酯化合物可以单独使用1种,也可以2种以上组合使用。
作为硅烷偶联剂,例如可以列举出:乙烯基三甲氧基硅烷、γ-氯丙基甲基二甲氧基硅烷、γ-氯丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、以及γ-甲基丙烯酰氧基丙基甲基二甲氧基硅烷等。有机硅烷化合物也可以是这些硅烷偶联剂的水解物。有机硅烷化合物可以单独包括1种上述硅烷偶联剂及其水解物,也可以组合包括2种以上。
可以通过将上述成分以任意比例混合在有机溶剂中来制备混合液,并使用所制备的混合液在树脂基材10的一个面12上形成基底层30。混合液例如也可以含有叔胺、咪唑衍生物、羧酸的金属盐化合物、季铵盐、季鏻盐等固化促进剂;苯酚系、硫系、亚磷酸盐系等抗氧化剂;流平剂、流动调节剂、催化剂、交联反应促进剂、填充剂等。
可以利用胶版印刷法、凹版印刷法、或者丝网印刷法等公知的印刷方式;或者辊涂法、气刀涂布法、或者凹版涂布法等公知的涂布方式将混合液涂布在树脂基材10上。涂布后,例如可以通过加热到50~200℃、并干燥和/或固化来形成基底层30。
对基底层30的厚度没有特别地限定,例如可以为0.005~5μm。厚度可以根据用途或所需要的特性来进行调整。
作为基底层30的厚度,优选为0.01~1μm、更优选为0.01~0.5μm。如果基底层30的厚度为0.01μm以上,则可以得到树脂基材10与无机氧化物层40或氧气阻隔性覆膜20之间的充分的密合强度,从而氧气阻隔性也良好。如果基底层30的厚度为1μm以下,则容易形成均匀的涂布面,并且可以抑制干燥负荷和制造成本。
<无机氧化物层>
无机氧化物层40例如可以列举出:氧化铝、氧化硅、氧化镁、氧化钛、氧化锡、氧化锌、氧化铟等,特别是氧化铝或氧化硅,其生产性优异,并且在耐热、耐湿热下的氧气阻隔性和水蒸气阻隔性优异,因此优选。需要说明的是,无机氧化物层40可以单独含有这些中的1种,也可以组合含有2种以上。
无机氧化物层40的厚度优选为1~200nm,如果厚度为1nm以上,则可以得到优异的氧气阻隔性和水蒸气阻隔性,如果厚度为200nm以下,则可以将制造成本控制为较低,并且难以产生因弯曲或拉伸等外力而引起的裂纹,从而可以抑制阻隔性的劣化。
无机氧化物层40例如可以通过真空蒸镀法、溅射法、离子镀法、或者等离子体气相沉积法(CVD)等公知的成膜方法形成。
<氧气阻隔性覆膜>
公知的是,氧气阻隔性覆膜20可以作为利用湿涂法而形成的氧气阻隔性覆膜。氧气阻隔性覆膜20可以通过利用湿涂法在基底层30或无机氧化物层40上形成由涂布剂构成的涂膜,并使该涂膜干燥而得到。需要说明的是,涂膜为湿润膜,覆膜为干燥膜。
作为氧气阻隔性覆膜20,优选为含有金属醇盐及其水解物以及其反应产物中的至少1种、和水溶性高分子的覆膜(有机无机复合覆膜)。此外,优选为进一步含有硅烷偶联剂及其水解物中的至少一者的覆膜。
作为有机无机复合膜中所含有的金属醇盐及其水解物,例如可以列举出四乙氧基硅烷[Si(OC2H5)4]以及三异丙氧基铝[Al(OC3H7)3]等由通式:M(OR)n所表示的化合物及其水解物。可以单独含有这些当中的1种,或者也可以组合含有2种以上。
在有机无机复合膜中,金属醇盐及其水解物以及其反应产物中的至少1者的总含量例如为40~70质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的金属醇盐及其水解物以及其反应产物中的至少1者的总含量的下限可以为50质量%。从同样的观点来看,有机无机复合膜中的金属醇盐及其水解物以及其反应产物中的至少1者的总含量的上限可以为65质量%。
对有机无机复合膜中所含有的水溶性高分子没有特别地限定,例如可以列举出:聚乙烯醇系;淀粉、甲基纤维素、羧甲基纤维素等多糖类;以及丙烯酸多元醇系等高分子。从进一步提高氧气阻隔性的观点来看,水溶性高分子优选含有聚乙烯醇系的高分子。水溶性高分子的数均分子量例如为40000~180000。
聚乙烯醇系的水溶性高分子例如可以通过使聚乙酸乙烯酯皂化(也包括部分皂化)而得到。该水溶性高分子中可以残留数十%的乙酸基,也可以只残留数%的乙酸基。
有机无机复合膜中的水溶性高分子的含量例如为15~50质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的水溶性高分子的含量的下限可以为20质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的水溶性高分子的含量的上限可以为45质量%。
作为有机无机复合膜中所含有的硅烷偶联剂及其水解物,可以列举出具有有机官能团的硅烷偶联剂。作为这样的硅烷偶联剂及其水解物,可以列举出:乙基三甲氧基硅烷、乙烯基三甲氧基硅烷、γ-氯丙基甲基二甲氧基硅烷、γ-氯丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、以及它们的水解物。可以单独含有这些当中的1种,也可以组合含有2种以上。
硅烷偶联剂及其水解物中的至少一者优选使用具有作为有机官能团的环氧基的硅烷偶联剂。作为具有环氧基的硅烷偶联剂,例如可以列举出γ-环氧丙氧基丙基三甲氧基硅烷和β-(3,4-环氧环己基)乙基三甲氧基硅烷。具有环氧基的硅烷偶联剂及其水解物也可以具有与环氧基不同的有机官能团,例如乙烯基、氨基、甲基丙烯酸基或脲基。
具有有机官能团的硅烷偶联剂及其水解物通过其有机官能团与水溶性高分子的羟基的相互作用,可以进一步提高氧气阻隔性覆膜20的氧气阻隔性、与基底层30或者无机氧化物层40之间的粘接性。特别是,通过使硅烷偶联剂及其水解物的环氧基与聚乙烯醇的羟基发生相互作用,可以形成氧气阻隔性、与基底层30或者无机氧化物层40之间的粘接性特别优异的氧气阻隔性覆膜20。
在有机无机复合膜中,硅烷偶联剂及其水解物以及它们的反应产物中的至少一者的总含量例如为1~15质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的硅烷偶联剂及其水解物以及它们的反应产物中的至少一者的总含量的下限可以为2质量%。从同样的观点来看,有机无机复合膜中的硅烷偶联剂及其水解物以及它们的反应产物中的至少一者的总含量的上限可以为12质量%。
有机无机复合膜中也可以含有具有层状结构的结晶性的无机层状化合物。作为无机层状化合物,例如可以列举出以高岭石族、蒙皂石族或云母族等为代表的粘土矿物。可以单独使用这些当中的1种,也可以2种以上组合使用。无机层状化合物的粒径例如为0.1~10μm。无机层状化合物的纵横比例如为50~5000。
作为无机层状化合物,通过使水溶性高分子进入(嵌入)到层状结构的层间,可以形成具有优异的氧气阻隔性和密合强度的覆膜,因此优选蒙皂石族的粘土矿物。作为蒙皂石族的粘土矿物的具体例子,可以列举出蒙脱石、水辉石、皂土、水膨胀性合成云母等。
另外,作为氧气阻隔性覆膜20的其他优选例子,可以列举出含有作为聚羧酸系聚合物(A)的羧基与多价金属化合物(B)的反应产物的羧酸多价金属盐的覆膜(聚羧酸多价金属盐覆膜)。在这种情况下,可以是通过涂布混合有聚羧酸系聚合物(A)和多价金属化合物(B)的涂布剂并加热干燥而形成的聚羧酸多价金属盐覆膜;也可以是涂布以聚羧酸系聚合物(A)为主要成分的涂布剂并干燥而形成A覆膜,并在其上涂布以多价金属化合物(B)为主要成分的涂布剂并干燥而形成B覆膜,使A/B层间发生交联反应而形成的聚羧酸多价金属盐覆膜。
[聚羧酸系聚合物(A)]
聚羧酸系聚合物是指分子内具有2个以上羧基的聚合物。作为聚羧酸系聚合物,例如可以列举出烯键式不饱和羧酸的(共)聚合物;烯键式不饱和羧酸与其他烯键式不饱和单体的共聚物;海藻酸、羧甲基纤维素、果胶等分子内具有羧基的酸性多糖类。作为烯键式不饱和羧酸,例如可以列举出丙烯酸、甲基丙烯酸、衣康酸、马来酸、富马酸、巴豆酸等。作为可以与烯键式不饱和羧酸共聚的烯键式不饱和单体,例如可以列举出:乙烯、丙烯、乙酸乙烯酯等饱和羧酸乙烯酯类;丙烯酸烷基酯类、甲基丙烯酸烷基酯类、衣康酸烷基酯类、氯乙烯、偏二氯乙烯、苯乙烯、丙烯酰胺、丙烯腈等。这些聚羧酸系聚合物可以单独使用1种,也可以2种以上混合使用。
作为成分,从所得的阻气性膜1的阻气性的观点来看,在上述当中优选为包括从选自由丙烯酸、马来酸、甲基丙烯酸、衣康酸、富马酸以及巴豆酸组成的组中的至少1种聚合性单体衍生的构成单元的聚合物,特别优选为包括从选自由丙烯酸、马来酸、甲基丙烯酸、以及衣康酸组成的组中的至少1种聚合性单体衍生的构成单元的聚合物。在该聚合物中,从选自由丙烯酸、马来酸、甲基丙烯酸、以及衣康酸组成的组中的至少1种聚合性单体衍生的构成单元的比例优选为80mol%以上、更优选为90mol%以上(其中,将构成该聚合物的全部构成单元的合计设为100mol%)。该聚合物可以为均聚物,也可以为共聚物。在该聚合物是包含除上述构成单元以外的其他构成单元的共聚物的情况下,作为其他构成单元,例如可以列举出可与上述烯键式不饱和羧酸共聚的烯键式不饱和单体所衍生的构成单元等。
聚羧酸系聚合物的数均分子量优选在2,000~10,000,000的范围内、更优选为5,000~1,000,000。当数均分子量小于2,000时,所得的阻气性膜无法实现充分的耐水性,有时会因水分而导致阻气性和透明性变差,或者有时产生白化。另一方面,当数均分子量超过10,000,000时,形成氧气阻隔性覆膜20时的涂布剂的粘度会变高,有时会损害涂布性。需要说明的是,上述数均分子量是通过凝胶渗透色谱(GPC)求得的聚苯乙烯换算的数均分子量。
在涂布以聚羧酸系聚合物(A)为主要成分的涂布剂并干燥以形成A覆膜,然后再形成B覆膜的情况下,可以预先用碱性化合物中和聚羧酸系聚合物的一部分羧基。通过预先中和聚羧酸系聚合物所具有的一部分羧基,可以进一步提高A覆膜的耐水性和耐热性。作为碱性化合物,优选为选自由多价金属化合物、一价金属化合物、氨水组成的组中的至少1种碱性化合物。作为多价金属化合物,可以使用后述的多价金属化合物(B)的说明中所示例的化合物。作为一价金属化合物,例如可以列举出氢氧化钠、氢氧化钾等。
以聚羧酸系聚合物(A)为主要成分的涂布剂中可以添加各种添加剂,在不损害阻隔性能的范围内,可以添加交联剂、固化剂、流平剂、消泡剂、防粘连剂、防静电剂、分散剂、表面活性剂、柔顺剂、稳定剂、成膜剂、增稠剂等。
以聚羧酸系聚合物(A)为主要成分的涂布剂中所使用的溶剂优选为水性介质。作为水性介质,可以列举出水、水溶性或亲水性有机溶剂、或者它们的混合物。水性介质通常含有水或以水为主要成分。水性介质中的水的含量优选为70质量%以上、更优选为80质量%以上。作为水溶性或亲水性有机溶剂,例如可以列举出:甲醇、乙醇、异丙醇等醇类;丙酮、甲基乙基酮等酮类;四氢呋喃等醚类;溶纤剂类;卡必醇类;乙腈类的腈类等。
[多价金属化合物(B)]
多价金属化合物只要是可以与聚羧酸系聚合物的羧基发生反应以形成聚羧酸多价金属盐的化合物,则没有特别地限定,可以列举出氧化锌粒子、氧化镁粒子、甲醇镁、氧化铜、碳酸钙等。这些可以单独或者多种混合使用。从氧气阻隔性覆膜的氧气阻隔性的观点来看,优选氧化锌。
氧化锌是具有紫外线吸收性能的无机材料,对氧化锌粒子的平均粒径没有特别地限定,但是从阻气性、透明性、涂布适性的观点来看,平均粒径优选为5μm以下、更优选为1μm以下、特别优选为0.1μm以下。
在涂布以多价金属化合物(B)为主要成分的涂布剂并干燥以形成覆膜的情况下,在不损害本发明的效果的范围内,可以根据需要含有除氧化锌粒子以外的各种添加剂。作为该添加剂,可以含有:可在用于涂布剂的溶剂中溶解或分散的树脂、可在该溶剂中溶解或分散的分散剂、表面活性剂、柔顺剂、稳定剂、成膜剂、增稠剂等。
在上述当中,优选含有可在用于涂布剂的溶剂中溶解或分散的树脂。由此,可以提高涂布剂的涂布性和制膜性。作为这样的树脂,例如可以列举出:醇酸树脂、三聚氰胺树脂、丙烯酸树脂、氨基甲酸酯树脂、聚酯树脂、酚醛树脂、氨基树脂、氟树脂、环氧树脂、异氰酸酯树脂等。
另外,优选含有可在用于涂布剂的溶剂中溶解或分散的分散剂。由此,可以提高多价金属化合物的分散性。作为该分散剂,可以使用阴离子型表面活性剂或非离子型表面活性剂。作为该表面活性剂,可以列举出:(聚)羧酸盐、烷基硫酸酯盐、烷基苯磺酸盐、烷基萘磺酸盐、烷基磺基琥珀酸盐、烷基二苯醚二磺酸盐、烷基磷酸盐、芳香族磷酸酯、聚氧乙烯烷基醚、聚氧乙烯烷基酚醚、聚氧乙烯烷基酯、烷基烯丙基硫酸酯盐、聚氧乙烯烷基磷酸酯、山梨糖醇烷基酯、甘油脂肪酸酯、山梨糖醇脂肪酸酯、蔗糖脂肪酸酯、聚乙二醇脂肪酸酯、聚氧乙烯山梨糖醇烷基酯、聚氧乙烯烷基烯丙基醚、聚氧乙烯衍生物、聚氧乙烯山梨糖醇脂肪酸酯、聚氧脂肪酸酯、聚氧乙烯烷基胺等各种表面活性剂。这些表面活性剂可以单独使用,也可以两种以上混合使用。
在以多价金属化合物(B)为主要成分的涂布剂中含有添加剂的情况下,多价金属化合物与添加剂的质量比(多价金属化合物:添加剂)优选在30:70~99:1的范围内、更优选在50:50~98:2的范围内。
作为以多价金属化合物(B)为主要成分的涂布剂中所使用的溶剂,例如可以列举出:水、甲醇、乙醇、异丙醇、正丙醇、正丁醇、正戊醇、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、甲苯、己烷、庚烷、环己烷、丙酮、甲基乙基酮、二乙醚、二恶烷、四氢呋喃、乙酸乙酯、乙酸丁酯。另外,这些溶剂可以单独使用1种,也可以2种以上混合使用。从涂布性的观点来看,这些当中优选甲醇、乙醇、异丙醇、甲苯、乙酸乙酯、甲基乙基酮、水。另外,从制造性的观点来看,优选甲醇、乙醇、异丙醇、水。
在涂布混合有聚羧酸系聚合物(A)和多价金属化合物(B)的涂布剂并干燥以形成聚羧酸多价金属盐覆膜的情况下,将上述聚羧酸系聚合物(A)、上述多价金属化合物(B)、作为溶剂的水或醇类、可在该溶剂中溶解或分散的树脂或分散剂、以及根据需要的添加剂混合以作为涂布剂,并利用公知的涂布方法涂布并干燥,从而可以形成聚羧酸多价金属盐覆膜。作为涂布法,例如浇铸法、浸渍法、辊涂法、凹版涂布法、丝网印刷法、逆转涂布法、喷涂法、套涂法、模涂法、计量棒涂布法、腔室气刀并用涂布法、帘涂法等。
氧气阻隔性覆膜20的厚度可以根据所需要的氧气阻隔性来进行设定,例如可以为0.05~5μm。作为氧气阻隔性覆膜20的厚度,优选为0.05~1μm、更优选为0.1~0.5μm。如果氧气阻隔性覆膜20的厚度为0.05μm以上,则容易得到充分的氧气阻隔性。如果氧气阻隔性覆膜20的厚度为1μm以下,则容易形成均匀的涂布面,并且可以抑制干燥负荷和制造成本,从而使用作为本公开的特征的具有黑色面积率为0.15%以下的表面的树脂基材10的有用性变高。
作为氧气阻隔性覆膜20,具有上述有机无机复合覆膜或上述聚羧酸多价金属盐覆膜的阻气性膜即使进行煮沸处理或蒸煮杀菌处理也可以表现出优异的氧气阻隔性,当与密封剂膜层压时,即使是作为煮沸、蒸煮处理用的包装材料,也具有充分的密合强度和密封强度,此外,具有以下优点:金属箔或金属蒸镀膜所没有的透明度、耐弯曲性和耐拉伸性优异、没有产生二恶英等有害物质的风险等。
[阻气性膜的制造方法]
阻气性膜1可以通过以下方式制造:在树脂基材10的一个面12上形成基底层30或无机氧化物层40或者基底层30和无机氧化物层40这两者,然后在基底层30或无机氧化物层40上形成氧气阻隔性覆膜20。
本公开的阻气性膜1的制造方法例如具有:分选工序、基底层形成工序、无机氧化物层形成工序、以及氧气阻隔性覆膜形成工序。
作为分选工序,例如可以列举出:分选表面的黑色面积率为0.15%以下的树脂基材原材作为树脂基材的工序。树脂基材原材的表面的黑色面积率通过与上述树脂基材10的一个面12的黑色面积率的测定方法相同的方法来测定。
作为树脂基材10,可以使用市售品,也可以使用通过公知的方法制造的基材。
作为基底层形成工序,例如可以列举出以下工序:通过湿涂法在树脂基材10的至少一个面12上涂布涂布剂来形成涂膜,并使该涂膜干燥(除去溶剂)以形成基底层30。
作为涂布剂的涂布方法,可以使用公知的湿涂法。作为湿涂法,可以列举出:辊涂法、凹版涂布法、逆转涂布法、模涂法、丝网印刷法、喷涂法等。
作为使由涂布剂构成的涂膜干燥的方法,可以使用热风干燥、热辊干燥、红外线照射等公知的干燥方法。涂膜的干燥温度例如优选为50~200℃。干燥时间因涂膜的厚度、干燥温度等而不同,但是例如优选为1秒~5分钟。
作为无机氧化物层形成工序,例如可以列举出以下工序:利用上述的真空蒸镀法、溅射法、离子镀法、或者等离子体气相沉积法(CVD)等在树脂基材10的一个面12或基底层30上形成无机氧化物层40。
作为氧气阻隔性覆膜形成工序,例如可以列举出以下工序:通过湿涂法在基底层30或者无机氧化物层40上涂布涂布剂以形成涂膜,并使该涂膜干燥(除去溶剂),从而形成氧气阻隔性覆膜20。
作为涂布剂的涂布方法,可以使用公知的湿涂法。作为湿涂法,可以列举出:辊涂法、凹版涂布法、逆转涂布法、模涂法、丝网印刷法、喷涂法等。
作为使由涂布剂构成的涂膜干燥的方法,可以使用热风干燥、热辊干燥、红外线照射等公知的干燥方法。涂膜的干燥温度例如优选为50~200℃。干燥时间因涂膜的厚度、干燥温度等而不同,但是例如优选为1秒~5分钟。
氧气阻隔性覆膜20可以通过一次涂布并干燥来形成,也可以通过重复多次涂布相同的涂布剂或不同的涂布剂并干燥来形成。
在基底层形成工序、无机氧化物层形成工序、氧气阻隔性覆膜形成工序中,在树脂基材10的一个面12上形成基底层30或无机氧化物层40或氧气阻隔性覆膜20。此时,一个面12的黑色面积率为0.15%以下。此外,也可以在树脂基材10的两个面上形成基底层30或无机氧化物层40或氧气阻隔性覆膜20。在这种情况下,树脂基材10的另一个面14的黑色面积率为0.15%以下。
在树脂基材原材的两个面上形成基底层30或无机氧化物层40或氧气阻隔性覆膜20的情况下,当树脂基材原材的两个面的黑色面积率为0.15%以下时,氧气阻隔性进一步提高,并且印刷适性良好,因此优选。
在本公开的阻气性膜1的制造方法具有分选工序的情况下,可以有效地应用表面的黑色面积率为0.15%以下的树脂基材。因此,通过具有分选工序,可以有效地制造氧气阻隔性进一步提高了的阻气性膜1。另外,通过具有分选工序,可以有效地制造印刷适性良好的阻气性膜1。
根据需要,本公开的阻气性膜1可以进一步具有印刷层、保护层、遮光层、粘接剂层、可热封的热熔接层、其他功能层等。
在本公开的阻气性膜1具有可热封的热熔接层的情况下,该热熔接层配置在阻气性膜1的至少一个最表层上。由于阻气性膜1具有热熔接层,因此阻气性膜1可以通过热封来实现密封(例如,包装体、盖体)。
例如,在树脂基材的单面或两面形成本实施方式的基底层30、无机氧化物层40、氧气阻隔性覆膜20而得的层叠体中,可以使用聚氨酯系、聚酯系、聚醚系等公知的粘接剂,并通过公知的干式层压法、挤出层压法等来层叠热熔接层。
<作用效果>
对于本公开的阻气性膜1,将单色图像中的亮度2值化,并计算尺寸为100μm2以上的黑色区域的总面积率(黑色面积率)。在黑色面积率为0.15%以下的树脂基材10的至少一个面上经由基底层30或无机氧化物层40或者基底层30和无机氧化物层40这两者而层叠氧气阻隔性覆膜20。
在本公开的阻气性膜1中,在黑色面积率为0.15%以下的树脂基材10的表面,经由基底层30或无机氧化物层40或这两者而形成氧气阻隔性覆膜20,因此难以产生由基材表面的大的凸部所引起的膜缺陷,容易进一步提高氧气阻隔性。另外,容易使阻气性膜1的印刷适性更加良好。
因此,通过将本公开的阻气性膜1用作包装用材料,可以以低成本提高内容物的品质保持性。
另外,通过将本公开的阻气性膜1用作包装用材料,可以容易且美观地进行印刷。
(实施方式2)
如上所述,利用湿涂法、蒸镀法、溅射法等在树脂基材的表面上设置覆膜而得的阻气性膜有时会因生产批次的不同而导致氧气阻隔性不稳定。具体而言,阻气性膜的氧气阻隔性比本来的氧气阻隔性,即根据构成覆膜的材料和覆膜的厚度假定的氧气阻隔性差。特别是当覆膜的厚度变薄时,倾向于容易产生这样的问题。因此,必须将阻气层的厚度增加到所需厚度以上,存在生产性差和材料成本过高的问题。
另外,作为树脂基材的聚烯烃树脂系的膜价格便宜并且水蒸气阻隔性高,经常被用作包装材料,但是与阻气性覆膜的密合性差,因此存在以下缺点:在与热封性树脂膜层压以制作阻气性包装材料时,层压强度差。
实施方式2的目的在于提供即使用于赋予氧气阻隔性的覆膜的厚度变薄,也可以充分地表现出本来的氧气阻隔性而表现出优异的阻气性,并且具有作为包装材料的充分的密合强度的阻气性膜及其制造方法。
为了研究上述问题的原因,本发明人利用光学显微镜或电子显微镜详细地观察了氧气阻隔性差的阻气性膜的表面和剖面。在用于防止树脂基材的粘连而添加的防粘连剂(以下也记为“AB剂”)的存在区域中,利用聚焦离子/电子束加工观察装置进行剖面电子显微镜观察,结果确认了在AB剂高高地突出区域中覆膜中产生了宽度为数μm的缺陷(剖面电子显微镜像的一个例子如图8所示)。据认为:该覆膜缺陷会成为气体透过的通路,从而无法充分地表现出氧气阻隔性。树脂基材的表面存在由AB剂产生的各种尺寸的凸部。据认为:AB剂的突出高度和突出密度因树脂基材的生产批次不同而存在偏差,在该树脂基材表面涂布阻气性覆膜(氧气阻隔性覆膜)时,在大的凸部的位置处局部地不形成覆膜而是产生缺陷,从而氧气阻隔性变得不稳定。
因此,本发明人设计了在短时间内准确地把握影响阻气性膜的氧气阻隔性的树脂基材的大范围的表面状态的方法,从而完成了本公开。
[1]一种阻气性膜,具备树脂基材和形成在树脂基材的一个面即第一面侧的氧气阻隔性覆膜,在树脂基材与氧气阻隔性覆膜之间具有基底层和无机氧化物层中的至少一者,树脂基材具有2个以上的树脂层,在2个以上的树脂层当中,形成第一面的树脂层由聚烯烃系共聚树脂构成,并且在第一面中,由下述测定方法测定的费雷特直径(Feret’sdiameter)为8μm以上的突起为20个/mm2以下。
<测定方法>
使用白色LED线光源,以光源距离为100mm、入射角为83°照射树脂基材的第一面的36.6mm见方的任意区域,利用单色线阵相机拍摄测定角为90°的透过光以获取拍摄图像,从所述拍摄图像中裁出3551像素×5684像素(2.5×4.0mm)的分析用图像,并对所述分析用图像中的费雷特直径为8μm以上的突起进行计数。
[2]一种阻气性膜,其中,所述树脂基材为聚烯烃系树脂。
[3]一种阻气性膜,其中,所述基底层的厚度为0.01~1μm。
[4]一种阻气性膜,其中,所述基底层含有作为主要成分的有机高分子,所述有机高分子包含聚丙烯酸系树脂、多元醇系树脂、聚氨酯系树脂、聚酰胺系树脂、或者这些有机高分子的反应产物中的至少一者。
[5]一种阻气性膜,其中,所述无机氧化物层的厚度为1~200nm。
[6]一种阻气性膜,其中,所述无机氧化物层为氧化铝或氧化硅。
[7]一种阻气性膜,其中,所述氧气阻隔性覆膜的厚度为0.05~1μm。
[8]一种阻气性膜,其中,所述氧气阻隔性覆膜是包含金属醇盐、金属醇盐的水解物、以及金属醇盐或金属醇盐的水解物的反应产物中的至少一者、和水溶性高分子的覆膜。
[9]一种阻气性膜,其中,所述氧气阻隔性覆膜进一步包含硅烷偶联剂、硅烷偶联剂的水解物、以及硅烷偶联剂或硅烷偶联剂的水解物的反应产物中的至少一者。
[10]一种阻气性膜,其中,所述氧气阻隔性覆膜包含作为聚羧酸系聚合物(A)的羧基与多价金属化合物(B)的反应产物的羧酸多价金属盐。
[11]一种阻气性膜的制造方法,其为[1]~[10]中任一项所述的阻气性膜的制造方法,具有:通过下述测定方法测定树脂基材原材的一个面的突起个数,并将费雷特直径为8μm以上的突起为20个/mm2以下的树脂基材原材作为所述树脂基材的工序;以及至少在树脂基材的第一面侧涂布涂布剂以形成氧气阻隔性覆膜的工序。
<测定方法>
使用白色LED线光源,以光源距离为100mm、入射角为83°照射树脂基材的第一面的36.6mm见方的任意区域,利用单色线阵相机拍摄测定角为90°的透过光以获取拍摄图像,从所述拍摄图像中裁出3551像素×5684像素(2.5×4.0mm)的分析用图像,并对所述分析用图像中的费雷特直径为8μm以上的突起进行计数。
对于本公开的阻气性膜,示出实施方式并进行说明。图4为实施方式2涉及的阻气性膜101的示意性剖面图。为了便于说明,图4中的尺寸比与实际的尺寸比不同。阻气性膜101具有:树脂基材120、基底层140、无机氧化物层150以及氧气阻隔性覆膜130。需要说明的是,基底层140和无机氧化物层150中的任一者也可以不存在。基底层140与树脂基材120的第一面21接触并层叠,无机氧化物层150层叠在基底层140的与树脂基材120接触的面的相反面。无机氧化物层150与基底层140接触并层叠,氧气阻隔性覆膜130与无机氧化物层150的与基底层140接触的面的相反面接触并位于其上。需要说明的是,在不设置基底层140的情况下,无机氧化物层150层叠在树脂基材120的第一面21上。另外,在不设置无机氧化物层150的情况下,氧气阻隔性覆膜130层叠在基底层140上。
<树脂基材>
树脂基材120具有包含基层25在内的2个以上的树脂层。在本实施方式中,具有基层25、和位于基层25的一个面上的表层23。表层23构成树脂基材120的第一面21。树脂基材120含有树脂,构成树脂基材120的表层23、基层25各层也含有树脂。
基层25调节树脂基材120的机械特性、化学特性、热特性、光学特性等。机械特性是刚性、伸长率、刚度、撕裂强度、冲击强度、穿刺强度、耐针孔性等。化学特性是水蒸气阻隔性、阻气性、保香性、耐化学品性、耐油性等。热特性是熔点/玻璃化转变温度、耐热温度、耐寒温度、热收缩率等。光学特性是透明性和光泽性等。
作为基层25的原料的树脂,从容易得到、水蒸气阻隔性的观点来看,优选聚烯烃系树脂。作为聚烯烃系树脂,可以列举出聚乙烯、聚丙烯、聚丁烯等。聚丙烯可以是均聚物、无规共聚物、嵌段共聚物中的任一者。均聚物是仅由丙烯单体构成的聚丙烯。无规共聚物是使作为主单体的丙烯与种类不同于丙烯的共聚用单体进行无规共聚而成为均质相的聚丙烯。嵌段共聚物是使作为主单体的丙烯与上述共聚用单体进行嵌段共聚,或者以胶状聚合而成为非均质相的聚丙烯。这些聚烯烃系树脂可以单独使用任意1种,也可以2种以上混合使用。
基层25也可以含有添加剂。作为添加剂,可以从公知的各种添加剂中适当地选择。作为添加剂的例子,可以列举出:填料、防粘连剂(AB剂)、耐热稳定剂、耐候稳定剂、紫外线吸收剂、润滑剂、助滑剂、成核剂、防静电剂、防雾剂、颜料、染料。这些添加剂可以单独使用任意1种,也可以2种以上组合使用。在不妨碍本公开的效果的范围内,可以适当地调整基层25中的添加剂的含量。
基层25可以是单层结构,也可以是多层结构。基层25的厚度例如可以为3~200μm、也可以为6~30μm。
表层23由聚烯烃系共聚树脂构成。作为聚烯烃系共聚树脂,例如可以列举出:乙烯-丙烯共聚物、乙烯-1-丁烯共聚物、丙烯-1-丁烯共聚物、丙烯-戊烯共聚物、乙烯-丙烯-1-丁烯共聚物、乙烯-丙烯酸共聚物、利用金属离子使乙烯-丙烯酸共聚物交联后的离聚物、丙烯-丙烯酸共聚物等,各自可以是无规共聚物,也可以是嵌段共聚物。这些树脂可以单独使用任意1种,也可以2种以上混合使用。由于表层23由聚烯烃系共聚树脂构成,因此与层叠在树脂基材120上的基底层140、无机氧化物层150以及氧气阻隔性覆膜130中的任一者的密合性变得良好。
表层23可以含有添加剂。作为添加剂,可以从公知的各种添加剂中适当地选择。作为添加剂的例子,可以列举出:防粘连剂(AB剂)、耐热稳定剂、耐候稳定剂、紫外线吸收剂、润滑剂、助滑剂、成核剂、防静电剂、防雾剂、颜料、染料。这些添加剂可以单独使用任意1种,也可以2种以上组合使用。在不妨碍本公开的效果的范围内,可以适当地调整表层23中的添加剂的含量。
在表层23含有AB剂的情况下,树脂基材120的第一面21上形成来自于AB剂的突起。通过该突起,可以防止膜彼此之间的密合,从而提高膜原材的卷取、展开、输送时的加工适性。特别是,AB剂的平均粒径及其添加量影响第一面21的突起的大小和数量,因此优选进行调整以使得后述的测定方法中的费雷特直径为8μm以上的突起为20个/mm2以下。
AB剂为固体粒子,可以列举出有机系粒子、无机系粒子等。作为有机系粒子,可以列举出聚甲基丙烯酸甲酯粒子、聚苯乙烯粒子、聚酰胺粒子等。这些有机系粒子例如可以通过乳化聚合或悬浮聚合等得到。作为无机系粒子,可以列举出氧化硅粒子、沸石、滑石、高岭土、长石等。这些AB剂可以单独使用任意1种,也可以2种以上组合使用。作为AB剂,有机系中优选聚甲基丙烯酸甲酯粒子、无机系中优选氧化硅粒子。
AB剂的平均粒径优选为0.1μm以上、5μm以下。从阻气性膜101兼具防粘连性和阻气性的观点来看,AB剂的平均粒径特别优选为1μm以上4μm以下。AB剂的平均粒径可以通过Coulter法进行测定。
相对于表层23的总质量,AB剂的添加量例如优选为0.05~0.4质量%。具体而言,表层23中的AB剂的添加量通过下式求出。
AB剂的添加量[质量%]={(i)/100}×{(ii)/100}×100
式中,(i)是指将AB剂添加到树脂中并搅拌,然后投入到挤出机内混炼,利用熔融挤出形成为颗粒状的母料树脂切片中的AB剂的浓度(质量%)。(ii)表示将含有AB剂的母料树脂切片与不含有AB剂的树脂混合时,含有AB剂的母料树脂切片相对于构成表层23的树脂颗粒总质量的浓度(质量%)。需要说明的是,向基层25中添加AB剂时的添加量也是同样地,相对于基层25的总质量,优选为0.05~0.4质量%,添加量可以通过上式求出。
表层23的厚度例如可以为0.1~10μm、进一步可以为0.5~5.0μm。
优选的是,树脂基材120至少包括表层23和基层25,并且是共挤出膜。树脂基材120可以是拉伸膜、也可以是未拉伸膜。
树脂基材120优选具有双轴拉伸聚丙烯膜。双轴拉伸聚丙烯膜的水蒸气阻隔性能特别优异,因此通过具有双轴拉伸聚丙烯膜,阻气性膜101的水蒸气阻隔性提高。双轴拉伸聚丙烯膜可以是将均聚物、无规共聚物、嵌段共聚物等中的至少1种加工成膜状而得的。双轴拉伸聚丙烯膜优选为共挤出膜。
基层25可以由双轴拉伸聚丙烯膜构成,也可以由双轴拉伸聚丙烯膜与其他树脂膜层叠而成。作为其他树脂膜,例如可以列举出:聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯膜、聚乙烯等聚烯烃系树脂膜、聚苯乙烯膜、尼龙等聚酰胺膜、聚碳酸酯膜、聚丙烯腈膜、以及聚酰亚胺膜等工程塑料膜。
对树脂基材120的厚度没有特别地限定,在考虑作为包装材料的适性和其他覆膜的层叠适性的同时根据价格和用途适当地选择。树脂基材120的厚度在实用上优选为3μm~200μm、更优选为5μm~120μm、进一步优选为6μm~30μm。
可以对树脂基材120的第一面21进行选自由化学品处理、溶剂处理、电晕处理、等离子体处理以及臭氧处理组成的组中的至少1种处理。
当在树脂基材120的第一面21上形成由AB剂引起的突起时,可以防止膜的粘连,相反,在大的凸部中,在其上形成的基底层140、无机氧化物层150以及氧气阻隔性覆膜130中容易产生成为气体透过的通路的膜缺陷,从而阻气性膜101的氧气阻隔性可能会降低。但是,本公开的阻气性膜101的树脂基材120的第一面21的特征在于,通过以下所示的测定方法测定的费雷特直径为8μm以上的突起为20个/mm2以下,难以产生膜缺陷。树脂基材120的第一面21中费雷特直径为8μm以上的突起更优选为17个/mm2以下、费雷特直径为8μm以上的突起进一步优选为15个/mm2以下,费雷特直径为8μm以上的突起也可以是0个/mm2。对于费雷特直径为8μm以上的突起,从第一面21的平坦部至突起顶点的高度超过1μm的较多,容易使氧气阻隔性覆膜产生膜缺陷。因此,当费雷特直径为8μm以上的突起为20个/mm2以下时,在基底层140、无机氧化物层150以及氧气阻隔性覆膜130中难以产生膜缺陷,因此容易使阻气性膜101的氧气阻隔性更加良好。需要说明的是,在树脂基材120的第一面21上形成的突起可以来自于AB剂,也可以是由其他因素引起的,没有特别地限定。在本说明书中,树脂基材120的第一面21的突起个数是通过下述测定方法测定的值。
<测定方法>
使用白色LED线光源,以光源距离为100mm、入射角为83°从树脂基材120的第一面21的相反一侧的面即第二面22侧照射树脂基材120的36.6mm见方的任意区域。利用单色线阵相机拍摄测定角为90°的透过光以获取拍摄图像。从所获取的拍摄图像中裁出3551像素×5684像素(2.5×4.0mm)的分析用图像。对于裁出的分析用图像,通过图像分析软件提取费雷特直径为8μm以上的突起并对其数量进行计数,换算为每mm2,从而得到费雷特直径为8μm以上的突起数。
以下,参照附图,对树脂基材120的第一面21的突起个数的测定方法进行说明。首先,对其测定装置进行说明。
(测定装置)
如图5所示,测定树脂基材120的第一面21的突起个数的测定装置15具备样品支架2、光源4、以及单色线阵相机7。样品支架2设置在输送装置16上,可以在水平方向上移动。样品支架2的中央部形成有冲孔3。光源4位于样品支架2的下方,并设置在光源距离为100mm的位置处,与光源控制装置6连接。单色线阵相机7位于样品支架2的上方,在单色线阵相机7上安装有微距镜头8。在单色线阵相机7上连接有图像处理装置9。在图像处理装置9上连接有输送控制部17。输送控制部17与输送装置16连接。
样品支架2只要是平坦且水平的,则没特别地限定,可以使用公知的支架。作为光源4,优选为可见光的白色LED线光源。
单色线阵相机7优选使用16384像素、1像素的传感器尺寸为3.52μm的相机。单色线阵相机7优选经由照相机连接或USB等标准接口而由图像处理装置9控制。图像处理装置9例如由安装有与单色线阵相机7连接的帧图像等的计算机、控制帧图像的图像处理软件等构成。安装有帧图像等的计算机、控制帧图像的图像处理软件广泛地被发布或在市场上销售,可以使用它们作为图像处理装置9。作为图像处理软件,例如可以列举出美国国立卫生研究所(NIH)开发的公共领域软件“ImageJ”。
输送装置16优选使用由步进电机驱动的单轴台等。输送装置16通过输送控制部17来控制输送速度、输送开始、输送停止等。
(样品准备)
接下来,对树脂基材120的第一面的突起个数的测定方法进行说明。如图5所示,首先,将树脂基材120的第一面21朝向单色线阵相机7一侧,以在面内不产生高低差的方式将树脂基材120固定在样品支架2上。在固定树脂基材120时,优选使用OPP胶带或遮蔽胶带等来固定树脂基材120的端部。以使树脂基材120的图像测定位置18与冲孔3对齐的方式将树脂基材120固定在样品支架2上。
(拍摄图像的获取)
接着,从光源4入射白色LED线状光。光源4的光量可以通过光源控制装置6进行调节。优选的是,使用光源控制装置6来调节入射光L1的光量,使得图像测定位置18处的光量成为442勒克斯。来自光源4的入射光L1相对于第一面21的入射角13为83°,从垂直方向斜着偏移7°,在相对于第一面21的测定角19成为90°的位置设置单色线阵相机7,透过了图像测定位置18的透过光L2经由微距镜头8而由单色线阵相机7进行拍摄。此时,将微距镜头8的倍率设为5倍、F值设为2.8、分辨率设为0.704μm。将图像测定位置18处的、单色线阵相机7的测定范围设为36.6mm见方的区域,并将光源4的有效照明范围设为36.6mm见方以上的区域。
透过光L2的测定范围为第一面21的36.6mm见方的区域。移动输送装置16以使得测定范围成为上述区域。在输送装置16为步进电机等的情况下,将表示输送速度的脉冲信号输入到图像处理装置9中。优选将输送装置16移动的输送速度设定为等于空间分辨率与捕获频率的积。空间分辨率根据单色线阵相机7的传感器尺寸(3.52μm)和微距镜头8的倍率(5倍)来确定。捕获频率是单色线阵相机7的一条线的捕获频率。将输送速度设定为等于空间分辨率与捕获频率的积,树脂基材120在单色线阵相机7的图像测定位置18处连续地输送。在图像测定位置18处,通过单色线阵相机7测定并拍摄树脂基材120的第一面21的图像。
将单色线阵相机7的曝光时间设为80μs。将捕获频率的周期设定为比曝光时间长。输送树脂基材120,并在树脂基材120的输送方向上获取5684像素以上的拍摄图像。
(图像的分析)
在获取的拍摄图像中,裁出与单色线阵相机7的传感器排列方向(与树脂基材120的输送方向垂直的方向)对应的中心3551像素和输送方向上的5684像素,作为分析用图像。在输送方向上,也可以裁出5684以上的像素以扩大测定范围。利用图像分析软件对裁出的分析用图像进行分析。
图6示出了在本测定系统中可以检测树脂基材120表面的微小突起或凹陷的原理。在线阵相机中,当使入射角θ2小于测定角θ1时,突起部分处图像的上方明亮、下方暗,从而可以三维可视化。凹陷部分处的上下是相反的。据推测是近似于球面透镜的折射所致。利用该倾向,从分析用图像中,分别根据亮度、尺寸、真圆度分选明亮的粒子和暗的粒子,并进行2值化处理,提取上明下暗的粒子作为突起,并获取所提取的粒子的费雷特直径数据。图7示出了实施例的树脂基材120的第一面21的拍摄图像和通过上述算法提取的突起部分的分析图像。根据这样提取的费雷特直径数据,对分析用图像内的费雷特直径为8μm以上的粒子的个数进行计数,并将换算为每mm2面积的个数后的值作为突起个数。
<基底层>
基底层140设置在树脂基材120与无机氧化物层150或者氧气阻隔性覆膜130之间。基底层140是含有有机高分子作为主要成分的层,也被称为底漆层。通过设置基底层140,可以提高无机氧化物层150或者氧气阻隔性覆膜130的成膜性和密合强度。
基底层140中的有机高分子的含量例如可以为70质量%以上、也可以为80质量%以上。作为有机高分子,可以列举出:聚丙烯酸树脂、聚酯树脂、聚碳酸酯树脂、聚氨酯树脂、聚酰胺树脂、聚烯烃树脂、聚酰亚胺树脂、三聚氰胺树脂、酚醛树脂等,当考虑到树脂基材120与无机氧化物层150或者氧气阻隔性覆膜130之间的密合强度的耐热水性时,优选含有聚丙烯酸系树脂、多元醇系树脂、聚氨酯系树脂、聚酰胺系树脂、或者这些有机高分子的反应产物中的至少1种。另外,基底层140也可以含有硅烷偶联剂、或有机钛酸酯、或改性硅油。
作为有机高分子,可以进一步优选地列举出:在高分子末端具有2个以上羟基的多元醇类与异氰酸酯化合物发生反应而生成的具有氨基甲酸酯键的有机高分子;和/或包含在高分子末端具有2个以上羟基的多元醇类与硅烷偶联剂或其水解物那样的有机硅烷化合物的反应产物的有机高分子。
作为多元醇类,例如可以列举出选自丙烯酸多元醇、聚乙烯醇缩醛、聚苯乙烯多元醇、以及聚氨酯多元醇等中的至少一种。丙烯酸多元醇可以是通过使丙烯酸衍生物单体聚合而得到的,也可以是通过使丙烯酸衍生物单体与其他单体共聚而得到的。作为丙烯酸衍生物单体,可以列举出:甲基丙烯酸乙酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、以及甲基丙烯酸羟丁酯等。作为与丙烯酸衍生物单体共聚的单体,可以列举出苯乙烯等。
异氰酸酯化合物具有通过与多元醇发生反应而生成氨基甲酸酯键来提高树脂基材120与无机氧化物层150或者氧气阻隔性覆膜130之间的密合性的作用。即,异氰酸酯化合物起到交联剂或固化剂的作用。作为异氰酸酯化合物,例如可以列举出:芳香族系的甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、脂肪族系的苯二亚甲基二异氰酸酯(XDI)、六亚甲基二异氰酸酯(HMDI)、以及异佛尔酮二异氰酸酯(IPDI)等单体类,它们的聚合物以及它们的衍生物。上述异氰酸酯化合物可以单独使用1种,或者也可以2种以上组合使用。
作为硅烷偶联剂,例如可以列举出:乙烯基三甲氧基硅烷、γ-氯丙基甲基二甲氧基硅烷、γ-氯丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、以及γ-甲基丙烯酰氧基丙基甲基二甲氧基硅烷等。有机硅烷化合物也可以是这些硅烷偶联剂的水解物。有机硅烷化合物可以单独包括1种上述硅烷偶联剂及其水解物,也可以组合包括2种以上。
可以通过将上述成分以任意比例混合在有机溶剂中来制备混合液,并使用所制备的混合液在树脂基材120的第一面21上形成基底层140。混合液例如也可以含有叔胺、咪唑衍生物、羧酸的金属盐化合物、季铵盐、季鏻盐等固化促进剂;酚系、硫系、亚磷酸盐系等抗氧化剂;流平剂、流动调节剂、催化剂、交联反应促进剂、填充剂等。
可以利用胶版印刷法、凹版印刷法、或者丝网印刷法等公知的印刷方式;或者辊涂法、气刀涂布法、或者凹版涂布法等公知的涂布方式将混合液涂布在树脂基材120上。涂布后,例如可以通过加热到50~200℃、并干燥和/或固化来形成基底层140。
对基底层140的厚度没有特别地限制,例如可以为0.005~5μm。厚度可以根据用途或所需要的特性来进行调整。作为基底层140的厚度,优选为0.01~1μm、更优选为0.01~0.5μm。如果基底层140的厚度为0.01μm以上,则可以得到树脂基材120与无机氧化物层150或者氧气阻隔性覆膜130之间的充分的密合强度,从而氧气阻隔性也良好。如果基底层140的厚度为1μm以下,则容易形成均匀的涂布面,并且可以抑制干燥负荷和制造成本。
<无机氧化物层>
无机氧化物层150例如可以列举出:氧化铝、氧化硅、氧化镁、氧化钛、氧化锡、氧化锌、氧化铟等,特别是氧化铝或氧化硅,其生产性优异,并且在耐热、耐湿热下的氧气阻隔性和水蒸气阻隔性优异,因此优选。需要说明的是,无机氧化物层150可以单独含有这些中的1种,或者也可以组合含有2种以上。无机氧化物层150的厚度优选为1~200nm,如果厚度为1nm以上,则可以得到优异的氧气阻隔性和水蒸气阻隔性,如果厚度为200nm以下,则可以将制造成本控制为较低,并且难以产生因弯曲或拉伸等外力而引起的裂纹,从而可以抑制阻隔性的劣化。无机氧化物层150例如可以通过真空蒸镀法、溅射法、离子镀法、或者等离子体气相沉积法(CVD)等公知的成膜方法形成。
<氧气阻隔性覆膜>
公知的是,氧气阻隔性覆膜130可以作为利用湿涂法而形成的氧气阻隔性覆膜。氧气阻隔性覆膜130可以通过利用湿涂法在基底层140或无机氧化物层150上形成由涂布剂构成的涂膜,并使该涂膜干燥而得到。需要说明的是,涂膜为湿润膜,覆膜为干燥膜。
作为氧气阻隔性覆膜130,优选为含有金属醇盐及其水解物、以及其反应产物中的至少1种、和水溶性高分子的覆膜(有机无机复合覆膜)。此外,进一步优选是含有硅烷偶联剂及其水解物中的至少一种的覆膜。
作为有机无机复合膜中所含有的金属醇盐及其水解物,例如可以列举出四乙氧基硅烷[Si(OC2H5)4]以及三异丙氧基铝[Al(OC3H7)3]等由通式M(OR)n所表示的化合物及其水解物。可以单独含有这些中的1种,也可以组合含有2种以上。
在有机无机复合膜中,金属醇盐及其水解物、以及其反应产物中的至少1种的总含量例如为40~70质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中金属醇盐及其水解物、以及其反应产物中的至少1种的总含量的下限可以为50质量%。从同样的观点来看,有机无机复合膜中金属醇盐及其水解物以及其反应产物中的至少1种的总含量的上限可以为65质量%。
对有机无机复合膜中所含有的水溶性高分子没有特别地限定,例如可以列举出:聚乙烯醇系;淀粉、甲基纤维素、羧甲基纤维素等多糖类;以及丙烯酸多元醇系等高分子。从进一步提高氧气阻隔性的观点来看,水溶性高分子优选含有聚乙烯醇系的高分子。水溶性高分子的数均分子量例如为40000~180000。
聚乙烯醇系的水溶性高分子例如可以通过使聚乙酸乙烯酯皂化(也包括部分皂化)而得到。该水溶性高分子中可以残留数十%的乙酸基,也可以只残留数%的乙酸基。
有机无机复合膜中的水溶性高分子的含量例如为15~50质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的水溶性高分子的含量的下限可以为20质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的水溶性高分子的含量的上限可以为45质量%。
作为有机无机复合膜中所含有的硅烷偶联剂及其水解物,可以列举出具有有机官能团的硅烷偶联剂。作为这样的硅烷偶联剂及其水解物,可以列举出:乙基三甲氧基硅烷、乙烯基三甲氧基硅烷、γ-氯丙基甲基二甲氧基硅烷、γ-氯丙基三甲氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、以及它们的水解物。这些当中可以单独含有1种,或者也可以组合含有2种以上。
硅烷偶联剂及其水解物中的至少一者优选使用具有作为有机官能团的环氧基的硅烷偶联剂。作为具有环氧基的硅烷偶联剂,例如可以列举出γ-环氧丙氧基丙基三甲氧基硅烷和β-(3,4-环氧环己基)乙基三甲氧基硅烷。具有环氧基的硅烷偶联剂及其水解物也可以具有与环氧基不同的有机官能团,例如乙烯基、氨基、甲基丙烯酸基或脲基。
具有有机官能团的硅烷偶联剂及其水解物通过其有机官能团与水溶性高分子的羟基的相互作用,可以进一步提高氧气阻隔性覆膜130的氧气阻隔性、和与基底层140或者无机氧化物层150之间的粘接性。特别是,通过使硅烷偶联剂及其水解物的环氧基与聚乙烯醇的羟基发生相互作用,可以形成氧气阻隔性、与基底层140或者无机氧化物层150之间的粘接性特别优异的氧气阻隔性覆膜130。
在有机无机复合膜中,硅烷偶联剂及其水解物以及它们的反应产物中的至少一种的总含量例如为1~15质量%。从进一步降低氧气透过率的观点来看,有机无机复合膜中的硅烷偶联剂及其水解物以及它们的反应产物中的至少一种的总含量的下限可以为2质量%。从同样的观点来看,有机无机复合膜中的硅烷偶联剂及其水解物以及它们的反应产物中的至少一种的总含量的上限可以为12质量%。
有机无机复合膜中也可以含有具有层状结构的结晶性的无机层状化合物。作为无机层状化合物,例如可以列举出以高岭石族、蒙皂石族或云母族等为代表的粘土矿物。这些可以单独使用1种,也可以2种以上组合使用。无机层状化合物的粒径例如为0.1~10μm。无机层状化合物的纵横比例如为50~5000。
作为无机层状化合物,通过使水溶性高分子进入(嵌入)到层状结构的层间,可以形成具有优异的氧气阻隔性和密合强度的覆膜,因此优选蒙皂石族的粘土矿物。作为蒙皂石族的粘土矿物的具体例子,可以列举出蒙脱石、水辉石、以及皂土、水膨胀性合成云母等。
另外,作为氧气阻隔性覆膜130的其他优选例子,可以列举出含有作为聚羧酸系聚合物(A)的羧基与多价金属化合物(B)的反应产物的羧酸多价金属盐的覆膜(聚羧酸多价金属盐覆膜)。在这种情况下,可以是涂布混合有聚羧酸系聚合物(A)和多价金属化合物(B)的涂布剂、并加热干燥而形成的聚羧酸多价金属盐覆膜;也可以是涂布以聚羧酸系聚合物(A)为主要成分的涂布剂并干燥而形成A覆膜,然后在其上涂布以多价金属化合物(B)为主要成分的涂布剂并干燥而形成B覆膜,并使A/B层间发生交联反应而形成的聚羧酸多价金属盐覆膜。
[聚羧酸系聚合物(A)]
聚羧酸系聚合物是指分子内具有2个以上羧基的聚合物。作为聚羧酸系聚合物,例如可以列举出烯键式不饱和羧酸的(共)聚合物;烯键式不饱和羧酸与其他烯键式不饱和单体的共聚物;海藻酸、羧甲基纤维素、果胶等分子内具有羧基的酸性多糖类等。作为烯键式不饱和羧酸,例如可以列举出丙烯酸、甲基丙烯酸、衣康酸、马来酸、富马酸、巴豆酸等。作为可以与烯键式不饱和羧酸共聚的烯键式不饱和单体,例如可以列举出:乙烯、丙烯、乙酸乙烯酯等饱和羧酸乙烯酯类;丙烯酸烷基酯类、甲基丙烯酸烷基酯类、衣康酸烷基酯类、氯乙烯、偏二氯乙烯、苯乙烯、丙烯酰胺、丙烯腈等。这些聚羧酸系聚合物可以单独使用1种,也可以2种以上混合使用。
作为成分,从所得的阻气性膜的阻气性的观点来看,在上述当中优选为包括从选自由丙烯酸、马来酸、甲基丙烯酸、衣康酸、富马酸以及巴豆酸组成的组中的至少1种聚合性单体衍生的构成单元的聚合物,特别优选为包括从选自由丙烯酸、马来酸、甲基丙烯酸、以及衣康酸组成的组中的至少1种聚合性单体衍生的构成单元的聚合物。在该聚合物中,从选自由丙烯酸、马来酸、甲基丙烯酸、以及衣康酸组成的组中的至少1种聚合性单体衍生的构成单元的比例优选为80mol%以上、更优选为90mol%以上(其中,将构成该聚合物的全部构成单元的合计设为100mol%)。该聚合物可以为均聚物,也可以为共聚物。在该聚合物是包含除上述构成单元以外的其他构成单元的共聚物的情况下,作为其他构成单元,例如可以列举出可与上述烯键式不饱和羧酸共聚的烯键式不饱和单体所衍生的构成单元等。
聚羧酸系聚合物的数均分子量优选在2,000~10,000,000的范围内、更优选为5,000~1,000,000。当数均分子量小于2,000时,所得的阻气性膜无法实现充分的耐水性,有时会因水分而导致阻气性和透明性变差,或者有时产生白化。另一方面,当数均分子量超过10,000,000时,形成氧气阻隔性覆膜130时的涂布剂的粘度会变高,可能会损害涂布性。需要说明的是,上述数均分子量是通过凝胶渗透色谱(GPC)求得的聚苯乙烯换算的数均分子量。
在涂布以聚羧酸系聚合物(A)为主要成分的涂布剂并干燥以形成A覆膜,然后再形成B覆膜的情况下,可以预先用碱性化合物中和聚羧酸系聚合物的一部分羧基。通过预先中和聚羧酸系聚合物所具有的一部分羧基,可以进一步提高A覆膜的耐水性和耐热性。作为碱性化合物,优选为选自由多价金属化合物、一价金属化合物以及氨水组成的组中的至少1种碱性化合物。作为多价金属化合物,可以使用后述的多价金属化合物(B)的说明中所示例的化合物。作为一价金属化合物,例如可以列举出氢氧化钠、氢氧化钾等。
以聚羧酸系聚合物(A)为主要成分的涂布剂中可以添加各种添加剂,在不损害阻隔性能的范围内,可以添加交联剂、固化剂、流平剂、消泡剂、防粘连剂、防静电剂、分散剂、表面活性剂、柔顺剂、稳定剂、成膜剂、增稠剂等。
以聚羧酸系聚合物(A)为主要成分的涂布剂中所使用的溶剂优选为水性介质。作为水性介质,可以列举出水、水溶性或亲水性有机溶剂、或者它们的混合物。水性介质通常含有水或以水为主要成分。水性介质中的水的含量优选为70质量%以上、更优选为80质量%以上。作为水溶性或亲水性有机溶剂,例如可以列举出:甲醇、乙醇、异丙醇等醇类;丙酮、甲基乙基酮等酮类;四氢呋喃等醚类;溶纤剂类;卡必醇类;乙腈类的腈类等。
[多价金属化合物(B)]
多价金属化合物只要是可以与聚羧酸系聚合物的羧基发生反应以形成聚羧酸多价金属盐的化合物,则没有特别地限定,可以列举出氧化锌粒子、氧化镁粒子、甲醇镁、氧化铜、碳酸钙等。这些可以单独或者多种混合使用。从氧气阻隔性覆膜的氧气阻隔性的观点来看,优选氧化锌。
氧化锌是具有紫外线吸收性能的无机材料,对氧化锌粒子的平均粒径没有特别地限定,但是从阻气性、透明性、涂布适性的观点来看,平均粒径优选为5μm以下、更优选为1μm以下、特别优选为0.1μm以下。
在涂布以多价金属化合物(B)为主要成分的涂布剂并干燥以形成B覆膜的情况下,在不损害本公开的效果的范围内,可以根据需要含有除氧化锌粒子以外的各种添加剂。作为该添加剂,可以列举出:可在用于涂布剂的溶剂中溶解或分散的树脂、可在该溶剂中溶解或分散的分散剂、表面活性剂、柔顺剂、稳定剂、成膜剂、增稠剂等。
在上述当中,优选含有可在用于涂布剂的溶剂中溶解或分散的树脂。由此,涂布剂的涂布性、制膜性提高。作为这样的树脂,例如可以列举出:醇酸树脂、三聚氰胺树脂、丙烯酸树脂、氨基甲酸酯树脂、聚酯树脂、酚醛树脂、氨基树脂、氟树脂、环氧树脂、异氰酸酯树脂等。
另外,优选含有可在用于涂布剂的溶剂中溶解或分散的分散剂。由此,多价金属化合物的分散性提高。作为分散剂,可以使用阴离子型表面活性剂或非离子型表面活性剂。作为该表面活性剂,可以列举出:(聚)羧酸盐、烷基硫酸酯盐、烷基苯磺酸盐、烷基萘磺酸盐、烷基磺基琥珀酸盐、烷基二苯醚二磺酸盐、烷基磷酸盐、芳香族磷酸酯、聚氧乙烯烷基醚、聚氧乙烯烷基酚醚、聚氧乙烯烷基酯、烷基芳基硫酸酯盐、聚氧乙烯烷基磷酸酯、山梨糖醇烷基酯、甘油脂肪酸酯、山梨糖醇脂肪酸酯、蔗糖脂肪酸酯、聚乙二醇脂肪酸酯、聚氧乙烯山梨糖醇烷基酯、聚氧乙烯烷基烯丙基醚、聚氧乙烯衍生物、聚氧乙烯山梨糖醇脂肪酸酯、聚氧乙烯脂肪酸酯、聚氧乙烯烷基胺等各种表面活性剂。这些表面活性剂可以单独使用,也可以两种以上混合使用。
在以多价金属化合物(B)为主要成分的涂布剂中含有添加剂的情况下,多价金属化合物与添加剂的质量比(多价金属化合物:添加剂)优选在30:70~99:1的范围内、更优选在50:50~98:2的范围内。
作为以多价金属化合物(B)为主要成分的涂布剂中所使用的溶剂,例如可以列举出:水、甲醇、乙醇、异丙醇、正丙醇、正丁醇、正戊醇、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、甲苯、己烷、庚烷、环己烷、丙酮、甲基乙基酮、二乙醚、二恶烷、四氢呋喃、乙酸乙酯、乙酸丁酯。另外,这些溶剂可以单独使用1种,也可以2种以上混合使用。从涂布性的观点来看,这些当中优选甲醇、乙醇、异丙醇、甲苯、乙酸乙酯、甲基乙基酮、水。另外,从制造性的观点来看,优选甲醇、乙醇、异丙醇、水。
在涂布混合有聚羧酸系聚合物(A)和多价金属化合物(B)的涂布剂并干燥以形成聚羧酸多价金属盐覆膜的情况下,将上述聚羧酸系聚合物(A)、上述多价金属化合物(B)、作为溶剂的水或醇类、可在该溶剂中溶解或分散的树脂或分散剂、以及根据需要的添加剂混合以作为涂布剂,并利用公知的涂布方法进行涂布并干燥,从而可以形成聚羧酸多价金属盐覆膜。作为涂布法,例如浇铸法、浸渍法、辊涂法、凹版涂布法、丝网印刷法、逆转涂布法、喷涂法、套涂法、模涂法、计量棒涂布法、腔室气刀并用涂布法、帘涂法等。
氧气阻隔性覆膜130的厚度根据所需的氧气阻隔性来设定,例如可以为0.05~5μm。作为氧气阻隔性覆膜130的厚度,优选为0.05~1μm、更优选为0.1~0.5μm。如果氧气阻隔性覆膜130的厚度为0.05μm以上,则容易得到充分的氧气阻隔性。如果氧气阻隔性覆膜130的厚度为1μm以下,则容易形成均匀的涂布面,并且可以抑制干燥负荷和制造成本。
在氧气阻隔性覆膜130中,具有上述有机无机复合覆膜或上述聚羧酸多价金属盐覆膜的阻气性膜即使进行煮沸处理或蒸煮杀菌处理也可以表现出优异的氧气阻隔性,与密封剂膜层压后,即使是作为煮沸/蒸煮处理用的包装材料,也具有充分的密合强度和密封强度,此外,具有以下优点:金属箔或金属蒸镀膜所没有的透明度、耐弯曲性和耐拉伸性优异、没有产生二噁英等有害物质的风险等。
[阻气性膜的制造方法]
阻气性膜101可以通过以下方式制造:在树脂基材120的第一面21上形成基底层140和无机氧化物层150中的任一者、或者基底层140和无机氧化物层150这两者,然后在基底层140或无机氧化物层150上形成氧气阻隔性覆膜130。本公开的阻气性膜101的制造方法例如具有分选工序、基底层形成工序、无机氧化物层形成工序、以及氧气阻隔性覆膜形成工序。
作为分选工序,例如可以列举出:对表面的费雷特直径为8μm以上的突起为20个/mm2以下的树脂基材原材进行分选以作为树脂基材120的工序。树脂基材原材的表面的突起个数通过与上述树脂基材120的第一面21的突起个数的测定方法相同的方法来测定。作为树脂基材120,可以使用市售品,也可以使用通过公知的方法制造的基材。
作为基底层形成工序,例如可以列举出以下工序:利用湿涂法在树脂基材120的至少第一面21上涂布涂布剂以形成涂膜,使该涂膜干燥(除去溶剂)以形成基底层140。作为涂布剂的涂布方法,可以使用公知的湿涂法。作为湿涂法,可以列举出:辊涂法、凹版涂布法、逆转涂布法、模涂法、丝网印刷法、喷涂法等。作为使由涂布剂构成的涂膜干燥的方法,可以使用热风干燥、热辊干燥、红外线照射等公知的干燥方法。作为干燥条件,例如可以列举出在90℃干燥10秒的条件。
作为无机氧化物层形成工序,例如可以列举出以下工序:通过上述真空蒸镀法、溅射法、离子镀法或等离子体气相沉积法(CVD)等在树脂基材120的第一面21或基底层140上形成无机氧化物层150。
作为氧气阻隔性覆膜形成工序,例如可以列举出以下工序:利用湿涂法在基底层140或无机氧化物层150上涂布涂布剂以形成涂膜,使该涂膜干燥(除去溶剂)以形成氧气阻隔性覆膜130。作为涂布剂的涂布方法,可以使用公知的湿涂法。作为湿涂法,可以列举出:辊涂法、凹版涂布法、逆转涂布法、模涂法、丝网印刷法、喷涂法等。作为使由涂布剂构成的涂膜干燥的方法,可以使用热风干燥、热辊干燥、红外线照射等公知的干燥方法。作为干燥条件,例如可以列举出在90℃干燥10秒的条件。氧气阻隔性覆膜130可以通过一次涂布并干燥来形成,也可以通过重复多次涂布相同的涂布剂或不同的涂布剂并干燥来形成。
在本公开的阻气性膜101的制造方法具有分选工序的情况下,可以有效地应用表面的费雷特直径为8μm以上的突起为20个/mm2以下的树脂基材120。因此,通过具有分选工序,可以有效地制造氧气阻隔性进一步提高了的阻气性膜。另外,通过具有分选工序,还可以有效地制造印刷适性良好的阻气性膜101。
根据需要,本公开的阻气性膜101可以进一步具有印刷层、保护层、遮光层、粘接剂层、可热封的热熔接层、其他功能层等。在本公开的阻气性膜101具有可热封的热熔接层的情况下,该热熔接层配置在阻气性膜101的至少一个最外表面上。由于阻气性膜101具有热熔接层,因此阻气性膜101可以通过热封来实现密封(例如,包装体、盖体)。例如可以使用聚氨酯系、聚酯系、聚醚系等公知的粘接剂,利用公知的干式层压法、挤出层压法等,将热熔接层层叠于在树脂基材120的单面或两面上形成本实施方式的基底层140或无机氧化物层150、氧气阻隔性覆膜130而得的层叠体上。
<作用效果>
在本公开的阻气性膜101中,形成第一面21的树脂层由聚烯烃系共聚树脂构成,并且在第一面上,在通过上述测定方法测定的费雷特直径为8μm以上的突起为20个/mm2以下的树脂基材120的第一面21上层叠基底层140或无机氧化物层150中的任一者、或者基底层140和无机氧化物层150这两者,进一步层叠氧气阻隔性覆膜130。在本公开的阻气性膜101中,表层23由聚烯烃系共聚树脂构成,在费雷特直径为8μm以上的突起为20个/mm2以下的树脂基材120上,经由基底层140或无机氧化物层150中的任一者或者这两者而形成氧气阻隔性覆膜130,因此难以产生由基材表面的大的突起所引起的膜缺陷,可以使氧气阻隔性更加良好,并且可以使氧气阻隔性覆膜130的密合良好。而且,在本公开的阻气性膜101中,不需要使基底层140、无机氧化物层150、氧气阻隔性覆膜130的厚度不必要地增加,因此可以实现生产性的提高和材料使用量的削减。因此,通过将本公开的阻气性膜101用作包装用材料,可以具有作为包装用材料的充分的层压强度,并且可以以低成本提高内容物的品质保持性。
实施例
以下,通过实施例和比较例对本公开的实施方式1进行更具体地说明。但是,本公开不限于以下实施例。
以下各例中使用的材料如下所示。
[使用材料]
<树脂基材>
α1:双轴拉伸聚丙烯膜(商品名:M-1、厚度20μm、单面电晕处理、“三井化学東セロ株式会社”制)。
α2:双轴拉伸聚丙烯膜(商品名:ME-1、厚度20μm、单面电晕处理、“三井化学東セロ株式会社”制)。
α3:双轴拉伸聚丙烯膜(商品名:TS18TI-TPN、厚度18μm、单面电晕处理、MaxSpeciality Films Limited公司制)。
α4:双轴拉伸聚丙烯膜(商品名:P2111、厚度20μm、单面电晕处理、东洋纺株式会社制)。
α5:双轴拉伸聚丙烯膜(商品名:P2171、厚度20μm、单面电晕处理、东洋纺株式会社制)。
α6:双轴拉伸聚丙烯膜(商品名:P2102、厚度20μm、单面电晕处理、东洋纺株式会社制)。
α7:双轴拉伸聚丙烯膜(商品名:P2161、厚度20μm、单面电晕处理、东洋纺株式会社制)。
α8:双轴拉伸聚丙烯膜(商品名:VPH2011、厚度20μm、单面电晕处理、电晕处理面侧的AB剂平均粒径为2μm、A.J.Plast公司制)。
α9:双轴拉伸聚丙烯膜(商品名:VPH2011、厚度20μm、单面电晕处理、电晕处理面侧的AB剂平均粒径为4μm、A.J.Plast公司制)。
α10:双轴拉伸聚丙烯膜(商品名:PB210J、厚度20μm、单面电晕处理、“フタムラ化学株式会社”制)。
α11:聚对苯二甲酸乙二醇酯膜(商品名:P60、厚度12μm、单面电晕处理、TorayIndustries Inc.制)。
α12:聚对苯二甲酸乙二醇酯膜(商品名:E5102、厚度12μm、单面电晕处理、东洋纺株式会社制)。
α13:聚乙烯膜(商品名:HD、厚度40μm、单面电晕处理、“タマポリ株式会社”制)。
α14:聚乙烯膜(商品名:HS31、厚度30μm、单面电晕处理、“タマポリ株式会社”制)。
α15:直链低密度聚乙烯膜(商品名:UB-3、厚度40μm、单面电晕处理、“タマポリ株式会社”制)。
α16:聚乙烯膜(商品名:PE3K-H、厚度25μm、单面电晕处理、“フタムラ化学株式会社”制)。
α17:聚乙烯膜(商品名:PE3M、厚度25μm、单面电晕处理、“フタムラ化学株式会社”制)。
α18:直链低密度聚乙烯膜(商品名:LL-XHT、厚度25μm、单面电晕处理、“フタムラ化学株式会社”制)。
α19:直链低密度聚乙烯膜(商品名:LL-RP2、厚度25μm、单面电晕处理、“フタムラ化学株式会社”制)。
α20:聚乙烯膜(厚度25μm、单面电晕处理、WINPAK Limited社制)。
<制造例1>
使用“アクリディックCL-1000”(DIC(株)制)作为丙烯酸多元醇,使用TDI型固化剂“コロネート2030”(“東ソー”(株)制)作为异氰酸酯系化合物,将丙烯酸多元醇与异氰酸酯系化合物的混合比以固体成分重量比6:4的方式混合,并使用稀释溶剂(乙酸乙酯),从而制备了基底层形成用的混合液(固体成分:2质量%)。
<制造例2>
向20质量份的数均分子量为200,000的聚丙烯酸水溶液(东亚合成(株)制、“アロンA-10H”、固体成分浓度为25质量%)中加入58.9质量份的蒸馏水进行稀释。然后,添加0.44质量份的氨基丙基三甲氧基硅烷(“APTMSアルドリッチ”制),进行搅拌以形成均匀的溶液,从而制备了以聚羧酸系聚合物为主要成分的涂布剂。
<制造例3>
将100质量份的氧化锌微粒子水分散液(“住友大阪セメント”制ZE143)和2质量份的固化剂Liofol HAERTER UR 5889-21(Henkel制)混合,以制备以多价金属化合物为主要成分的涂布剂。
<制造例4>
准备了溶解有聚乙烯醇树脂(PVA商品名:“ポバールPVA-105”、“クラレ社”制、皂化度98~99%、聚合度为500的聚乙烯醇)的水溶液、以及分别用0.02mol/L的盐酸使四氧乙基硅烷(TEOS)、γ-环氧丙氧基丙基三甲氧基硅烷(GPTMS商品名:KBM-403信越化学工业(株)制)水解后的水溶液,以水解前的重量比计PVA:TEOS:GPTMS为40:50:10的方式混合水溶液。进一步,以混合的水溶液的溶剂成分以质量比计水:异丙醇为90:10的方式加入稀释溶剂,从而制备了有机无机复合覆膜形成用的涂布剂(5质量%)。
[树脂基材的黑色面积率的测定]
对于树脂基材α1~12的电晕处理面侧的表面,根据上述图像获取条件、图像分析条件求出黑色面积率。结果如表1所示。在黑色面积率的测定中,使用OlympusCorporation制的光学显微镜OLS-4000、10倍物镜(MPFLN10),并使用Scion公司的Scion ImageJ作为图像分析软件。
[实施例1-1~1-8以及比较例1-1~1-4]
使用凹版印刷机,在表1中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用凹版印刷机,在形成的基底层上涂布制造例2中制备的以聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,以形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布制造例3中制备的以多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例1-1~1-8、比较例1-1~1-4的阻气性膜。
<印刷适性评价>
使用凹版印刷机,在各例的阻气性膜的氧气阻隔性覆膜上,以5%~50%(每5%刻度)的网点浓度阶调印刷油墨(商品名:N920LPGT、东洋油墨株式会社制)。油墨粘度为14秒(“ザーンカップ#3”、25℃)。将印刷速度设为150m/分钟、将干燥温度设为50℃。利用光学显微镜观察印刷后的表面,并对漏点处进行计数。在6mm见方的区域中,如果漏点小于5处,则判定为○;如果漏点为5~20处,则判定为△;如果漏点为21处以上,则判定为×。判定结果如表1所示。
需要说明的是,“漏点”是指:油墨在膜基材上附着性差,一部分点(网点)未被转印的状态。直到网点浓度低的状态为止,漏点处越少,表示高光部的印刷适性越优异。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂、“タケラックA620”(主剂)/“タケネートA65”(固化剂),CPP使用东丽膜加工制的聚丙烯膜、“トレファンZK93KM”(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。
使用所得的阻气性层叠膜制作A5尺寸的4边密封的袋,并填充150ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。
对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表1所示。
Figure BDA0003820395260000451
根据表1中记载的结果,实施例1-1~1-8的阻气性膜的黑色面积率为0.15%以下,在30℃、相对湿度为70%的气氛下的氧气透过率的值为2cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。
另一方面,比较例1-1~1-4的阻气性膜的黑色面积率为0.15%以上,氧气透过率的值超过2cm3/(m2·day·atm),黑色面积率超过0.15%比较高,氧气透过率上升,与实施例1-1~1-8相比,未获得良好的氧气阻隔性。
根据表1中记载的结果,实施例1-1~1-8的阻气性膜在网点浓度为30%以上时的印刷适性为“○”。
另一方面,比较例1-1~1-4的阻气性膜在网点浓度为30%时的印刷适性为“×”。
这样可以看出,当黑色面积率为0.15%以下时,印刷适性良好。
[实施例2-1~2-6以及比较例2-1~2-4]
使用凹版印刷机,在表2中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布制造例4中制备的有机无机复合覆膜形成用的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.3μm的由有机无机复合覆膜构成的氧气阻隔性覆膜,从而得到了实施例2-1~2-6以及比较例2-1~2-4的阻气性膜。
[实施例2-7]
在树脂基材α8的电晕处理面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例2-3同样地得到了实施例2-7的阻气性膜。
<印刷适性评价>
使用凹版印刷机,在各例的阻气性膜的氧气阻隔性覆膜上,以5%~50%(每5%刻度)的网点浓度阶调印刷油墨(商品名:N920LPGT、东洋油墨株式会社制)。油墨粘度为14秒(“ザーンカップ#3”、25℃)。将印刷速度设为150m/分钟、将干燥温度设为50℃。利用光学显微镜观察印刷后的表面,并对漏点处进行计数。在6mm见方的区域中,如果漏点小于5处,则判定为○;如果漏点为5~20处,则判定为△;如果漏点为21处以上,则判定为×。判定结果如表2所示。
需要说明的是,“漏点”是指:油墨在膜基材上的附着性差,一部分的点(网点)未被转印的状态。直到网点浓度低的状态为止,漏点处越少,表示高光部的印刷适性越优异。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂),CPP使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。
使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充150ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。
对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表2所示。
Figure BDA0003820395260000481
根据表2中记载的结果,实施例2-1~2-7的阻气性膜的黑色面积率为0.15%以下,在30℃、相对湿度为70%的气氛下的氧气透过率的值为3cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。
另一方面,比较例2-1~2-4的阻气性膜的黑色面积率为0.15%以上,氧气透过率的值超过5cm3/(m2·day·atm),并且由于黑色面积率超过0.15%、较高,因而氧气透过率上升,与实施例2-1~2-7相比,未获得良好的氧气阻隔性。
根据表2中记载的结果,实施例2-1~2-7的阻气性膜在网点浓度为30%以上时印刷适性为“○”。
另一方面,比较例2-1~2-4的阻气性膜在网点浓度为30%时的印刷适性为“×”。
这样可以看出,当黑色面积率为0.15%以下时,印刷适性良好。
[实施例3-1~3-7以及比较例3-1]
使用凹版印刷机,在表3中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例3-1~3-7、比较例3-1的阻气性膜。
[实施例3-8]
在树脂基材α8的电晕处理面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例3-4同样地得到了实施例3-8的阻气性膜。
<印刷适性评价>
使用凹版印刷机,在各例的阻气性膜的氧气阻隔性覆膜上,以5%~50%(每5%刻度)的网点浓度阶调印刷油墨(商品名:N920LPGT、东洋油墨株式会社制)。油墨粘度为14秒(“ザーンカップ#3”、25℃)。将印刷速度设为150m/分钟、将干燥温度设为50℃。利用光学显微镜观察印刷后的表面,并对漏点处进行计数。在6mm见方的区域中,如果漏点小于5处,则判定为○;如果漏点为5~20处,则判定为△;如果漏点为21处以上,则判定为×。判定结果如表3所示。
需要说明的是,“漏点”是指:油墨在膜基材上的附着性差,一部分点(网点)未被转印的状态。直到网点浓度低的状态为止,漏点处越少,表示高光部的印刷适性越优异。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂),CPP使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。
使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充150ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。
对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表3所示。
Figure BDA0003820395260000521
根据表3中记载的结果,在实施例3-1~3-8的阻气性膜中,黑色面积率为0.15%以下,在30℃、相对湿度70%的气氛下的氧气透过率的值为2cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。
另一方面,在比较例3-1的阻气性膜中,黑色面积率为0.15%以上,氧气透过率的值为4.7cm3/(m2·day·atm),与实施例3-1~3-8相比,未获得良好的氧气阻隔性。
根据表3中记载的结果,实施例3-1~3-8的阻气性膜在网点浓度为30%以上时的印刷适性为“○”。
另一方面,比较例3-1的阻气性膜在网点浓度为30%时的印刷适性为“×”。
这样可以看出,当黑色面积率为0.15%以下时,印刷适性良好。
[实施例4-1~4-5以及比较例4-1]
使用凹版印刷机,在表4中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使金属铝蒸发,并向其中导入氧气,从而在基底层上形成厚度为20nm的由氧化铝构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例4-1~4-5、比较例4-1的阻气性膜。
[实施例4-6]
在树脂基材α8的电晕处理面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例4-2同样地得到了实施例4-6的阻气性膜。
<印刷适性评价>
使用凹版印刷机,在各例的阻气性膜的氧气阻隔性覆膜上,以5%~50%(每5%刻度)的网点浓度阶调印刷油墨(商品名:N920LPGT、东洋油墨株式会社制)。油墨粘度为14秒(“ザーンカップ#3”、25℃)。将印刷速度设为150m/分钟、将干燥温度设为50℃。利用光学显微镜观察印刷后的表面,并对漏点处进行计数。在6mm见方的区域中,如果漏点小于5处,则判定为○;如果漏点为5~20处,则判定为△;如果漏点为21处以上,则判定为×。判定结果如表4所示。
需要说明的是,“漏点”是指:油墨在膜基材上的附着性差,一部分点(网点)未被转印的状态。直到网点浓度低的状态为止,漏点处越少,表示高光部的印刷适性越优异。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂),CPP使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。
使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充150ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。
对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表4所示。
Figure BDA0003820395260000551
根据表4中记载的结果,实施例4-1~4-6的阻气性膜的黑色面积率为0.15%以下,在30℃、相对湿度70%的气氛下的氧气透过率的值为1cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。另一方面,比较例4-1的阻气性膜的黑色面积率为0.15%以上,氧气透过率的值为1.5cm3/(m2·day·atm),与实施例4-1~4-6相比,未获得良好的氧气阻隔性。
根据表4中记载的结果,实施例4-1~4-6的阻气性膜在网点浓度为30%以上时的印刷适性为“○”。
另一方面,比较例4-1的阻气性膜在网点浓度为30%时的印刷适性为“×”。
这样可以看出,当黑色面积率为0.15%以下时,印刷适性良好。
[实施例5-1~5-5以及比较例5-1~5-3]
使用凹版印刷机,在表5中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在60℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布制造例4中制备的有机无机复合覆膜形成用的涂布剂以形成涂膜,在60℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.3μm的由有机无机复合覆膜构成的氧气阻隔性覆膜,从而得到了实施例5-1~5-5以及比较例5-1~5-3的阻气性膜。
[实施例5-6]
在树脂基材α14的电晕处理面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例5-2同样地得到了实施例5-6的阻气性膜。
[实施例5-7~5-11以及比较例5-4~5-6]
使用凹版印刷机,在表5中记载的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在60℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使金属铝蒸发,并向其中导入氧气,从而在基底层上形成厚度为20nm的由氧化铝构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在60℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在50℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例5-7~5-11、以及比较例5-4~5-6的阻气性膜。
[实施例5-12]
在树脂基材α14的电晕处理面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例5-8同样地得到了实施例5-12的阻气性膜。
[实施例5-13]
在树脂基材α14的电晕处理面上形成的基底层上不设置无机氧化物层,而是形成多价金属化合物覆膜,除此以外,与实施例5-8同样地得到了实施例5-13的阻气性膜。
<煮沸处理前后的氧气阻隔性、水蒸气阻隔性评价>
利用粘接剂将各例的阻气性膜与LLDPE(聚乙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/LLDPE构成的煮沸处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂),LLDPE使用“三井化学東セロ”制的聚乙烯膜TUX MC-S(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。
使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充150ml的自来水作为内容物,在90℃的热水中进行30分钟的加热杀菌处理(煮沸处理)。
对于煮沸处理前后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON社制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表5所示。
Figure BDA0003820395260000591
根据表5中记载的结果,实施例5-1~5-6的阻气性膜的黑色面积率为0.15%以下,在30℃、相对湿度为70%的气氛下的氧气透过率的值在煮沸前为2cm3/(m2·day·atm)以下、煮沸后为3cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。
实施例5-7~5-13的阻气性膜的黑色面积率为0.15%以下,在30℃、相对湿度为70%的气氛下的氧气透过率的值在煮沸前后为1cm3/(m2·day·atm)以下,获得了良好的氧气阻隔性。
另一方面,比较例5-1~5-3的阻气性膜的黑色面积率为0.15%以上,氧气透过率的值在煮沸前为2cm3/(m2·day·atm)以上、煮沸后为3cm3/(m2·day·atm)以上,未获得良好的氧气阻隔性。
比较例5-4~5-6的阻气性膜的黑色面积率为0.15%以上,氧气透过率的值在煮沸前后为1cm3/(m2·day·atm)以上,未获得良好的氧气阻隔性。
[实施例6-1~6-4以及比较例6-1~6-5]
在实施例6-1~6-4以及比较例6-1~6-5中,对树脂基材的生产批次的影响进行了研究。
使用凹版印刷机,在表6A所示的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用凹版印刷机,在形成的基底层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布机以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实验例6-1~6-4以及比较例6-1~6-5的阻气性膜。
[实施例6-5~6-8以及比较例6-6~6-10]
使用凹版印刷机,在表6B所示的树脂基材的电晕处理面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布制造例4中制备的有机无机复合覆膜形成用的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.3μm的由有机无机复合覆膜构成的氧气阻隔性覆膜,从而得到了实施例6-5~6-8以及比较例6-6~6-10的阻气性膜。
以与实施例1-1~1-8相同的方法对树脂基材的黑色面积率、氧气透过率以及印刷适性进行评价。测定结果如表6A和表6B所示。
Figure BDA0003820395260000621
Figure BDA0003820395260000631
首先,实施例6-1~6-4以及比较例6-1所使用的树脂基材的材料、产品编号、制造商及厚度都相同,但是生产批次不同。同样地,实施例6-5~6-8以及比较例6-6所使用的树脂基材的材料、产品编号、制造商及厚度都相同,但是生产批次不同。然而,通过上述方法测定的树脂基材的黑色面积率根据每个生产批次而不同。即,根据表6A和表6B所示的黑色面积率的测定结果,可以确认:通过上述方法测定的黑色面积率不是树脂基材的种类(α8或α9)所固有的值,而是根据生产批次而产生波动的值。
接下来,根据表6A和表6B所示的结果,实施例6-1~6-4以及实施例6-5~6-8涉及的阻气性膜(树脂基材的黑色面积率为0.15%以下)在30℃、相对湿度为70%的气氛下表现出良好的氧气阻隔性,在网点浓度为30%以上时的印刷适性的评价为“○”。与此相对,比较例6-1涉及的阻气性膜的树脂基材的黑色面积率超过0.15%,与具有相同构成的实施例6-1~6-4相比,氧气透过率较高,印刷适性变差。同样地,比较例6-6涉及的阻气性膜的树脂基材的黑色面积率也超过0.15%,与具有相同构成的实施例6-5~6-8相比,氧气透过率较高,印刷适性变差。
根据这些结果,可以确认:即使在使用相同种类的树脂基材构成相同构成的阻气性膜的情况下,阻气性膜的性能也会因树脂基材的生产批次而产生差异,但是,如果树脂基材的黑色面积率为0.15%以下,则可以降低由树脂基材的生产批次所造成的影响。
以下,通过实施例和比较例对本公开的实施方式2进行更具体地说明。但是,本公开不限于以下的实施例。以下各例所使用的材料如下所述。
[使用材料]
<树脂基材>
β1:双轴拉伸聚丙烯膜(商品名:ME-1、厚度20μm、表层为聚烯烃系共聚树脂、“三井化学東セロ株式会社”制)。
β2:双轴拉伸聚丙烯膜(商品名:P2111、厚度20μm、表层为聚烯烃系共聚树脂、东洋纺株式会社制)。
β3:双轴拉伸聚丙烯膜(商品名:VPH2011、厚度20μm、表层为聚烯烃系共聚树脂、含有平均粒径为2μm的AB剂、A.J.Plast公司制)。
β4:双轴拉伸聚丙烯膜(商品名:VPH2011、厚度20μm、表层为聚烯烃系共聚树脂、含有平均粒径为4μm的AB剂、A.J.Plast公司制)。
β5:双轴拉伸聚丙烯膜(商品名:TS19TIMCP、厚度19μm、表层为聚烯烃系共聚树脂、Max Speciality Films Limited公司制)。
β6:双轴拉伸聚丙烯膜(商品名:TS18TIV、厚度18μm、表层为聚烯烃系共聚树脂、Max Speciality Films Limited公司制)。
β7:双轴拉伸聚丙烯膜(商品名:TS18TI-TPN、厚度18μm、表层为聚丙烯均聚物、MaxSpeciality Films Limited公司制)。
β8:双轴拉伸聚丙烯膜(商品名:M-1、厚度20μm、表层为聚丙烯均聚物、“三井化学東セロ株式会社”制)。
[树脂基材的表面的突起个数的测定]
对于树脂基材β1~β8的形成氧气阻隔性覆膜一侧的表面(第一面),根据上述测定条件求出费雷特直径为8μm以上的突起个数。结果如表7~表10所述。
[实施例7-1~7-3以及比较例7-1~7-5]
使用凹版印刷机,在表7中记载的树脂基材的第一面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布制造例4中制备的有机无机复合覆膜形成用的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.3μm的由有机无机复合覆膜构成的氧气阻隔性覆膜,从而得到了实施例7-1~7-3以及比较例7-1~7-5的阻气性膜。
[实施例7-4]
在树脂基材β3的第一面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例7-3同样地得到了实施例7-4的阻气性膜。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性、层压强度评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂)作为粘接剂,使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm)作为CPP,使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充200ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制造),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制造),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表7所示。对于蒸煮处理后的阻气性层叠膜,将试验片切成15mm宽的短条状,利用万能试验机“テンシロンRTC-1250”,以剥离速度为300m/分钟进行T型和180°剥离,从而测定了阻气性膜与CPP膜之间的层压强度。测定结果如表7所示。
Figure BDA0003820395260000671
根据表7中记载的结果,树脂基材的第一面为聚烯烃系共聚树脂并且树脂基材的第一面的费雷特直径为8μm以上的突起为20个/mm2以下的实施例7-1~7-4的阻气性膜在30℃、70%RH的气氛下的氧气透过率的值为3cm3/(m2·day·atm)以下,表现出良好的氧气阻隔性,在40℃、90%RH的气氛下的水蒸气透过率的值为1g/(m2·day)以下,表现出良好的水蒸气阻隔性。另一方面,在树脂基材的第一面的费雷特直径为8μm以上的突起超过20个/mm2的比较例7-1~7-3的阻气性膜中,氧气透过率的值超过3cm3/(m2·day·atm),水蒸气透过率的值超过1g/(m2·day),氧气阻隔性和水蒸气阻隔性变差。
根据表7中记载的结果,在树脂基材的第一面为聚丙烯的均聚物的比较例7-4~7-5中,蒸煮处理后的层压强度小于2N/15mm,未获得充分的强度,与此相对,树脂基材的第一面为聚烯烃系共聚树脂的实施例7-1~7-4在蒸煮处理后也具有2N/15mm以上的充分的层压强度。特别是实施例7-4,即使没有基底层,也表现出良好的层压强度。另外,表7中的“基材断裂”表示:在阻气性膜与CPP膜之间未发生剥离、树脂基材在2N/15mm以上的强度下断裂,层压强度足够高。
[实施例8-1~8-3以及比较例8-1~8-3]
使用凹版印刷机,在表8中记载的树脂基材的第一面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使含有金属硅、一氧化硅以及二氧化硅中的2种以上的混合材料蒸发,从而在基底层上形成厚度为30nm的由氧化硅构成的无机氧化物层。随后,使用凹版印刷机,在形成的无机氧化物层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例8-1~8-3、比较例8-1~8-3的阻气性膜。
[实施例8-4]
在树脂基材β3的第一面上不设置基底层,而是直接形成无机氧化物层,除此以外,与实施例8-3同样地得到了实施例8-4的阻气性膜。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性、层压强度评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。粘接剂使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂),CPP使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm),使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充200ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表8所示。对于蒸煮处理后的阻气性层叠膜,将试验片切成15mm宽的短条状,利用万能试验机“テンシロンRTC-1250”,以剥离速度为300m/分钟进行T型和180°剥离,从而测定了阻气性膜与CPP膜之间的层压强度。测定结果如表8所示。
Figure BDA0003820395260000701
根据表8中记载的结果,树脂基材的第一面为聚烯烃系共聚树脂并且树脂基材的第一面的费雷特直径为8μm以上的突起为20个/mm2以下的实施例8-1~8-4的阻气性膜在30℃、70%RH的气氛下的氧气透过率的值为2cm3/(m2·day·atm)以下,表现出良好的氧气阻隔性。另一方面,树脂基材的第一面的费雷特直径为8μm以上的突起超过20个/mm2或者树脂基材的第一面为聚丙烯均聚物的比较例8-1~8-3的阻气性膜的氧气透过率的值超过2cm3/(m2·day·atm),氧气阻隔性差。
根据表8中记载的结果,在树脂基材的第一面为聚丙烯的均聚物的比较例8-2~8-3中,蒸煮处理后的层压强度小于2N/15mm,未获得充分的强度,与此相对,树脂基材的第一面为聚烯烃系共聚树脂的实施例8-1~8-4即使在蒸煮处理后也具有2N/15mm以上的充分的层压强度。特别是实施例8-4,即使没有基底层,也表现出良好的层压强度。
[实施例9-1~9-3以及比较例9-1~9-3]
使用凹版印刷机,在表9中记载的树脂基材的第一面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用凹版印刷机,在形成的基底层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例9-1~9-3、比较例9-1~9-3的阻气性膜。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性、层压强度评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂)作为粘接剂,使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm)作为CPP,使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充200ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表9所示。对于蒸煮处理后的阻气性层叠膜,将试验片切成15mm宽的短条状,利用万能试验机“テンシロンRTC-1250”,以剥离速度为300m/分钟进行T型和180°剥离,从而测定了阻气性膜与CPP膜之间的层压强度。测定结果如表9所示。
Figure BDA0003820395260000731
根据表9中记载的结果,树脂基材的第一面为聚烯烃系共聚树脂并且树脂基材的第一面的费雷特直径为8μm以上的突起为20个/mm2以下的实施例9-1~9-3的阻气性膜在30℃、70%RH的气氛下的氧气透过率的值为2cm3/(m2·day·atm)以下,表现出良好的氧气阻隔性,蒸煮处理后的层压强度为2N/15mm以上,也具有充分的层压强度。另一方面,在树脂基材的第一面的费雷特直径为8μm以上的突起超过20个/mm2的比较例9-1~9-3的阻气性膜中,氧气透过率的值超过2cm3/(m2·day·atm),氧气阻隔性差。
[实施例10-1和比较例10-1]
使用凹版印刷机,在表10中记载的树脂基材的第一面上涂布制造例1中制备的基底层形成用的混合液以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,从而形成了厚度为0.1μm的基底层。接着,使用利用电子束加热方式的真空蒸镀装置,使金属铝蒸发,并向其中导入氧气,从而在基底层上形成厚度为20nm的由氧化铝构成的无机氧化物层。接着,使用凹版印刷机,在形成的无机氧化物层上涂布以制造例2中制备的聚羧酸系聚合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的聚羧酸系聚合物覆膜,进一步使用凹版印刷机,在聚羧酸系聚合物覆膜上涂布以制造例3中制备的多价金属化合物为主要成分的涂布剂以形成涂膜,在100℃的烘箱中经过10秒以使涂膜干燥,形成厚度为0.2μm的多价金属化合物覆膜,并形成由聚羧酸多价金属盐覆膜构成的氧气阻隔性覆膜,从而得到了实施例10-1、比较例10-1的阻气性膜。
<蒸煮处理后的氧气阻隔性、水蒸气阻隔性、层压强度评价>
利用粘接剂将各例的阻气性膜与CPP(聚丙烯膜)粘贴在一起,从而制作了阻气性膜/粘接剂/CPP构成的蒸煮处理用阻气性层叠膜。使用三井化学聚氨酯制的2液固化型粘接剂“タケラックA620”(主剂)/“タケネートA65”(固化剂)作为粘接剂,使用东丽膜加工制的聚丙烯膜“トレファンZK93KM”(60μm)作为CPP,使用HIRANO TECSEED制的多功能涂布机TM-MC进行干式层压,并在40℃养护3天。需要说明的是,以使阻气性膜的氧气阻隔性覆膜成为粘接剂侧的方式配置。使用所得的阻气性层叠膜制作A5尺寸的4边密封袋,并填充200ml的自来水作为内容物,在120℃的热水中进行30分钟的加热杀菌处理(蒸煮处理)。对于蒸煮处理后的阻气性层叠膜,使用氧气透过率测定装置(商品名:OXTRAN-2/20、MOCON公司制),在30℃、70%RH的气氛下测定了氧气透过率(cm3/(m2·day·atm))。另外,使用水蒸气透过率测定装置(商品名:PERMATRAN-W-3/33、MOCON公司制),在40℃、90%RH的气氛下测定了水蒸气透过率(g/(m2·day))。测定结果如表10所示。对于蒸煮处理后的阻气性层叠膜,将试验片切成15mm宽的短条状,利用万能试验机“テンシロンRTC-1250”,以剥离速度为300m/分钟进行T型和180°剥离,从而测定了阻气性膜与CPP膜之间的层压强度。测定结果如表10所示。
Figure BDA0003820395260000761
根据表10中记载的结果,树脂基材的第一面为聚烯烃系共聚树脂并且树脂基材的第一面的费雷特直径为8μm以上的突起为20个/mm2以下的实施例10-1的阻气性膜在30℃、70%RH的气氛下的氧气透过率的值为2cm3/(m2·day·atm)以下,表现出良好的氧气阻隔性,蒸煮处理后的层压强度为2N/15mm以上,也具有充分的层压强度。另一方面,在树脂基材的第一面为聚丙烯均聚物的比较例10-1的阻气性膜中,蒸煮处理后的层压强度(T型剥离)小于2N/15mm,没有获得充分的强度。
工业实用性
本公开的阻气性膜稳定地表现出优异的阻气性,即使在蒸煮处理后也表现出优异的阻气性。另外,可以简单地掌握基材膜的表面状态,即使将氧气阻隔性覆膜薄膜化也可以使品质稳定化,从而能够削减原材料成本。
另外,本公开的阻气性膜的印刷适性良好。因此,可以容易且美观地在阻气性膜的表面进行印刷。
本公开的阻气性膜例如可以适合用作包装用材料,也可以适合用作煮沸处理、蒸煮处理用的包装材料。通过将本公开的阻气性膜用作包装用材料,可以提高内容物的品质保持性。
本公开的阻气性膜也可以用于包装材料以外的用途。作为包装材料以外的用途,例如可以列举出以下用途:电子设备相关膜、太阳能电池用膜、燃料电池用各种功能性膜、基板膜等。
[符号的说明]
1 阻气性膜
10 树脂基材
20 氧气阻隔性覆膜
30 基底层
40 无机氧化物层

Claims (12)

1.一种阻气性膜,具备:
树脂基材、
设置在所述树脂基材的至少一个面侧的氧气阻隔性覆膜、以及
设置在所述树脂基材与所述氧气阻隔性覆膜之间的、基底层和无机氧化物层中的任一者或两者,
所述树脂基材的一个面通过下述测定方法测定的黑色面积率为0.15%以下,
<测定方法>
利用光学显微镜拍摄树脂基材的一个面的1281μm见方的任意区域,获取1024×1024像素的拍摄图像,使用图像分析软件将所述拍摄图像转换为256灰度的单色图像,将所述单色图像的亮度的最频值减去30而得的值作为阈值,将小于所述阈值的设为黑色、将所述阈值以上的设为白色以将所述亮度2值化,将所述1281μm见方的区域中的尺寸为100μm2以上的黑色区域的总面积的比例作为黑色面积率。
2.根据权利要求1所述的阻气性膜,其中,
所述树脂基材含有防粘连剂。
3.根据权利要求1或2所述的阻气性膜,其中,
所述树脂基材为选自聚丙烯、聚对苯二甲酸乙二醇酯以及尼龙中的1种。
4.根据权利要求1至3中任一项所述的阻气性膜,其中,
所述基底层的厚度为0.01~1μm。
5.根据权利要求1至4中任一项所述的阻气性膜,其中,
所述基底层含有作为主要成分的有机高分子,
所述有机高分子包含聚丙烯酸系树脂、多元醇系树脂、聚氨酯系树脂、聚酰胺系树脂以及这些树脂的反应产物中的至少1者。
6.根据权利要求1至5中任一项所述的阻气性膜,其中,
所述无机氧化物层的厚度为1~200nm。
7.根据权利要求1至6中任一项所述的阻气性膜,其中,
所述无机氧化物层为氧化铝或氧化硅。
8.根据权利要求1至7中任一项所述的阻气性膜,其中,
所述氧气阻隔性覆膜的厚度为0.05~1μm。
9.根据权利要求1至8中任一项所述的阻气性膜,其中,
所述氧气阻隔性覆膜是包含金属醇盐、金属醇盐的水解物、以及金属醇盐或金属醇盐的水解物的反应产物中的至少一者、和水溶性高分子的覆膜。
10.根据权利要求9所述的阻气性膜,其中,
所述氧气阻隔性覆膜包含硅烷偶联剂、硅烷偶联剂的水解物、以及硅烷偶联剂或硅烷偶联剂的水解物的反应产物中的至少一者。
11.根据权利要求1至8中任一项所述的阻气性膜,其中,
所述氧气阻隔性覆膜包含作为聚羧酸系聚合物(A)的羧基与多价金属化合物(B)的反应产物的羧酸多价金属盐。
12.一种阻气性膜的制造方法,其为权利要求1至11中任一项所述的阻气性膜的制造方法,具有:
通过下述测定方法测定树脂基材原材的表面的黑色面积率,并且准备至少一个面的所述黑色面积率为0.15%以下的树脂基材原材作为所述树脂基材的工序;以及
在所述树脂基材的至少一个面侧涂布涂布剂以至少形成所述氧气阻隔性覆膜的工序,
<测定方法>
利用光学显微镜拍摄树脂基材的一个面的1281μm见方的任意区域,获取1024×1024像素的拍摄图像,使用图像分析软件将所述拍摄图像转换为256灰度的单色图像,将所述单色图像的亮度的最频值减去30而得的值作为阈值,将小于所述阈值的设为黑色、将所述阈值以上的设为白色以将所述亮度2值化,将所述1281μm见方的区域中的尺寸为100μm2以上的黑色区域的总面积的比例作为黑色面积率。
CN202080097742.4A 2020-03-05 2020-12-25 阻气性膜及其制造方法 Pending CN115190840A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020-038062 2020-03-05
JP2020038062A JP6809622B1 (ja) 2020-03-05 2020-03-05 ガスバリア性フィルム及びその製造方法
JP2020050180 2020-03-19
JP2020-050180 2020-03-19
PCT/JP2020/049021 WO2021176824A1 (ja) 2020-03-05 2020-12-25 ガスバリア性フィルム及びその製造方法

Publications (1)

Publication Number Publication Date
CN115190840A true CN115190840A (zh) 2022-10-14

Family

ID=77613281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080097742.4A Pending CN115190840A (zh) 2020-03-05 2020-12-25 阻气性膜及其制造方法

Country Status (5)

Country Link
US (1) US20220411598A1 (zh)
EP (1) EP4105016A4 (zh)
JP (1) JPWO2021176824A1 (zh)
CN (1) CN115190840A (zh)
WO (1) WO2021176824A1 (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824028B2 (ja) 1995-09-29 2006-09-20 東レ株式会社 ガスバリアフィルム
JP2000254994A (ja) 1999-03-04 2000-09-19 Toppan Printing Co Ltd 蒸着フィルム積層包装材料
KR100899323B1 (ko) 2002-04-23 2009-05-26 가부시끼가이샤 구레하 필름 및 그 제조 방법
JP2008023927A (ja) * 2006-07-25 2008-02-07 Dainippon Printing Co Ltd 粘着フィルム
JP5104227B2 (ja) * 2006-11-24 2012-12-19 凸版印刷株式会社 ガスバリア性フィルム、包装材料、及び包装体
JP4957322B2 (ja) * 2007-03-28 2012-06-20 凸版印刷株式会社 蓋材
JP5104400B2 (ja) * 2008-02-29 2012-12-19 凸版印刷株式会社 ガスバリア性フィルム、包装材料、包装体
JP2009262992A (ja) * 2008-04-30 2009-11-12 Toppan Printing Co Ltd 液体小袋包装体
JP5463633B2 (ja) * 2008-07-09 2014-04-09 凸版印刷株式会社 透明ガスバリアフィルム、透明包装材料
JP2010149300A (ja) * 2008-12-24 2010-07-08 Toppan Printing Co Ltd ガスバリア性フィルム
JP5790167B2 (ja) * 2011-06-03 2015-10-07 凸版印刷株式会社 透明ガスバリア積層体
JP5846477B2 (ja) * 2011-07-25 2016-01-20 大日本印刷株式会社 バリア性積層フィルム
JP6191221B2 (ja) 2013-04-25 2017-09-06 凸版印刷株式会社 水系コーティング剤およびガスバリア性フィルム
JP6876265B2 (ja) * 2016-06-08 2021-05-26 凸版印刷株式会社 ガスバリア性フィルム
JP7314512B2 (ja) * 2019-01-18 2023-07-26 凸版印刷株式会社 ガスバリア性フィルム

Also Published As

Publication number Publication date
JPWO2021176824A1 (zh) 2021-09-10
US20220411598A1 (en) 2022-12-29
EP4105016A1 (en) 2022-12-21
WO2021176824A1 (ja) 2021-09-10
EP4105016A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN113474162B (zh) 阻气性膜
US20140017468A1 (en) Gas barrier multilayer film
CN110892010B (zh) 记录用纸及其制造方法
CA3052128C (en) Laminated film
US7608339B2 (en) Multilayer film
JP7314512B2 (ja) ガスバリア性フィルム
WO2021230319A1 (ja) ガスバリアフィルム
CN115190840A (zh) 阻气性膜及其制造方法
JP6809622B1 (ja) ガスバリア性フィルム及びその製造方法
JP2022185386A (ja) 包装材料および包装袋
JP7031783B1 (ja) ガスバリアフィルム、積層体、および包装材料
JP7314506B2 (ja) ガスバリア性フィルム及びその製造方法
JP2023086487A (ja) ガスバリア性フィルム、積層体、および包装材料
JP2022107930A (ja) ガスバリア性フィルム、積層体、および包装材料
JP2023132672A (ja) ガスバリアフィルム
JP2021194822A (ja) ガスバリア性フィルム
JP2023049126A (ja) ガスバリア性フィルム、積層体、および包装材料
JP2023028747A (ja) ガスバリアフィルム
JP2023132666A (ja) 積層体、包装材料、および包装体
CN113302050A (zh) 记录用纸及其用途、以及记录用纸的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination