JP2023086487A - ガスバリア性フィルム、積層体、および包装材料 - Google Patents

ガスバリア性フィルム、積層体、および包装材料 Download PDF

Info

Publication number
JP2023086487A
JP2023086487A JP2021201041A JP2021201041A JP2023086487A JP 2023086487 A JP2023086487 A JP 2023086487A JP 2021201041 A JP2021201041 A JP 2021201041A JP 2021201041 A JP2021201041 A JP 2021201041A JP 2023086487 A JP2023086487 A JP 2023086487A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier film
film
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021201041A
Other languages
English (en)
Inventor
美守 塩原
Mimori Shiohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2021201041A priority Critical patent/JP2023086487A/ja
Publication of JP2023086487A publication Critical patent/JP2023086487A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Figure 2023086487000001
【課題】高温での処理を受けてもバリア性が劣化しにくいガスバリア性フィルムを提供する。
【解決手段】ガスバリア性フィルム1は、基材10と、基材の第一面10aに形成された下地層20または無機酸化物層30と、下地層上、または無機酸化物層上に形成された酸素バリア性皮膜40とを備える。ガスバリア性フィルム1において、20~130℃の昇温および130~20℃の降温の熱履歴を与えた際のMD方向における熱ひずみの最大値と最小値の差と、TD方向における熱ひずみの最大値と最小値の差との和は0.034以下である。
【選択図】図1

Description

本発明は、ガスバリア性フィルムに関する。このガスバリア性フィルムを用いた積層体および包装材料についても言及する。
食品、医薬品等の包装に用いられる包装材料には、内容物の変質や腐敗等を抑制し、それらの機能や品質を維持するため、内容物を変性させる気体(水蒸気、酸素、その他)の進入を防ぐ性質、つまりガスバリア性が求められる。そのため、これらの包装材料には、ガスバリア性を有するフィルム材料(ガスバリア性フィルム)が用いられる。
ガスバリア性フィルムとしては、ガスバリア性を有する材料からなるガスバリア層を樹脂基材の表面に設けたものが知られている。ガスバリア層としては、金属箔や金属蒸着膜、ウェットコート法により形成された皮膜が知られている。酸素バリア性を示す皮膜としては、水溶性高分子、ポリ塩化ビニリデン等の樹脂を含むコーティング剤から形成された樹脂膜や、水溶性高分子と無機層状鉱物とを含むコーティング剤から形成された無機層状鉱物複合樹脂膜が知られている(例えば、特許文献1参照。)。
ガスバリア層の他の構成として、無機酸化物からなる蒸着薄膜層と、水性高分子と無機層状化合物及び金属アルコキシドを含むガスバリア性複合皮膜を順次積層したガスバリア層(例えば、特許文献2参照。)や、ポリカルボン酸系重合体のカルボキシ基と多価金属化合物との反応生成物であるカルボン酸の多価金属塩を含むガスバリア層(例えば、特許文献3参照。)が提案されている。
ガスバリア性を向上するために、例えば、特許文献4では、基材の少なくとも一方の面に皮膜が形成されており、この皮膜の表面の表面粗さパラメータRt/Raが20以下であるガスバリア性フィルムが提案されている。ここで、Rtは、表面粗さ曲線の最大の山と最深の谷との距離である。Raは、中心線平均粗さである。特許文献4のガスバリア性フィルムによれば、ガスバリア性の改善が図られている。
特許第6191221号公報 特開2000-254994号公報 特許第4373797号公報 特開平9-150484号公報
基材の表面にウェットコート法、蒸着法、スパッタリング法等により皮膜を設けたガスバリア性フィルムは、フィルムの寸法変化や応力によりクラックを生じ、バリア性が劣化してしまう場合がある。
特に、基材がOPP(二軸延伸ポリプロピレン)やPE(ポリエチレン)などのポリオレフィン系であると、ヤング率が低く、加熱による寸法変化も大きいため、かかる問題が生じやすい傾向にあった。その中でも、ガスバリア性フィルムをレトルト用の包装材として使用する場合は高温での処理が行われるため、さらにバリア性が劣化しやすい。
上記事情を踏まえ、本発明は、高温での処理を受けてもバリア性が劣化しにくいガスバリア性フィルムを提供することを目的とする。
本発明の第一の態様は、基材と、基材の第一面に形成された下地層または無機酸化物層と、下地層上、または無機酸化物層上に形成された酸素バリア性皮膜とを備えるガスバリア性フィルムである。
このガスバリア性フィルムにおいては、20~130℃の昇温および130~20℃の降温の熱履歴を与えた際のMD方向における熱ひずみの最大値と最小値の差と、TD方向における熱ひずみの最大値と最小値の差との和が0.034以下である。
本発明の第二の態様は、第一の態様に係るガスバリア性フィルムと、酸素バリア性皮膜上に形成された熱融着層とを備える積層体である。
本発明の第三の態様は、第二の態様に係る積層体で形成された包装材料である。
本発明によれば、高温での処理を受けてもバリア性が劣化しにくいガスバリア性フィルムを提供できる。
本発明の第一実施形態に係るガスバリアフィルムの模式断面図である。
以下、本発明の一実施形態について、図1を参照して説明する。
図1は、本実施形態に係るガスバリア性フィルム1の模式断面図である。ガスバリア性フィルム1は、樹脂を含む基材10と、下地層20と、無機酸化物層30と、酸素バリア性皮膜40とを有する。
下地層20は、基材10上に形成されている。無機酸化物層30は下地層20上に形成されている。酸素バリア性皮膜40は、無機酸化物層30上に形成されている。
本実施形態に係るガスバリア性フィルムにおいて、下地層20および無機酸化物層30の一方が省略されてもよい。この場合、無機酸化物層30を基材10上に形成したり、酸素バリア性皮膜40を下地層20上に形成したりすればよい。
基材10を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、炭素数2~10のオレフィンの重合体、プロピレン-エチレン共重合体等のオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン6、ナイロン66等の脂肪族系ポリアミド、ポリメタキシリレンアジパミド等の芳香族ポリアミド等のポリアミド系樹脂;ポリスチレン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリメチルメタクリレート、ポリアクリロニトリル等の(メタ)アクリル系単量体の単独又は共重合体等のアクリル系樹脂;セロファン;ポリカーボネート、ポリイミド等のエンジニアリングプラスチック等が挙げられる。これらの樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
基材10は、単一の樹脂で構成された単層フィルム、複数の樹脂を用いた単層又は積層フィルムのいずれでもよい。また、上述の各種樹脂が他の基材(金属、木材、紙、セラミックス等)に積層されたものであってもよい。基材10は、単層でもよく、2層以上であってもよい。
中でも、ポリオレフィン系樹脂フィルム(特に、ポリプロピレンフィルム等)、ポリエステル系樹脂フィルム(特に、ポリエチレンテレフタレート系樹脂フィルム)、ポリアミド系樹脂フィルム(特に、ナイロンフィルム)等が基材10として好ましい。
基材10は、未延伸フィルムであってもよく、一軸延伸又は二軸延伸等の延伸フィルムであってもよい。水蒸気バリア性に優れる観点からは、OPPフィルムが基材10として特に好ましい。OPPフィルムは、ホモポリマー、ランダムコポリマー及びブロックコポリマーから選ばれる少なくとも一種のポリマーがフィルム状に加工されたものであってもよい。ホモポリマーはプロピレン単体のみからなるポリプロピレンである。ランダムコポリマーは、主モノマーであるプロピレンと、プロピレンとは異なる少量のコモノマーがランダムに共重合し、均質な相をなすポリプロピレンである。ブロックコポリマーは、主モノマーであるプロピレンと上記コモノマーがブロック的に共重合したり、ゴム状に重合したりすることによって不均質な相を形成するポリプロピレンである。基材10がOPPを含む場合、OPPは1層でもよく2層以上でもよい。
基材10において、下地層20または無機酸化物層30が形成される第一面10aには、薬品処理、溶剤処理、コロナ処理、低温プラズマ処理、オゾン処理等の表面処理が施されていてもよい。これにより形成される下地層や無機酸化物層との密着性を向上できる。
基材10は、フィラー、アンチブロッキング剤(以下、「AB剤」と称することがある。)、帯電防止剤、可塑剤、滑剤、酸化防止剤等の添加剤を含有してもよい。これらの添加剤は、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。
AB剤は、有機系粒子、無機系粒子等の固体粒子である。有機系粒子としては、ポリメチルメタクリレート粒子、ポリスチレン粒子、ポリアミド粒子等を例示できる。これら有機系粒子は、例えば、乳化重合や懸濁重合等により得られる。無機系粒子としては、シリカ粒子、ゼオライト、タルク、カオリナイト、長石等を例示できる。これらのAB剤は、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。
基材10がAB剤を含有する場合、第一面10aには、AB剤に由来する凹凸が生じる。すなわち、第一面10aにAB剤粒子の一部が突出することにより、基材がロール状に巻かれた際の接触面積が減少する。その結果、ブロッキングの発生が抑制され、基材10のブロッキング耐性を向上できる。
上記の観点からは、基材10は、AB剤を含有することが好ましい。一方で、基材10の第一面10aに大きな凸部が形成されると、その上に形成される下地層20、無機酸化物層30、酸素バリア性皮膜40等にガス透過の経路となる欠陥が生じやすくなり、ガスバリア性フィルム1の酸素バリア性を低下させる可能性がある。
この点と、ガスバリア性フィルム1の外観、透明性、AB剤の脱落可能性、アンチブロッキング性能を考慮すると、AB剤の平均粒径は、例えば、0.1~5μmが好ましい。AB剤の平均粒径は、コールター法により測定される重量平均径である。
基材10にAB剤を含有させる場合は、AB剤を硬化前の樹脂材料中に分散させればよい。基材10の表面付近に位置するAB剤粒子は、樹脂に覆われていてもよいし、露出していてもよい。
AB剤の含有量は、基材10を構成する樹脂100質量部に対して、0.05質量部以上、0.5質量部以下とできる。AB剤の含有量が0.05質量部以上であると、基材10の原料となるフィルムの加工特性を高めやすい。AB剤の含有量が0.5質量部以下であると、ガスバリア性フィルム1の酸素バリア性の低下を抑制しやすい。
基材10の厚さには特に制限はなく、包装材料としての適性や他の皮膜の積層適性を考慮しつつ、価格や用途によって適宜決定できる。基材10の厚みは、実用的には3μm~200μmが好ましく、5μm~120μmがより好ましく、6μm~100μmがさらに好ましく、10μm~30μmが特に好ましい。
下地層20は、有機高分子を含有する。下地層20における有機高分子の含有量は、例えば70質量%以上であってもよく、80質量%以上であってもよい。有機高分子としては、ポリアクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリイミド樹脂、メラミン樹脂、フェノール樹脂などを例示できる。基材10と、無機酸化物層30または酸素バリア性皮膜40との密着強度の耐熱水性を考慮すると、上記のうちポリアクリル系樹脂、ポリオール系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、またはこれら有機高分子の反応生成物の少なくとも1つを下地層20が含むことが好ましい。
下地層20は、シランカップリング剤や有機チタネートまたは変性シリコーンオイル等を含んでもよい。
下地層20に用いる有機高分子としては、高分子末端に2つ以上のヒドロキシル基を有するポリオール類とイソシアネート化合物との反応により生成したウレタン結合を有する有機高分子や、高分子末端に2つ以上のヒドロキシル基を有するポリオール類とシランカップリング剤またはその加水分解物のような有機シラン化合物との反応生成物を含む有機高分子がさらに好ましい。これらは一方を用いてもよいし、両方を用いてもよい。
上記ポリオール類としては、例えば、アクリルポリオール、ポリビニルアセタール、ポリスチルポリオール、及びポリウレタンポリオール等から選択される少なくとも一種が挙げられる。アクリルポリオールは、アクリル酸誘導体モノマーを重合させて得られるものであってもよく、アクリル酸誘導体モノマーとその他のモノマーとを共重合させて得られるものであってもよい。アクリル酸誘導体モノマーとしては、エチルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、及びヒドロキシブチルメタクリレート等が挙げられる。アクリル酸誘導体モノマーと共重合させるモノマーとしては、スチレン等が挙げられる。
イソシアネート化合物は、ポリオールと反応して生じるウレタン結合により、基材10と、無機酸化物層30または酸素バリア性皮膜40との密着性を高める作用を有する。すなわち、イソシアネート化合物は、架橋剤又は硬化剤として機能する。イソシアネート化合物としては、例えば、芳香族系のトリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、脂肪族系のキシレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、及びイソホロンジイソシアネート(IPDI)などのモノマー類、これらの重合体、及びこれらの誘導体が挙げられる。上述のイソシアネート化合物は1種を単独で、又は2種以上を組み合わせてもよい。
シランカップリング剤としては、例えば、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、及びγ-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。有機シラン化合物は、これらのシランカップリング剤の加水分解物であってもよい。有機シラン化合物は、上述のシランカップリング剤及びその加水分解物の1種を単独で、又は2種以上を組み合わせて含んでいてもよい。
下地層20は、有機溶媒中に上述の成分を任意の割合で配合した混合液を用いて形成することができる。混合液は、例えば、3級アミン、イミダゾール誘導体、カルボン酸の金属塩化合物、4級アンモニウム塩、4級ホスホニウム塩等の硬化促進剤;フェノール系、硫黄系、ホスファイト系等の酸化防止剤;レベリング剤;流動調整剤;触媒;架橋反応促進剤;充填剤等を含有してもよい。
混合液は、オフセット印刷法、グラビア印刷法、又はシルクスクリーン印刷法等の周知の印刷方式、或いは、ロールコート、ナイフエッジコート、又はグラビアコートなどの周知の塗布方式を用いて基材10上に層状に配置できる。配置後、例えば50~200℃に加熱することによって、下地層20を形成できる。
下地層20の厚さに特に制限はなく、例えば、0.005~5μmとできる。厚さは、用途又は求められる特性に応じて適宜決定できる。下地層20の厚さは、0.01~1μmが好ましく、0.01~0.5μmがより好ましい。下地層20の厚さが0.01μm以上であれば、基材10と、無機酸化物層30または酸素バリア性皮膜40との十分な密着強度が得られ、酸素バリア性も良好となる。下地層20の厚みが1μm以下であれば、均一な塗工面を形成することが容易であり、乾燥負荷や製造コストを抑制できる。
無機酸化物層30を構成する無機酸化物としては、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化チタン、酸化錫、酸化亜鉛、酸化インジウム等を例示できる。特に、酸化アルミニウムまたは酸化ケイ素は、生産性に優れ、かつ耐熱、耐湿熱での酸素バリア性及び水蒸気バリア性に優れることから好ましい。無機酸化物層30は、1種類の無機酸化物で形成されてもよいし、適宜選択した2種以上の無機酸化物で形成されてもよい。
無機酸化物層30の厚さは、1nm以上200nm以下とできる。厚さが1nm以上であれば、優れた酸素バリア性と水蒸気バリア性が得られる。厚さが200nm以下であれば、製造コストを低く抑えられるとともに、折り曲げや引っ張りなどの外力による亀裂が生じにくく、バリア性の劣化を抑えられる。
無機酸化物層30は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、又はプラズマ気相成長法(CVD)等の公知の成膜方法によって形成できる。
酸素バリア性皮膜40は、ウェットコート法により形成される酸素バリア性皮膜として公知のものであってよい。酸素バリア性皮膜40は、下地層20または無機酸化物層30の上にウェットコート法によりコーティング剤からなる塗膜を形成し、この塗膜を乾燥することにより得られる。なお、本明細書において、「塗膜」は湿潤膜を、「皮膜」は乾燥膜を、それぞれ意味する。
酸素バリア性皮膜40としては、金属アルコキシドおよびその加水分解物、もしくはその反応生成物の少なくとも1つと、水溶性高分子を含む皮膜(いか、「有機無機複合皮膜」と称することがある。)を含んでもよい。さらにシランカップリング剤及びその加水分解物の少なくとも一方をさらに含むことが好ましい。
有機無機複合膜に含まれる金属アルコキシド及びその加水分解物としては、例えば、テトラエトキシシラン[Si(OC]及びトリイソプロポキシアルミニウム[Al(OC]等の一般式M(OR)で表されるもの、並びにその加水分解物が挙げられる。これらのうちの1種を単独で、又は2種以上を組み合わせて含んでいてもよい。
有機無機複合膜における、金属アルコキシドおよびその加水分解物、もしくはその反応生成物の少なくとも1つの合計含有量は、例えば、40~70質量%である。酸素透過度を一層低減する観点から、有機無機複合膜における、金属アルコキシドおよびその加水分解物、もしくはその反応生成物の少なくとも1つの合計含有量の下限は50質量%であってもよい。同様の観点から、有機無機複合膜における、金属アルコキシドおよびその加水分解物、もしくはその反応生成物の少なくとも1つの合計含有量の上限は65質量%であってもよい。
有機無機複合膜に含まれる水溶性高分子は、特に限定されず、例えばポリビニルアルコール系の高分子、アクリルポリオール系等の高分子、デンプン・メチルセルロース・カルボキシメチルセルロース等の多糖類等を例示できる。酸素ガスバリア性を一層向上させる観点からは、ポリビニルアルコール系の高分子を含むことが好ましい。水溶性高分子の数平均分子量は、例えば、40000~180000である。
ポリビニルアルコール系の水溶性高分子は、例えばポリ酢酸ビニルをけん化(部分けん化も含む)して得ることができる。この水溶性高分子は、酢酸基が数十%残存しているものであってもよく、酢酸基が数%しか残存していないものであってもよい。
有機無機複合膜における、水溶性高分子の含有量は、例えば、15~50質量%である。水溶性高分子の含有量が20~45質量%であると、有機無機複合膜の酸素透過度をさらに低減でき、好ましい。
有機無機複合膜に含まれるシランカップリング剤及びその加水分解物としては、有機官能基を有するシランカップリング剤が挙げられる。そのようなシランカップリング剤及びその加水分解物としては、エチルトリメトキシシラン、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプリピルメチルジメトキシシラン、及びこれらの加水分解物が挙げられる。これらのうちの1種を単独で、又は2種以上を組み合わせて含んでいてもよい。
シランカップリング剤及びその加水分解物の少なくとも一方は、有機官能基として、エポキシ基を有するものを用いることが好ましい。エポキシ基を有するシランカップリング剤としては、例えば、γ-グリシドオキシプロピルトリメトキシシラン、及びβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが挙げられる。エポキシ基を有するシランカップリング剤及びその加水分解物は、ビニル基、アミノ基、メタクリル基又はウレイル基のように、エポキシ基とは異なる有機官能基を有していてもよい。
有機官能基を有するシランカップリング剤およびその加水分解物は、その有機官能基と水溶性高分子の水酸基との相互作用によって、酸素バリア性皮膜40の酸素バリア性と、下地層20または無機酸化物層30との接着性を一層向上することができる。特に、シランカップリング剤及びその加水分解物のエポキシ基とポリビニルアルコールの水酸基とは、相互作用によって、酸素バリア性皮膜40の下地層20や無機酸化物層30との接着性を向上することができる。
有機無機複合膜における、シランカップリング剤およびその加水分解物、もしくはその反応生成物の少なくとも1つの合計含有量は、例えば、1~15質量%である。シランカップリング剤およびその加水分解物、もしくはその反応生成物の少なくとも1つの合計含有量が2~12質量%であると、有機無機複合膜の酸素透過度をさらに低減でき、好ましい。
有機無機複合膜は、層状構造を有する結晶性の無機層状化合物を含んでもよい。無機層状化合物としては、例えば、カオリナイト族、スメクタイト族、又はマイカ族等に代表される粘土鉱物が挙げられる。これらの1種を単独で、又は2種以上を組み合わせて用いてもよい。無機層状化合物の粒径は、例えば0.1~10μmである。無機層状化合物のアスペスト比は、例えば50~5000である。
無機層状化合物としては、層状構造の層間に水溶性高分子が入り込むこと(インターカレーション)によって、優れた酸素バリア性と密着強度を有する皮膜を形成できることから、スメクタイト族の粘土鉱物が好ましい。スメクタイト族の粘土鉱物の具体例としては、モンモリロナイト、ヘクトライト、及びサポナイト、水膨潤性合成雲母等が挙げられる。
また、酸素バリア性皮膜40の別の好ましい例として、ポリカルボン酸系重合体(A)のカルボキシ基と多価金属化合物(B)との反応生成物であるカルボン酸の多価金属塩を含む皮膜(ポリカルボン酸の多価金属塩皮膜)が挙げられる。ポリカルボン酸の多価金属塩皮膜は、ポリカルボン酸系重合体(A)と多価金属化合物(B)を混合したコーティング剤を塗布、加熱乾燥することで形成されてもよいし、ポリカルボン酸系重合体(A)を主成分とするコーティング剤を塗布、乾燥してA皮膜を形成した上に、多価金属化合物(B)を主成分とするコーティング剤を塗布、乾燥してB皮膜を形成し、A/B層間で架橋反応させることにより形成されてもよい。
[ポリカルボン酸系重合体(A)]
ポリカルボン酸系重合体とは、分子内に2個以上のカルボキシ基を有する重合体である。ポリカルボン酸系重合体としては、たとえば、エチレン性不飽和カルボン酸の(共)重合体;エチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体;アルギン酸、カルボキシメチルセルロース、ペクチン等の分子内にカルボキシル基を有する酸性多糖類が挙げられる。エチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。エチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体としては、例えば、エチレン、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、塩化ビニル、塩化ビニリデン、スチレン、アクリルアミド、アクリロニトリル等が挙げられる。これらのポリカルボン酸系重合体は1種を単独で用いても、2種以上を混合して用いてもよい。
上記の中でも、得られるガスバリア性フィルム1のガスバリア性の観点から、アクリル酸、マレイン酸、メタクリル酸、イタコン酸、フマル酸及びクロトン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位を含む重合体が好ましく、アクリル酸、マレイン酸、メタクリル酸及びイタコン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位を含む重合体が特に好ましい。該重合体において、アクリル酸、マレイン酸、メタクリル酸及びイタコン酸からなる群から選ばれる少なくとも1種の重合性単量体から誘導される構成単位の割合は、80mol%以上であることが好ましく、90mol%以上であることがより好ましい(ただし該重合体を構成する全構成単位の合計を100mol%とする)。該重合体は、単独重合体でも、共重合体でもよい。該重合体が、上記構成単位以外の他の構成単位を含む共重合体である場合、該他の構成単位としては、例えば前述のエチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体から誘導される構成単位などが挙げられる。
ポリカルボン酸系重合体の数平均分子量は、2,000~10,000,000の範囲内が好ましく、5,000~1,000,000がより好ましい。数平均分子量が2,000未満では、得られるガスバリア性フィルムは充分な耐水性を達成できず、水分によってガスバリア性や透明性が悪化する場合や、白化の発生が起こる場合がある。他方、数平均分子量が10,000,000を超えると、酸素バリア性皮膜40を形成する際のコーティング剤の粘度が高くなり、塗工性が損なわれる場合がある。なお、上記数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めた、ポリスチレン換算の数平均分子量である。
ポリカルボン酸系重合体を主成分とするコーティング剤を塗布、乾燥してA皮膜を形成した後にB皮膜を形成する場合には、ポリカルボン酸系重合体は、カルボキシ基の一部が予め塩基性化合物で中和されていてもよい。ポリカルボン酸系重合体の有するカルボキシ基の一部を予め中和することにより、A皮膜の耐水性や耐熱性をさらに向上させることができる。塩基性化合物としては、多価金属化合物、一価金属化合物およびアンモニアからなる群から選択される少なくとも1種の塩基性化合物が好ましい。多価金属化合物としては、後述する多価金属化合物の説明で例示する化合物を用いることができる。一価金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられる。
ポリカルボン酸系重合体を主成分とするコーティング剤には各種添加剤を加えることができ、バリア性能を損なわない範囲で架橋剤、硬化剤、レベリング剤、消泡剤、アンチブロッキング剤、静電防止剤、分散剤、界面活性剤、柔軟剤、安定剤、膜形成剤、増粘剤などがあげられる。
ポリカルボン酸系重合体を主成分とするコーティング剤に用いる溶媒は水性媒体が好ましい。水性媒体としては、水、水溶性または親水性有機溶剤、またはこれらの混合物が挙げられる。水性媒体は通常、水または水を主成分として含むものである。水性媒体中の水の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。水溶性または親水性有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、セロソルブ類、カルビトール類、アセトニトリル類のニトリル類等が挙げられる。
[多価金属化合物(B)]
多価金属化合物は、ポリカルボン酸系重合体のカルボキシル基と反応してポリカルボン酸の多価金属塩を形成する化合物であれば特に限定されず、酸化亜鉛粒子、酸化マグネシウム粒子、マグネシウムメトキシド、酸化銅、炭酸カルシウム等を例示できる。これらを単独或いは複数を混合して用いてもよい。酸素バリア性皮膜の酸素バリア性の観点からは、酸化亜鉛が好ましい。
酸化亜鉛は紫外線吸収能を有する無機材料である。酸化亜鉛粒子の平均粒子径は特に限定されないが、ガスバリア性、透明性、コーティング適性の観点から、平均粒子径が5μm以下であることが好ましく、1μm以下であることがより好ましく、0.1μm以下であることが特に好ましい。
多価金属化合物を主成分とするコーティング剤を塗布、乾燥して皮膜を形成する場合は、必要に応じて、本発明の効果を損なわない範囲で、酸化亜鉛粒子のほかに、各種添加剤を含有してもよい。該添加剤としては、コーティング剤に用いる溶媒に可溶又は分散可能な樹脂、該溶媒に可溶又は分散可能な分散剤、界面活性剤、柔軟剤、安定剤、膜形成剤、増粘剤等を例示できる。
上記の中でも、溶媒に可溶または分散可能な樹脂を含有することが好ましい。これにより、コーティング剤の塗工性、製膜性が向上する。このような樹脂としては、例えば、アルキッド樹脂、メラミン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、エポキシ樹脂、イソシアネート樹脂等が挙げられる。
また、溶媒に可溶又は分散可能な分散剤を含有することも好ましい。これにより、多価金属化合物の分散性が向上する。該分散剤としては、アニオン系界面活性剤や、ノニオン系界面活性剤を用いることができる。該界面活性剤としては、(ポリ)カルボン酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルスルフォコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルリン酸塩、芳香族リン酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、アルキルアリル硫酸エステル塩、ポリオキシエチレンアルキルリン酸エステル、ソルビタンアルキルエステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンソルビタンアルキルエステル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシ脂肪酸エステル、ポリオキシエチレンアルキルアミン等の各種界面活性剤が挙げられる。これらの界面活性剤は単独で用いても、2種以上を混合して用いてもよい。
多価金属化合物を主成分とするコーティング剤に添加剤が含まれている場合には、多価金属化合物と添加剤との質量比(多価金属化合物:添加剤)は、30:70~99:1の範囲内であることが好ましく、50:50~98:2の範囲内であることが好ましい。
コーティング剤の溶媒としては、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、ジメチルスルフォキシド、ジメチルフォルムアミド、ジメチルアセトアミド、トルエン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、メチルエチルケトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、酢酸エチル、酢酸ブチルが挙げられる。また、これらの溶媒は1種単独で用いても、2種以上を混合して用いてもよい。これらの中でも、塗工性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、トルエン、酢酸エチル、メチルエチルケトン、水が好ましい。また製造性の観点から、メチルアルコール、エチルアルコール、イソプロピルアルコール、水が好ましい。
ポリカルボン酸系重合体(A)と多価金属化合物(B)を混合したコーティング剤を塗布、乾燥してポリカルボン酸の多価金属塩皮膜を形成する場合には、ポリカルボン酸系重合体(A)と、多価金属化合物(B)と、溶媒としての水またはアルコール類と、溶媒に溶解或いは分散可能な樹脂や分散剤、および必要に応じて添加剤を混合したコーティング剤を用いることができる。このコーティング剤を公知のコーティング方法にて塗布、乾燥することで、ポリカルボン酸の多価金属塩皮膜を形成することができる。
コート法としては、キャスト法、ディッピング法、ロールコート法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キットコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法等を例示できる。
酸素バリア性皮膜40は、耐屈曲性及びガスバリア性の観点から、ポリウレタン樹脂を含んでもよい。すなわち、酸素バリア性皮膜40は、ポリビニルアルコール系樹脂、ポリウレタン樹脂及びシラン化合物を含む酸素バリア性皮膜形成原料の硬化物(ポリウレタン樹脂皮膜)であってよい。ポリウレタン樹脂としては水性ポリウレタン樹脂が挙げられる。
水性ポリウレタン樹脂は、酸基含有ポリウレタン樹脂及びポリアミン化合物を含む。水性ポリウレタン樹脂を用いることで、酸素バリア性皮膜に柔軟性と、ガスバリア性、特に酸素バリア性を付与しやすい。水性ポリウレタン樹脂では、酸基含有ポリウレタン樹脂の酸基と、架橋剤としてのポリアミン化合物とを結合させることにより、ガスバリア性を発現させている。酸基含有ポリウレタン樹脂の酸基とポリアミン化合物との結合は、イオン結合(例えば、カルボキシル基と第3級アミノ基とのイオン結合等)であってもよく、共有結合(例えば、アミド結合等)であってもよい。
水性ポリウレタン樹脂を構成する酸基含有ポリウレタン樹脂は、酸基を有することから、アニオン性及び自己乳化性を有しており、アニオン性自己乳化型ポリウレタン樹脂とも称される。酸基含有ポリウレタン樹脂の酸基は、水性ポリウレタン樹脂を構成するポリアミン化合物のアミノ基(第1級アミノ基、第2級アミノ基、第3級アミノ基等)と結合可能である。酸基としては、カルボキシル基、スルホン酸基等が挙げられる。酸基は、通常、中和剤(塩基)により中和可能であり、塩基と塩を形成していてもよい。酸基は、酸基含有ポリウレタン樹脂の末端に位置してもよく側鎖に位置してもよいが、少なくとも側鎖に位置していることが好ましい。
酸基含有ポリウレタン樹脂の酸価は、酸基含有ポリウレタン樹脂が水分散性となる範囲で選択することができるが、通常、5~100mgKOH/gであり、10~70mgKOH/gであることが好ましく、15~60mgKOH/gであることがより好ましい。酸基含有ポリウレタン樹脂の酸価が上記範囲の下限値未満であると、酸基含有ポリウレタン樹脂の水分散性が不充分となり、水性ポリウレタン樹脂と他の材料との均一分散性やコーティング剤の分散安定性の低下を招くおそれがある。酸基含有ポリウレタン樹脂の酸価が上記範囲の上限値を超えると、酸素バリア性皮膜の耐水性やガスバリア性の低下を招くおそれがある。酸基含有ポリウレタン樹脂の酸価が上記範囲内であることで、それら分散安定性の低下、及び耐水性やガスバリア性の低下を回避しやすくなる。酸基含有ポリウレタン樹脂の酸価は、JIS K 0070に準じた方法により測定できる。
酸基含有ポリウレタン樹脂の数平均分子量は、適宜選択可能であるが、800~1,000,000であることが好ましく、800~200,000であることがより好ましく、800~100,000であることがさらに好ましい。酸基含有ポリウレタン樹脂の数平均分子量が上記範囲の上限値を超えると、コーティング剤の粘度が上昇し好ましくない。酸基含有ポリウレタン樹脂の数平均分子量が上記範囲の下限値未満であると、酸素バリア性皮膜のガスバリア性が不充分になるおそれがある。酸基含有ポリウレタン樹脂の数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される標準ポリスチレン換算の値である。
酸基含有ポリウレタン樹脂は、ガスバリア性を高めるため、結晶性であってもよい。酸基含有ポリウレタン樹脂のガラス転移温度は、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。酸基含有ポリウレタン樹脂のガラス転移温度が100℃未満であると、酸素バリア性皮膜のガスバリア性が不充分になるおそれがある。酸基含有ポリウレタン樹脂のガラス転移温度は、典型的には、200℃以下、さらには180℃以下、さらには150℃以下程度である。上記各項目の好ましい範囲を満たす酸基含有ポリウレタン樹脂のガラス転移温度が上記の上限値よりも高くなることは実質的に可能性が低い。したがって、酸基含有ポリウレタン樹脂のガラス転移温度は、100~200℃が好ましく、110~180℃がより好ましく、120~150℃がさらに好ましい。酸基含有ポリウレタン樹脂のガラス転移温度は、示差走査熱量測定(DSC)により測定される。
水性ポリウレタン樹脂を構成するポリアミン化合物は、2以上の塩基性窒素原子を有する化合物である。塩基性窒素原子は、酸基含有ポリウレタン樹脂の酸基と結合し得る窒素原子であり、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基等のアミノ基における窒素原子が挙げられる。ポリアミン化合物としては、酸基含有ポリウレタン樹脂の酸基と結合し、ガスバリア性を向上できるものであれば特に限定されるものではなく、2以上の塩基性窒素原子を有する種々の化合物を用いることができる。ポリアミン化合物としては、第1級アミノ基、第2級アミノ基及び第3級アミノ基からなる群から選択される少なくとも1種のアミノ基を2以上有するポリアミン化合物が好ましい。
ポリアミン化合物の具体例としては、例えばアルキレンジアミン類、ポリアルキレンポリアミン類、複数の塩基性窒素原子を有するケイ素化合物等が挙げられる。アルキレンジアミン類としては、例えばエチレンジアミン、1,2-プロピレンジアミン、1,3-プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン等の炭素数2~10のアルキレンジアミン等が挙げられる。ポリアルキレンポリアミン類としては、例えばテトラアルキレンポリアミン等が挙げられる。複数の塩基性窒素原子(アミノ基などの窒素原子を含む)を有するケイ素化合物としては、例えば2-〔N-(2-アミノエチル)アミノ〕エチルトリメトキシシラン、3-〔N-(2-アミノエチル)アミノ〕プロピルトリエトキシシラン等の、複数の塩基性窒素原子を有するシランカップリング剤等が挙げられる。
水性ポリウレタン樹脂において、ポリアミン化合物の含有量は、酸基含有ポリウレタン樹脂の酸基と、ポリアミン化合物の塩基性窒素原子とのモル比(酸基/塩基性窒素原子)が10/1~0.1/1となる量が好ましく、5/1~0.2/1となる量がより好ましい。酸基/塩基性窒素原子が上記範囲であれば、酸基含有ポリウレタンの酸基とポリアミン化合物の架橋反応が適切に生じ、酸素バリア性皮膜に優れた酸素バリア性が発現する。
水性ポリウレタン樹脂は、通常、水性媒体に分散した状態(水性分散体)の形態で用いられる。水性媒体としては、水、水溶性もしくは親水性の有機溶剤、またはこれらの混合物が挙げられる。水溶性または親水性の有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;セロソルブ類;カルビトール類;アセトニトリル等のニトリル類等が挙げられる。水性媒体としては、水または水を主成分として含むものが好ましい。水性媒体中の水の含有量は、70質量%以上が好ましく、80質量%以上がより好ましい。水性媒体は、酸基含有ポリウレタン樹脂の酸基を中和する中和剤(塩基)を含んでもよく、含まなくてもよい。通常は中和剤が含まれる。
水性ポリウレタン樹脂の水性分散体において、分散粒子(ポリウレタン樹脂粒子)の平均粒子径は、特に限定されず、好ましくは20nm~500nmであり、より好ましくは25nm~300nmであり、さらに好ましくは30nm~200nmである。分散粒子の平均粒子径が上記範囲の上限値を超えると、分散粒子と他の材料との均一分散性やコーティング剤の分散安定性が低下し、コーティング剤から形成される酸素バリア性皮膜のガスバリア性が不充分になるおそれがある。分散粒子の平均粒子径が上記範囲の下限値未満であると、コーティング剤の分散安定性やコーティング剤から形成される酸素バリア性皮膜のガスバリア性をさらに向上させるほどの効果は期待できない。また、かかる分散体を得るのは実質的に難しい。分散粒子の平均粒子径は、固形分濃度が0.03~0.3質量%の分散体を用いて、濃厚系粒径アナライザー(大塚電子社製 FPAR-10)にて計測できる。
水性ポリウレタン樹脂は、市販のものを用いてもよく、公知の製造方法により製造したものを用いてもよい。市販のものとしては、三井化学株式会社製のタケラック WPB-341や、DIC株式会社製のハイドラン HW350等を例示できる。水性ポリウレタン樹脂の製造方法は、特に限定されるものではなく、アセトン法、プレポリマー法等の、通常のポリウレタン樹脂の水性化技術が用いられる。ウレタン化反応では、必要に応じてアミン系触媒、錫系触媒、鉛系触媒等のウレタン化触媒を用いてもよい。例えば、アセトン等のケトン類、テトラヒドロフラン等のエーテル類、アセトニトリル等のニトリル類等の不活性有機溶媒中において、ポリイソシアネート化合物と、ポリヒドロキシ酸と、必要に応じて、ポリオール成分及び鎖伸長剤成分のうち少なくとも1つと、を反応させることにより、酸基含有ポリウレタン樹脂を調製できる。より具体的には、不活性有機溶媒(特に、親水性または水溶性の有機溶媒)中で、ポリイソシアネート化合物と、ポリヒドロキシ酸と、ポリオール成分と、を反応させて、末端にイソシアネート基を有するプレポリマーを生成し、中和剤で中和して水性媒体に溶解または分散させた後、鎖伸長剤成分を添加して反応させ、有機溶媒を除去することにより、酸基含有ポリウレタン樹脂の水性分散体を調製できる。このようにして得られた酸基含有ポリウレタン樹脂の水性分散体にポリアミン化合物を添加し、必要に応じて加熱することにより、水分散体の形態の水性ポリウレタン樹脂を調製できる。加熱する場合、加熱温度は、30~60℃が好ましい。
ポリウレタン樹脂皮膜を形成する際、ポリウレタン樹脂皮膜形成原料におけるポリウレタン樹脂の量は、耐屈曲性及びガスバリア性の観点から、ポリビニルアルコール系樹脂1質量部に対して0.9~4.0質量部とできる。ポリウレタン樹脂の量は、1.1~3.0質量部が好ましく、1.2~2.5質量部がより好ましい。
酸素バリア性皮膜40の厚みは、要求される酸素バリア性に応じて設定され、例えば0.05~5μmとできる。酸素バリア性皮膜40の厚みは、0.05~1μmが好ましく、0.1~0.5μmがより好ましい。酸素バリア性皮膜40の厚みが0.05μm以上であれば、充分な酸素バリア性が得られやすい。酸素バリア性皮膜40の厚みが1μm以下であれば、均一な塗工面を形成することが容易で、乾燥負荷や製造コストを抑制できる。
酸素バリア性皮膜40として、上述した有機無機複合皮膜、ポリカルボン酸の多価金属塩皮膜、ポリウレタン樹脂皮膜等を有するガスバリア性フィルムは、ボイル処理やレトルト殺菌処理を行っても優れた酸素バリア性を示す。
以上がガスバリア性フィルム1の基本的な構成である。ガスバリア性フィルム1にヒートシール層を設けると、包装材料に適用可能な積層体となる。この積層体を1枚または複数枚準備し、ヒートシール層どうしを対向させて周縁を熱融着すると、ガスバリア性フィルム1を用いた包装材料を形成できる。この包装材料がレトルト食品の包装材料に適用される場合、ガスバリアフィルムはレトルト処理に伴う高温にさらされる。
発明者らは、高温処理後におけるバリア性の低下について種々検討した結果、高温処理によるヒートシール層の寸法変化の度合いと高温処理による基材10の寸法変化の度合いとの間に大きな差があると、酸素バリア性皮膜40にクラックが生じやすく、バリア性が低下しやすいことを見出した。
発明者らが様々な基材でガスバリア性フィルムを作製して検討した結果、ガスバリア性フィルム熱ひずみの最大値と最小値の差を用いることで、包装材料が高温処理された場合においてもバリア性が低下しにくい構成を容易に特定でき、さらにその値はフィルム加工時にかかる総熱量で制御できることが分かった。
具体的には、完成したガスバリア性フィルムにおいて、ある温度範囲における昇温および降温の熱履歴を与えた際の、ある一方向における熱ひずみの最大値と最小値の差と、基材の面上において当該一方向に直交する方向における熱ひずみの最大値と最小値の差との和が0.034以下であると、高温処理においてもバリア性が低下しにくいことが分かった。また、上記和の値は、加工時に基材フィルムにかかる総熱量を加工温度の二乗と時間の積を30000以上とすることで達成することができることが分かった。
なお、本発明において、「熱ひずみの最大値と最小値の差との和」は、小数点第4位を四捨五入した値とする。
熱ひずみの最大値と最小値の差が加工時に基材フィルムにかかる総熱量により変化するメカニズムについては、完全に解明されていないが、基材フィルムに作用した延伸が加熱による軟化に伴って一部緩和され、基材自体の寸法安定性が向上することがその一因と考えられる。したがって、一定温度以上の熱でないと、熱ひずみの最大値と最小値に影響しないため、発明者は、熱ひずみの最大値と最小値に影響し得る熱量を以下の式で定義した。
熱量=(T-49.8)×t
上記式において、Tは温度(℃)であり、tは時間(秒)である。
加工時に基材フィルムにかかる熱としては、基材フィルムのアニール処理、基材フィルム上に塗工液により層を形成するための加熱乾燥、ガスバリア性フィルム完成後のエージング等を例示できる。各工程における加熱条件を上記式に当てはめて算出した熱量の総和が総熱量となる。なお、(T-49.8)が負の値になるような条件の熱処理は、寸法安定性の向上にほとんど寄与しないため、除外する。
熱履歴の温度範囲は、実際に適用される高温処理の内容に基づいて決定できる。高温処理がレトルト処理やボイル処理である場合、温度範囲を20℃~130℃とすることで、いわゆるハイレトルトにも対応できる。昇温速度および降温速度は、例えば10℃/分とできる。
基材10として延伸した樹脂フィルムを使用する場合は、熱機械分析(TMA)を用いた以下のような手順で上記の「和」を算出できる。
4mm×25mmのガスバリア性フィルムのサンプルを準備し、20~130℃の昇温と120~20℃の降温のプロファイルで、昇温速度および降温速度 10℃/分、張力30mNにて、TMAの引張速度で測定を行う。
サンプルにおけるMD(機械方向)とTD(MDと直交する方向)において、MD方向の熱ひずみの最大値(熱膨張)と最小値(熱収縮)の差εMDとTD方向の熱ひずみの最大値と最小値の差εTDとの和εMD+εTDを算出する。各方向における熱ひずみの最大値εmaxは20~130℃の昇温時に現れ、熱ひずみの最小値εminは熱膨張の最大値となった温度から20℃に降温するまでの間に現れるため、この差εmax-εminが、εMDおよびεTDとなる。
ガスバリア性フィルム1の製造手順の一例を説明する。
まず、基材10を選択する。ガスバリア性フィルム1の和εMD+εTDは、基材自体の和εMD+εTDにより大きく左右される。したがって、用いようとしている基材に対して上述の測定を行い、和εMD+εTDを算出する。
基材単体での和εMD+εTDが0.034以下であることが最も好ましいが、ガスバリア性フィルム1は、基材10以外の層を有するため、ガスバリア性フィルム1の和εMD+εTDは、基材単体の和εMD+εTDよりもわずかに低くなる。これは、基材10以外の層の加工時に加熱の工程が含まれているために基材自体の寸法安定性がその熱によるアニール効果によって向上するためであると思われる。アニール処理は基材10に下地層20を形成する前に施してもよい。
基材10は、市販品であってもよく、公知の方法で製造されてもよい。
次に、基材10上に、下地層20および無機酸化物層30から選択された層を形成する。
下地層20を形成する場合、例えば、基材10の第一面10aにコーティング剤をウェットコート法により塗布して塗膜を形成し、その塗膜を乾燥(溶媒を除去)すればよい。
コーティング剤の塗布方法としては、公知のウェットコート法を用いることができる。ウェットコート法としては、ロールコート法、グラビアコート法、リバースコート法、ダイコート法、スクリーン印刷法、スプレーコート法等が挙げられる。
コーティング剤からなる塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等の公知の乾燥方法を用いることができる。塗膜の乾燥温度は、例えば、50~200℃とできる。乾燥時間は、塗膜の厚さ、乾燥温度等によっても異なるが、例えば、1秒~5分間とできる。
無機酸化物層30は、上述した真空蒸着法、スパッタリング法、イオンプレーティング法、又はプラズマ気相成長法(CVD)等により形成できる。
続いて、下地層20または無機酸化物層30上に、酸素バリア性皮膜40を形成する。
酸素バリア性皮膜40は、例えば、コーティング剤をウェットコート法により塗布して塗膜を形成し、その塗膜を乾燥(溶媒を除去)することにより形成できる。
コーティング剤の塗布方法および乾燥方法は、下地層20の形成工程の説明で挙げたものと同様の方法を用いることができる。
酸素バリア性皮膜40は、一度の塗布、乾燥により形成しても、同種のコーティング剤或いは異種のコーティング剤により、複数回の塗布、乾燥を繰り返して形成しても構わない。
以上の過程を経て、ガスバリア性フィルム1が完成する。ガスバリア性フィルム1においては、上記式で算出された加工時にかかる熱量の総和が30000以上に制御されており、ある温度範囲における昇温および降温の熱履歴を与えた際の、所定の一方向における熱ひずみの最大値と最小値の差と、基材の面上において当該一方向に直交する方向における熱ひずみの最大値と最小値の差との和が0.034以下に抑えられている。
ガスバリア性フィルム1には、必要に応じて、印刷層、保護層、遮光層、接着剤層、ヒートシール可能な熱融着層、その他の機能層等をさらに設けてもよい。
ガスバリア性フィルム1に熱融着層を設けると、包装袋やパウチなどの各種包装材料の製造に適した積層体を形成できる。ガスバリア性フィルム1で形成した包装材料は、ガスバリア性フィルム1の上記和が0.034以下であることによりボイル、レトルト等の高温処理を行っても、好適なバリア特性を保持でき、各層の密着強度やシール強度も良好である。さらに、金属箔や金属蒸着膜にはない透明さを有して内容物が視認でき、耐屈曲性や耐延伸性にも優れ、ダイオキシン等の有害物質発生のリスクもない。
熱融着層としては、CPP(無延伸ポリプロピレンフィルム)を例示できる。熱融着層は、ポリウレタン系、ポリエステル系、ポリエーテル系等の公知の接着剤を用いて、公知のドライラミネート法、エクストルージョンラミネート法等により積層することができる。
基材10および熱融着層の両方をポリプロピレン製とすることにより、積層体および包装材料におけるポリプロピレンの含有率を90質量%以上とすることができる。これにより、積層体および包装材料は、いわゆるモノマテリアル材料となり、リサイクル適性が向上する。
本実施形態のガスバリア性フィルムについて、実施例および比較例を用いてさらに説明する。本発明は、実施例および比較例の具体的内容により、何ら限定されない。
(実施例1)
基材として、第一面にコロナ処理が施された厚さ20μmの二軸延伸ポリプロピレンフィルム(A.J.Plast社製 VPH2011)を準備した。
基材の寸法安定性を制御するために、80℃のオーブン内を25秒で通過させ、アニール処理を行った。
次に、第一面に下記手順で調製した混合液Aを、グラビア印刷機を用いて塗工して塗膜を形成し、80℃のオーブン内を10秒で通過させて塗膜を乾燥し、厚さ0.1μmの下地層を形成した。
(混合液Aの調整手順)
アクリルポリオールとしてアクリディックCL-1000(DIC(株)製))を、イソシアネート系化合物としてTDIタイプ硬化剤コロネート2030(東ソー(株)製)を用いた。アクリルポリオールとイソシアネート系化合物との配合比を固形分重量比6:4となるよう配合し、希釈溶剤(酢酸エチル)を用いて固形分が2質量%となるように調製した。
次に、電子線加熱方式による真空蒸着装置を用いて、金属珪素、一酸化珪素、及び二酸化珪素の2種以上を含む混合材料を蒸発させて、下地層の上に厚さ30nmの酸化ケイ素からなる無機酸化物層を形成した。
次に、無機酸化物層上に、下記手順で調製した混合液Bを、グラビア印刷機を用いて塗工して塗膜を形成し、80℃のオーブンに10秒間通過させ乾燥させることで厚さ0.3μmの酸素バリア性皮膜を形成した。
(混合液Bの調整手順)
テトラエトキシシラン(商品名:KBE04、固形分:100%、信越化学工業株式会社製、以下「TEOS」とも称する)と、メタノール(関東化学社製)と、0.1N 塩酸(関東化学社製)とを、重量比が45/15/40となるように混合し、加水分解した溶液と、ポリビニルアルコール(商品名:クラレポバール60-98、株式会社クラレ製、以下「PVA」ともいう)の5%水溶液とを混合し、1,3,5-トリス(3-メトキシシリルプロピル)イソシアヌレートを、水/IPA=1/1溶液で、固形分5%(重量比RSi(OH)換算。Rはシラノール基以外の炭化水素基とイソシアヌレート部分。)に希釈した溶液とを混合した。これを、TEOSのSiO固形分(換算値)と、イソシアヌレートシランのRSi(OH)固形分(換算値)と、PVA固形分との質量比率とが40/5/55になるように調液して混合液Bを得た。
以上により、実施例に係るガスバリア性フィルムを得た。
(実施例2および比較例1から6)
上記アニール処理の条件を変更した点を除き、実施例1と同様の手順で、実施例2および比較例1から6に係るガスバリア性フィルムを得た。上記式に基づいて算出した各例における総熱量を表1に示す。
Figure 2023086487000002
実施例および比較例のガスバリアフィルムを用いて、以下の項目を評価した。
(熱ひずみ測定)
各例のガスバリア性フィルムをカットして、4mm×25mmのサンプルを準備した。
昇温20℃~130℃、降温130℃~20℃の、昇温速度10℃/分のプロファイル、張力50mNの条件で、TMAの引張モードで上述したεmaxおよびεminを測定し、和εMD+εTDを算出した。
(レトルト処理前後の酸素バリア性)
各例のガスバリア性フィルムの酸素バリア性皮膜上に、接着剤を用いて厚さ60μmのCPPフィルム(東レフィルム加工社製 トレファンZK93KM)を貼り合わせて熱融着層を設けた。
接着剤として、三井化学ポリウレタン製の2液硬化型接着剤 タケラックA620(主剤)/タケネートA65(硬化剤)を使用し、HIRANO TECSEED製マルチコーターTM-MCにてドライラミネートし、40℃で3日間養生した。
以上により、各例に係る積層体を得た。
各例の積層体を、熱融着層を対向させて周縁部をシールすることにより、A5サイズの4方シールパウチ(包装材料)を複数作製した。各パウチに水道水200mlを充填して封止し、120℃の熱水中で30分間の加熱殺菌処理(レトルト処理)を実施した。
レトルト処理前後の各パウチからサンプルを切り出し、酸素透過度測定装置(商品名:OXTRAN-2/20、MOCON社製)を用いて、30℃、70%RH(相対湿度)の雰囲気下で、酸素透過度(cm/(m・day・atm))を測定した。
結果を表2に示す。εMD+εTDの値は、小数点第4位を四捨五入したものである。
Figure 2023086487000003
実施例および比較例は、いずれも基材として二軸延伸ポリプロピレンフィルムを用いており、層構成としてみればほぼ同一である。さらに、レトルト処理前の酸素透過度は実施例と比較例とで同等であった。
にもかかわらず、εMD+εTDが0.034以下である実施例に係る包装材料がレトルト処理後に良好な酸素バリア性を保持する一方で、εMD+εTDが0.034より大きい比較例に係る包装材料の酸素バリア性はレトルト処理後に著しく低下した。
以上、本発明の一実施形態、および実施例について説明したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせなども含まれる。
上記実施例では、下地層と無機酸化物層との両方を備えたガスバリア性フィルムを示したが、本発明に係るガスバリア性フィルムにおいては、下地層および無機酸化物層の一方が省略されてもよい。
1 ガスバリア性フィルム
10 基材
10a 第一面
20 下地層
30 無機酸化物層
40 酸素バリア性皮膜

Claims (13)

  1. 基材と、
    前記基材の第一面に形成された下地層または無機酸化物層と、
    前記下地層上、または前記無機酸化物層上に形成された酸素バリア性皮膜と、
    を備え、
    20~130℃の昇温および130~20℃の降温の熱履歴を与えた際のMD方向における熱ひずみの最大値と最小値の差と、TD方向における熱ひずみの最大値と最小値の差との和が0.034以下である、
    ガスバリア性フィルム。
  2. 前記基材は、ポリプロピレン、ポリエチレンテレフタレート、及びナイロンから選択される1種の樹脂で形成される、
    請求項1に記載のガスバリア性フィルム。
  3. 前記下地層が前記第一面上に形成され、
    前記下地層の厚みが0.01~1μmである、
    請求項1または2に記載のガスバリア性フィルム。
  4. 前記下地層が前記第一面上に形成され、
    前記下地層は、主成分として有機高分子を含み、
    前記有機高分子は、ポリアクリル系樹脂、ポリオール系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、および、これらの樹脂の反応生成物、の少なくとも1つを含む、
    請求項1から3のいずれか一項に記載のガスバリア性フィルム。
  5. 前記無機酸化物層が直接または前記下地層を挟んで前記第一面上に形成され、
    前記無機酸化物層の厚みが1~200nmである、
    請求項1に記載のガスバリア性フィルム。
  6. 前記無機酸化物層が直接または前記下地層を挟んで前記第一面上に形成され、
    前記無機酸化物層が、酸化アルミニウムまたは酸化ケイ素である、
    請求項1または5に記載のガスバリア性フィルム。
  7. 前記酸素バリア性皮膜の厚みが0.05~1μmである、
    請求項1から6のいずれか一項に記載のガスバリア性フィルム。
  8. 前記酸素バリア性皮膜が、
    金属アルコキシド、金属アルコキシドの加水分解物、及び、金属アルコキシド或いは金属アルコキシドの加水分解物の反応生成物の少なくとも1つと、
    水溶性高分子と、を含む、
    請求項1から7のいずれか一項に記載のガスバリア性フィルム。
  9. 前記酸素バリア性皮膜が、シランカップリング剤、シランカップリング剤の加水分解物、及び、シランカップリング剤或いはシランカップリング剤の加水分解物の反応生成物の少なくとも1つを含む、
    請求項1から8のいずれか一項に記載のガスバリア性フィルム。
  10. 請求項1から9のいずれか一項に記載のガスバリア性フィルムと、
    前記酸素バリア性皮膜上に形成された熱融着層と、
    を備える、
    積層体。
  11. 前記基材及び前記熱融着層がポリプロピレンを主成分とする、
    請求項10に記載の積層体。
  12. 前記ポリプロピレンを90質量%以上含有する、
    請求項11に記載の積層体。
  13. 請求項10から12のいずれか一項に記載の積層体で形成された包装材料。
JP2021201041A 2021-12-10 2021-12-10 ガスバリア性フィルム、積層体、および包装材料 Pending JP2023086487A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021201041A JP2023086487A (ja) 2021-12-10 2021-12-10 ガスバリア性フィルム、積層体、および包装材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021201041A JP2023086487A (ja) 2021-12-10 2021-12-10 ガスバリア性フィルム、積層体、および包装材料

Publications (1)

Publication Number Publication Date
JP2023086487A true JP2023086487A (ja) 2023-06-22

Family

ID=86850366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021201041A Pending JP2023086487A (ja) 2021-12-10 2021-12-10 ガスバリア性フィルム、積層体、および包装材料

Country Status (1)

Country Link
JP (1) JP2023086487A (ja)

Similar Documents

Publication Publication Date Title
JP5282445B2 (ja) ガスバリア性前駆積層体、ガスバリア性積層体およびこれらの製造方法
CN113474162B (zh) 阻气性膜
US20180009206A1 (en) Laminated film and packaging bag
JP6271759B2 (ja) ガスバリア性重合体、ガスバリア性フィルムおよびガスバリア性積層体
WO2014192500A1 (ja) ガスバリア性包装材料
JP6160208B2 (ja) ガスバリア性包装材料
JP6558463B2 (ja) 積層フィルム
JP4684891B2 (ja) ガスバリア性多層フィルム
JP2011148090A (ja) 積層フィルム
WO2021230319A1 (ja) ガスバリアフィルム
JP2023086487A (ja) ガスバリア性フィルム、積層体、および包装材料
JP5151046B2 (ja) ポリアミド系フィルム積層体
JP2022107930A (ja) ガスバリア性フィルム、積層体、および包装材料
JP2007098679A (ja) ガスバリアフィルムおよびその製造方法
JP2023049126A (ja) ガスバリア性フィルム、積層体、および包装材料
JP7238557B2 (ja) ガスバリア性フィルム
KR102432490B1 (ko) 투명증착 나일론을 이용한 즉석밥용 포장재 제조방법
JP6809622B1 (ja) ガスバリア性フィルム及びその製造方法
WO2024014451A1 (ja) ガスバリアフィルムおよびバリア性積層体
JP2023132672A (ja) ガスバリアフィルム
JP2023028747A (ja) ガスバリアフィルム
JP2023132666A (ja) 積層体、包装材料、および包装体
JP2021194822A (ja) ガスバリア性フィルム
CN117480052A (zh) 气体阻隔膜、层叠体、以及包装材料
JP2024017663A (ja) 積層体、包装材料、および包装体