CN115178224A - 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用 - Google Patents

一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN115178224A
CN115178224A CN202210489068.5A CN202210489068A CN115178224A CN 115178224 A CN115178224 A CN 115178224A CN 202210489068 A CN202210489068 A CN 202210489068A CN 115178224 A CN115178224 A CN 115178224A
Authority
CN
China
Prior art keywords
nitrogen
graphene composite
hydrothermal carbon
doped
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210489068.5A
Other languages
English (en)
Other versions
CN115178224B (zh
Inventor
马路路
陈纳
姜沛汶
陈锋
王书文
朱思嘉
白霜赟
史丽丹
郭株岭
刘加壮
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Engineering
Original Assignee
Henan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Engineering filed Critical Henan Institute of Engineering
Priority to CN202210489068.5A priority Critical patent/CN115178224B/zh
Publication of CN115178224A publication Critical patent/CN115178224A/zh
Application granted granted Critical
Publication of CN115178224B publication Critical patent/CN115178224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于生物质碳膜领域,具体涉及一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用。本发明的氮掺杂水热碳/石墨烯复合膜,为表面含有羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为20~80μm,碳片层间距为
Figure DDA0003630548530000011
拉曼光谱的ID/IG为0.88~0.95,氮含量为3.0~15.06wt%。本发明的复合膜,具有特定的厚度、碳片层间距、ID/IG、氮含量指标,表面含有羟基、羰基、醚基、亚氨基、氰基官能团,位点活性高。重金属去除实验表明,具有该结构的膜材料对于废水中重金属离子具有良好的去除效果,具有较好的工业应用前景。

Description

一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用
技术领域
本发明属于生物质碳膜领域,具体涉及一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用。
背景技术
随着工业化和城市化进程的不断加快,环境和能源问题日益突出,水体中重金属离子污染问题也越来越严重。由于重金属在自然界中不可生物降解,即使是微量,也会对生态环境和人类健康构成危害。为从根本上解决这些问题,各国研究者致力于寻找高效、环保、成本低的碳基材料处理重金属离子污染问题。
生物质碳膜作为一种新型材料,结合了碳膜和生物碳的优点,生物质膜材料与粉末、溶液和胶状吸附材料处理染料污染和重金属污染不同,它易于与溶液分离,且不会产生二次污染,在当前现有的污水处理方法中具有较大的发展潜力。我国每年都有大量的生物质废弃物资源,由于技术等原因,使得这些生物质废弃物资源无法得到合理的利用,一方面造成了资源的浪费,另一方面这些生物质废弃物的堆积也污染了生态环境。
柚子和橙子是中国南方的高产水果,柚子皮瓤和橙子皮瓤具有天然网状维管束,能作为吸附剂去除异味。然而,现有柚子皮瓤和橙子皮瓤通常被作为废弃物丢弃,并无法得到有效利用。
石墨烯基复合材料因具有纳米尺寸的微观结构、较大的比表面积、丰富的表面官能团、高效反应的活性位点、特异性结合的化学作用力和对目标金属物的亲和效应等特点,被广泛应用于重金属的吸附。然而已有研究表明,石墨烯受限于它的零带隙特性,吸附性能有限。
因此,探索一种以废弃柚子皮瓤/橙子皮瓤配合石墨烯材料的新型复合膜,使之能够有效用于废水中重金属去除,不仅可以进行废物利用,减少对煤炭和森林资源的过度依赖,而且能够有效缓解废水中重金属的处理压力,有效解决重金属污染问题。
发明内容
为了解决上述问题,本发明的目的之一在于提供一种氮掺杂水热碳/石墨烯复合膜,其物相和形貌稳定,表面具有丰富的含氧和含氮官能团,位点活性高,具有良好的重金属离子去除效果。
本发明的另一目的在于提供一种氮掺杂水热碳/石墨烯复合膜的制备方法,其制备工艺简单可行、合成条件温和、适宜大规模的批量生产,同时所得复合膜品位高,厚度可控,对于废水中重金属离子具有良好的去除效果。
本发明的目的还在于提供一种氮掺杂水热碳/石墨烯复合膜在水中重金属离子吸附去除中的应用。
为了实现上述目的,本发明的氮掺杂水热碳/石墨烯复合膜,所采用的技术方案是:
一种氮掺杂水热碳/石墨烯复合膜,为表面含有羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为20~80μm,碳片层间距为
Figure BDA0003630548510000021
拉曼光谱的ID/IG为0.88~0.95,氮含量为3.0~15.06wt%。
本发明的复合膜,具有特定的厚度、碳片层间距、ID/IG、氮含量指标,表面含有羟基、羰基、醚基、亚氨基、氰基官能团,位点活性高。重金属去除实验表明,具有该结构的材料对于废水中重金属离子具有良好的去除效果,可为废水中重金属的去除提供一种新结构膜材料。
本发明的氮掺杂水热碳/石墨烯复合膜的制备方法,所采用的技术方案是:
一种氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将氧化石墨烯分散液、废弃生物质、氮源与水混合,超声处理,得到混合液;所述废弃生物质为柚子皮瓤或橙子皮瓤;
2)将混合液于160~200℃进行水热反应,冷却后得到氮掺杂水热碳/石墨烯复合材料;
3)将氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜。
本发明采用水热和真空抽滤相结合的方法制备氮掺杂水热碳/石墨烯复合膜,该过程操作简单可行,反应条件温和,易于实现大规模的工业化生产。同时,所用废弃生物质为柚子皮瓤和橙子皮瓤,原材料来源广泛,成本低廉,氮掺杂剂容易获取,价格便宜,生产成本低。此外,采用该方法所得复合膜品位高,厚度可控,且材料表面具有含氧和含氮官能团,有利于提高产物位点活性,也可通过对其结构的调控实现性能的优化,在重金属废水处理领域具有重要的应用价值和良好的发展前景。
为了保证碳源与石墨烯的水热反应效果,需要保证碳源的品质,优选地,所述废弃生物质预先在100~120℃温度条件下真空干燥后粉碎,粉碎后过80目标准筛。
氮源的种类对氮掺杂后产物的形貌、结构、性能有一定影响。优选地,所述氮源为氨水、乙二胺、二乙烯三胺中的一种;所述氨水的质量分数为25~28%,乙二胺的质量分数为99%,二乙烯三胺的质量分数为99%。
基于促进氮掺杂水热碳/石墨烯复合材料结构稳定性的考虑,需要对氧化石墨烯、废弃生物质、氮源的配比进行合理控制,优选地,所述氧化石墨烯分散液的质量浓度为3~5mg/mL;氧化石墨烯与废弃生物质的质量比为1:(200~1000);每克废弃生物质,对应氮源的加入量为0.5~2.5mL。其中,氧化石墨烯分散液中采用的溶剂为蒸馏水。
水热法是指在特制的密闭反应器(如高压釜)中,采用水作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温、高压的反应环境,使通常难溶或不溶的物质溶解,并且反应或重结晶,从而合成纳米材料的一种方法。相比传统的碳材料制备方法,水热法绿色环保,能耗较低,工艺较为简单,合成的产品纯度高,符合可持续发展的理念。为了实现水热反应过程中复合材料形貌和物相的有效控制,优选地,步骤2)中,水热反应的时间为8~16h。
步骤1)超声处理的目的在于促进原料的均匀分散,以保证后续水热反应效果,优选地,超声处理的时间为90~120min,功率为60~180w。
为保证成膜后产品的厚度和性能,优选地,步骤3)中,真空抽滤的真空度为0.08~0.098MPa。冷冻干燥的温度为-70~-50℃,时间为18~36h,真空度不大于8Pa。
基于复合膜的上述性质,可将其用于水中重金属离子的吸附去除。
氮掺杂水热碳/石墨烯复合膜对重金属离子表现出良好的吸附特性,基于此,可将其用于废水中重金属的去除,可为产业上重金属的去除提供一种新思路。重金属可以是铅离子、镉离子中的一种或两种。
附图说明
图1为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜的扫描电镜图;
图2为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜(横截面)的扫描电镜图;
图3为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜的EDS图;
图4为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜的XRD图;
图5为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜的拉曼光谱图;
图6为本发明实施例1制备的氮掺杂水热碳/石墨烯复合膜的傅里叶红外光谱图。
具体实施方式
以下结合附图以及具体实施方式,对本发明的技术方案做进一步描述,但不构成对本发明的任何限制。
以下实施例中涉及的原料和操作技术如无特别说明,均为现有技术中的常规原料和技术。其中,真空抽滤采用SHZ-D(Ⅲ)型循环水式多用真空泵;氧化石墨烯分散液采用现有技术中改良的Hummer’s法制备,制备过程简述如下:将1.0g鳞片石墨、1.0g NaNO3和40mL浓H2SO4放入烧杯中,并放置于低温恒温搅拌反应浴中,1h后加入5.0g高锰酸钾,继续磁力搅拌3h,随后将烧杯取出放在35℃的集热式恒温磁力搅拌器中搅拌3h,然后加入80mL蒸馏水,温度调至95℃,继续搅拌20min后取出,再加入80mL蒸馏水,立即加入15mL质量分数为30%的H2O2。最后加入30mL的浓盐酸,搅拌30min后加入蒸馏水并静置。将溶液离心洗涤至中性,得到的浆液溶解于适量的蒸馏水中并超声2h,得到一定浓度的氧化石墨烯分散液。
实施例1
本实施例的氮掺杂水热碳/石墨烯复合膜,为表面含有丰富的羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为65μm,碳片层间距为
Figure BDA0003630548510000042
拉曼光谱的ID/IG为0.88,氮含量为15.06wt%。
本实施例的氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将2mL氧化石墨烯分散液(浓度为4mg/mL)、8g废弃生物质(柚子皮瓤)、20mL质量分数为25~28%的氨水与蒸馏水混合,总体积为70mL,超声处理,得到混合液;其中,柚子皮瓤使用前预先在100℃的真空干燥箱内干燥至恒重后粉碎,粉碎后过80目标准筛;超声处理的时间为90min,功率为180w;
2)将混合液转入反应釜中进行水热反应,水热反应的温度为180℃,时间为12h,自然冷却至室温后得到氮掺杂水热碳/石墨烯复合材料;
3)采用真空泵对氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜;其中,真空抽滤的真空度为0.09MPa,冷冻干燥的温度为-70℃,时间为24h,真空度为8Pa。
本实施例的氮掺杂水热碳/石墨烯复合膜的应用,具体是将复合膜作为吸附介质用于废水中重金属离子的吸附去除。
实施例2
本实施例的氮掺杂水热碳/石墨烯复合膜,为表面含有丰富的羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为80μm,碳片层间距为
Figure BDA0003630548510000041
拉曼光谱的ID/IG为0.95,氮含量为3.0wt%。
本实施例的氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将10mL氧化石墨烯分散液(浓度为4mg/mL)、8g废弃生物质(柚子皮瓤)、4mL质量分数为25~28%的氨水与蒸馏水混合,总体积为70mL,超声处理,得到混合液;其中,柚子皮瓤使用前预先在120℃的真空干燥箱内干燥至恒重后粉碎,粉碎后过80目标准筛;超声处理的时间为120min,功率为60w;
2)将混合液转入反应釜中进行水热反应,水热反应的温度为180℃,时间为12h,自然冷却至室温后得到氮掺杂水热碳/石墨烯复合材料;
3)采用真空泵对氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜;其中,真空抽滤的真空度为0.08MPa,冷冻干燥的温度为-50℃,时间为36h,真空度为7Pa。
本实施例的氮掺杂水热碳/石墨烯复合膜的应用,具体是将复合膜作为吸附介质用于废水中重金属离子的吸附去除。
实施例3
本实施例的氮掺杂水热碳/石墨烯复合膜,为表面含有丰富的羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为20μm,碳片层间距为
Figure BDA0003630548510000051
拉曼光谱的ID/IG为0.92,氮含量为6.3wt%。
本实施例的氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将3.2mL氧化石墨烯分散液(浓度为5mg/mL)、8g废弃生物质(柚子皮瓤)、8mL质量分数为25~28%的氨水与蒸馏水混合,总体积为70mL,超声处理,得到混合液;其中,柚子皮瓤使用前预先在110℃的真空干燥箱内干燥至恒重后粉碎,粉碎后过80目标准筛;超声处理的时间为90min,功率为120w;
2)将混合液转入反应釜中进行水热反应,水热反应的温度为160℃,时间为16h,自然冷却至室温后得到氮掺杂水热碳/石墨烯复合材料;
3)采用真空泵对氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜;其中,真空抽滤的真空度为0.098MPa,冷冻干燥的温度为-70℃,时间为18h,真空度为6Pa。
本实施例的氮掺杂水热碳/石墨烯复合膜的应用,具体是将复合膜作为吸附介质用于废水中重金属离子的吸附去除。
实施例4
本实施例的氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将5mL氧化石墨烯分散液(浓度为3mg/mL)、8g废弃生物质(橙子皮瓤)、7.5mL质量分数为99%的乙二胺与蒸馏水混合,总体积为70mL,超声处理,得到混合液;其中,橙子皮瓤使用前预先在100℃的真空干燥箱内干燥至恒重后粉碎,粉碎后过80目标准筛;超声处理的时间为90min,功率为180w;
2)将混合液转入反应釜中进行水热反应,水热反应的温度为160℃,时间为16h,自然冷却至室温后得到氮掺杂水热碳/石墨烯复合材料;
3)采用真空泵对氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜;其中,真空抽滤的真空度为0.09MPa,冷冻干燥的温度为-50℃,时间为36h,真空度为8Pa。
本实施例的氮掺杂水热碳/石墨烯复合膜的应用,具体是将上述制得的复合膜作为吸附介质用于废水中重金属离子的吸附去除。
实施例5
本实施例的氮掺杂水热碳/石墨烯复合膜的制备方法,包括以下步骤:
1)将6mL氧化石墨烯分散液(浓度为5mg/mL)、8g废弃生物质(橙子皮瓤)、20mL质量分数为99%的二乙烯三胺与蒸馏水混合,总体积为70mL,超声处理,得到混合液;其中,橙子皮瓤使用前预先在120℃的真空干燥箱内干燥至恒重后粉碎,粉碎后过80目标准筛;超声处理的时间为120min,功率为60w;
2)将混合液转入反应釜中进行水热反应,水热反应的温度为200℃,时间为8h,自然冷却至室温后得到氮掺杂水热碳/石墨烯复合材料;
3)采用真空泵对氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜;其中,真空抽滤的真空度为0.098MPa,冷冻干燥的温度为-70℃,时间为18h,真空度为8Pa。
本实施例的氮掺杂水热碳/石墨烯复合膜的应用,具体是将复合膜作为吸附介质用于废水中重金属离子的吸附去除。
对比例1
本对比例的复合膜的制备过程与实施例1基本相同,区别仅在于:采用20mL蒸馏水代替原料氨水,其余步骤相同(即不进行掺氮处理)。
对比例2
本对比例的复合膜的制备过程与实施例1基本相同,区别仅在于:采用2mL蒸馏水代替氧化石墨烯分散液,其余步骤相同。
对比例3
本对比例的复合膜的制备过程与实施例1基本相同,区别仅在于:将柚子皮瓤的用量减少至4g,其余步骤相同。
实验例
实验例1
扫描电镜和EDS分析:本实验例对实施例1的氮掺杂水热碳/石墨烯复合膜进行扫描电镜和EDS分析,结果如图1~3所示。
由图1~2可知,氮掺杂水热碳/石墨烯复合材料成膜状结构,膜的厚度为65μm,由图3可知,氮掺杂水热碳/石墨烯复合膜中含有碳、氮和氧元素,且碳、氮和氧元素的质量百分比分别为65.63wt%、15.06wt%和19.31wt%,证实本发明成功制备出了氮掺杂碳复合材料,且表面含有丰富的含氧官能团和含氮官能团,这些官能团可以增加复合材料的活性吸附位点。
实验例2
XRD分析、拉曼光谱和红外光谱分析:本实验例对实施例1的氮掺杂水热碳/石墨烯复合膜进行XRD、拉曼光谱和红外光谱分析,结果如图4~6所示。
图4的XRD可以看出,在2θ=16.2°和22.5°存在着较明显的衍射峰,而石墨的(100)晶面对应的衍射峰(2θ=43°)不太明显,这说明样品是具有一定石墨化度的无定型结构碳,经计算,样品的碳片层间距为
Figure BDA0003630548510000071
图5的拉曼光谱中显示出两个明显的特征峰(D峰和G峰),D峰对应于碳的无序结构,G峰对应sp2杂化石墨碳结构,且G峰的强度大于D峰,经计算ID/IG的值为0.88,再次表明氮掺杂水热碳/石墨烯复合膜是具有一定石墨化度的无定型结构碳。
图6是氮掺杂水热碳/石墨烯复合膜的红外光谱图,1023cm-1处的吸收峰为C-O-C键的拉伸振动,1315cm-1处的特征峰是由于C-N振动产生的,1585cm-1处的吸收峰对应于未被氧化的sp2C=C键振动峰,吸收峰在1735cm-1处属于C=O键振动,在2914cm-1处的吸收峰对应于C-H振动,而在3295cm-1附近出现的宽而强的信号是由O-H或N-H拉伸振动峰引起的。红外光谱分析表明氮掺杂水热碳/石墨烯复合膜表面含有丰富的羟基、羰基和醚基含氧官能团和亚氨基和氰基含氮官能团。
进一步地,对实施例2、3制备所得复合膜依次进行与实施例1相同条件的扫描电镜、EDS、XRD、拉曼光谱和红外光谱分析,结果表明:
实施例2所得氮掺杂水热碳/石墨烯复合膜为无定型结构的片状膜,厚度为80μm,碳片层间距为
Figure BDA0003630548510000072
拉曼光谱的ID/IG为0.95,表面含有丰富的羟基、羰基和醚基含氧官能团和亚氨基、氰基含氮官能团,氮含量为3wt%。
实施例3所得氮掺杂水热碳/石墨烯复合膜为无定型结构的片状膜,厚度为20μm,碳片层间距为
Figure BDA0003630548510000073
拉曼光谱的ID/IG为0.92,表面含有丰富的羟基、羰基和醚基含氧官能团和亚氨基、氰基含氮官能团,氮含量为6.3wt%。
实验例3
重金属去除实验:重金属吸附去除的实验过程具体为:不同实验组中,取50mL铅离子、铬离子浓度均为10mg/L的重金属溶液加入到250mL锥形瓶中,然后分别加入50mg实施例1~5、对比例1~3制得的复合膜材料,密封后放入25℃的水浴恒温振荡器中,转速设置为120r/min,振荡24h后取出复合膜材料,采用0.45μm的滤膜过滤剩余液体,得到滤液。利用火焰原子吸收分光光度计测定吸附前后重金属溶液的浓度,从而计算重金属离子的去除率。实验结果如表1所示:
表1本发明实施例1~5和对比例1~3的重金属去除效果
Figure BDA0003630548510000081
由表1结果可知,本发明所制备的氮掺杂水热碳/石墨烯复合膜,经重金属吸附实验,证明所制备的材料对水溶液中的铅、镉离子具有较好的吸附效果,可有效用于废水中重金属的去除处理。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

1.一种氮掺杂水热碳/石墨烯复合膜,其特征在于,所述氮掺杂水热碳/石墨烯复合膜为表面含有羟基、羰基、醚基、亚氨基、氰基的无定型结构片层膜,膜厚度为20~80μm,碳片层间距为
Figure FDA0003630548500000011
拉曼光谱的ID/IG为0.88~0.95,氮含量为3.0~15.06wt%。
2.一种如权利要求1所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,包括以下步骤:
1)将氧化石墨烯分散液、废弃生物质、氮源与水混合,超声处理,得到混合液;所述废弃生物质为柚子皮瓤或橙子皮瓤;
2)将混合液于160~200℃进行水热反应,冷却后得到氮掺杂水热碳/石墨烯复合材料;
3)将氮掺杂水热碳/石墨烯复合材料进行真空抽滤,然后冷冻干燥,即得氮掺杂水热碳/石墨烯复合膜。
3.如权利要求2所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,所述废弃生物质预先在100~120℃温度条件下真空干燥后粉碎,粉碎后过80目标准筛。
4.如权利要求2所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,所述氮源为氨水、乙二胺、二乙烯三胺中的一种;所述氨水的质量分数为25~28%,乙二胺的质量分数为99%,二乙烯三胺的质量分数为99%。
5.如权利要求2~4中任一项所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,步骤1)中,所述氧化石墨烯分散液的质量浓度为3~5mg/mL;氧化石墨烯与废弃生物质的质量比为1:(200~1000);每克废弃生物质,对应氮源的加入量为0.5~2.5mL。
6.如权利要求2~4中任一项所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,步骤1)中,超声处理的时间为90~120min,功率为60~180w。
7.如权利要求2~4中任一项所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,步骤2)中,水热反应的时间为8~16h。
8.如权利要求2~4中任一项所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,步骤3)中,真空抽滤的真空度为0.08~0.098MPa。
9.如权利要求2~4中任一项所述的氮掺杂水热碳/石墨烯复合膜的制备方法,其特征在于,步骤3)中,冷冻干燥的温度为-70~-50℃,时间为18~36h,真空度不大于8Pa。
10.一种如权利要求1所述的氮掺杂水热碳/石墨烯复合膜在水中重金属离子吸附去除中的应用。
CN202210489068.5A 2022-05-06 2022-05-06 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用 Active CN115178224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210489068.5A CN115178224B (zh) 2022-05-06 2022-05-06 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210489068.5A CN115178224B (zh) 2022-05-06 2022-05-06 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115178224A true CN115178224A (zh) 2022-10-14
CN115178224B CN115178224B (zh) 2023-08-01

Family

ID=83513425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210489068.5A Active CN115178224B (zh) 2022-05-06 2022-05-06 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115178224B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130206A (zh) * 2013-03-05 2013-06-05 东北林业大学 氮掺杂碳材料及其制备方法
CN103723716A (zh) * 2013-12-23 2014-04-16 北京化工大学 氮掺杂碳包覆氧化石墨烯二维多孔复合材料及其制备方法
CN103949278A (zh) * 2014-04-23 2014-07-30 上海荣富新型材料有限公司 氮掺杂石墨烯/氮掺杂TiO2光催化材料涂覆的铝制品
US20150144831A1 (en) * 2012-05-07 2015-05-28 Biogenic Reagent Ventures, Llc Biogenic activated carbon and methods of making and using same
CN104772118A (zh) * 2015-04-24 2015-07-15 河北工业大学 一种亲水性石墨烯基碳材料及其应用
CN106000319A (zh) * 2016-08-03 2016-10-12 四川理工学院 去除水体中痕量砷的吸附材料及其对水体中痕量砷的去除方法
CN110142024A (zh) * 2019-05-15 2019-08-20 中山大学 一种利用废弃生物质制备氮掺杂多孔生物炭的方法及其应用
CN111017908A (zh) * 2019-11-05 2020-04-17 北华大学 一种条带状氧化石墨烯作为粘结剂制备生物质基膜的方法
CN111285349A (zh) * 2018-12-10 2020-06-16 河南工程学院 一种高度石墨化硼掺杂碳纳米胶囊及其制备方法
CN113000032A (zh) * 2021-04-12 2021-06-22 长春工业大学 一种氧化石墨烯-生物质复合材料吸附剂的制备方法
CN113289657A (zh) * 2021-05-21 2021-08-24 山西大学 一种氮掺杂石墨烯催化膜的制备方法及其应用
CN113578281A (zh) * 2021-07-21 2021-11-02 宁夏师范学院 一种玉米芯水热碳@聚多巴胺复合材料的制备及应用
CN114192134A (zh) * 2021-11-12 2022-03-18 南昌航空大学 一种水热炭光催化剂及其制备方法与应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144831A1 (en) * 2012-05-07 2015-05-28 Biogenic Reagent Ventures, Llc Biogenic activated carbon and methods of making and using same
CN103130206A (zh) * 2013-03-05 2013-06-05 东北林业大学 氮掺杂碳材料及其制备方法
CN103723716A (zh) * 2013-12-23 2014-04-16 北京化工大学 氮掺杂碳包覆氧化石墨烯二维多孔复合材料及其制备方法
CN103949278A (zh) * 2014-04-23 2014-07-30 上海荣富新型材料有限公司 氮掺杂石墨烯/氮掺杂TiO2光催化材料涂覆的铝制品
CN104772118A (zh) * 2015-04-24 2015-07-15 河北工业大学 一种亲水性石墨烯基碳材料及其应用
CN106000319A (zh) * 2016-08-03 2016-10-12 四川理工学院 去除水体中痕量砷的吸附材料及其对水体中痕量砷的去除方法
CN111285349A (zh) * 2018-12-10 2020-06-16 河南工程学院 一种高度石墨化硼掺杂碳纳米胶囊及其制备方法
CN110142024A (zh) * 2019-05-15 2019-08-20 中山大学 一种利用废弃生物质制备氮掺杂多孔生物炭的方法及其应用
CN111017908A (zh) * 2019-11-05 2020-04-17 北华大学 一种条带状氧化石墨烯作为粘结剂制备生物质基膜的方法
CN113000032A (zh) * 2021-04-12 2021-06-22 长春工业大学 一种氧化石墨烯-生物质复合材料吸附剂的制备方法
CN113289657A (zh) * 2021-05-21 2021-08-24 山西大学 一种氮掺杂石墨烯催化膜的制备方法及其应用
CN113578281A (zh) * 2021-07-21 2021-11-02 宁夏师范学院 一种玉米芯水热碳@聚多巴胺复合材料的制备及应用
CN114192134A (zh) * 2021-11-12 2022-03-18 南昌航空大学 一种水热炭光催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
贺新福;龙雪颖;吴红菊;张凯博;周均;李可可;张亚婷;邱介山;: "氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能", 化工学报, no. 06 *
郭莎莎: "茶树废弃枝条制备氮掺杂碳材料对重金属离子的吸附与检测", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, vol. 1, no. 2, pages 027 - 83 *

Also Published As

Publication number Publication date
CN115178224B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US20180126368A1 (en) Process for the production of graphene sheets with tunable functionalities from seaweed promoted by deep eutectic solvents
CN102631913B (zh) 一种石墨烯负载二氧化铈纳米立方复合物的制备方法
CN111921536B (zh) 一种基于天然矿物和生物质制备的新型催化吸附材料
Zuo et al. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation
CN106517341B (zh) 一种制备二氧化锰纳米催化剂的方法及其应用
CN108479700B (zh) 一种用于六价铬和甲基橙共吸附的多孔炭复合材料的制备方法
CN101492165A (zh) 凹凸棒石有机改性方法及有机改性凹凸棒石的应用
CN111036243B (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
CN111085236B (zh) 碳布负载硼掺杂石墨相氮化碳柔性可回收光催化膜的制备方法
CN114225938A (zh) 磁性纳米Fe3O4@菌渣生物炭芬顿催化剂及制备方法
CN102627268A (zh) 一种氮掺杂碳材料的制备方法
CN112897496B (zh) 用于重金属去除的类石墨烯生物炭及其制备方法
CN108246334A (zh) 一种功能化三元复合光催化材料及其制备方法与用途
CN111330648A (zh) 一种MIL-101(Fe)/g-C3N4复合可见光光催化剂及其制备方法和应用
CN111871361B (zh) 环境修复材料及其制备方法和应用
CN108452813A (zh) 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
CN110803695A (zh) 一种以大型海藻为原料制备石墨烯的方法
Wang et al. Using diaper waste to prepare magnetic catalyst for the synthesis of glycerol carbonate
CN110422887B (zh) 生物质基磁性水热炭的制备方法
CN115178224B (zh) 一种氮掺杂水热碳/石墨烯复合膜及其制备方法和应用
CN106582555A (zh) 表面有机化蒙脱石/纳米二氧化锰复合材料的制备和应用
CN115403229A (zh) 一种养殖废水的处理方法
CN115090289A (zh) 一种新型钙钛矿原位生长FeCo-MOFs衍生纳米碳微波催化剂及其制备方法和应用
CN114870899A (zh) 一种光催化co2分解制合成气的复合光催化剂及其制备方法
CN104084227B (zh) 一种煤直接液化催化添加剂、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant