CN115161596B - 一种玻璃基片薄膜结构及其制备方法 - Google Patents
一种玻璃基片薄膜结构及其制备方法 Download PDFInfo
- Publication number
- CN115161596B CN115161596B CN202211028882.3A CN202211028882A CN115161596B CN 115161596 B CN115161596 B CN 115161596B CN 202211028882 A CN202211028882 A CN 202211028882A CN 115161596 B CN115161596 B CN 115161596B
- Authority
- CN
- China
- Prior art keywords
- glass substrate
- target
- component
- layer
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
- C23C14/0629—Sulfides, selenides or tellurides of zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/308—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
本发明属于玻璃薄膜制造领域,具体公开一种玻璃基片薄膜及其制备方法。玻璃基片薄膜结构,包括沉积于所述玻璃基片表面的渐变过渡层和设置在所述渐变过渡层上的匹配层。所述渐变过渡层包括第一组分和第二组分,所述第一组分为玻璃基片的主体组分,所述第二组分为Ge;其中第一组分中各元素的含量自所述玻璃基片至所述匹配层递减,第二组分中Ge的含量自所述玻璃基片至所述匹配层递增。本发明结合渐变思想与多层增透匹配思想,通过引入组分渐变的渐变过渡层材料,有效改善玻璃基片与玻璃基片薄膜结构的热力学参数及其应力匹配状态,显著提升玻璃基片薄膜结构与玻璃基片之间的结合性能以及复杂环境的适应性。
Description
技术领域
本发明属于玻璃薄膜制造领域,特别涉及一种玻璃基片薄膜结构及其制备方法。
背景技术
随着红外技术的快速发展,红外光学系统对红外光学元件的性能提出了愈来愈高的要求。红外硫系玻璃是指含有硫族元素S、Se或Te中的一种或几种,同时还包含Ge、Si、As或Sb元素中的一种或几种,另外还可以包含其他元素的一类非氧化物玻璃。其作为红外光学元件的一种,相比于Ge、Si等传统红外光学晶体材料,红外硫系玻璃具有更宽的透过范围、更好的消色差、更优异消热差等性能,是目前为止能够代替锗单晶,用于红外光学成像系统的为数不多的低成本材料之一,被视为新一代温度自适应红外光学系统的核心部件,被广泛的应用与国防军事、车载夜视和安防监控等众多领域。
目前,光学镀膜是红外硫系玻璃光学元件增加透射比、避免外部复杂环境影响的必要手段。但是受到红外硫系玻璃材料本身物化特性的影响,如转变温度低、机械强度差、脆性大、热膨胀系数高、内应力大等,红外硫系玻璃基底与光学薄膜的结合牢固度普遍较差,镀制后极易产生脱层或开裂等损伤。
现有技术一般是通过在红外硫系玻璃基片和膜层之间加入过渡层,以有效匹配其热力学参数和应力状态,例如采用离子源辅助沉积,通过引入ZnSe材料作为过渡连接层,结合温度梯度烘烤和真空原位退火减小膜层残余应力,膜层能够通过MIL-C-48497A标准中附着力、湿度、中度磨擦、可溶性和清洗性考核试验;或者通过膜系设计和工艺优化等手段,在红外硫系玻璃基片上实现7.5μm~10.5μm波段平均透过率大于98%增透薄膜的制备。
但是综合来看,红外硫系玻璃表面光学薄膜的光学特性和复杂环境适应性与常用红外光学材料相比仍有一定差距,实际制备过程中仍存在诸多不足:如可选择的过渡层材料有限,过渡层材料物化特性、力学特性无法与红外硫系玻璃基片材料完美匹配,膜层复杂环境长期稳定性差以及对制备工艺条件较为敏感等。因此如何进一步有效提高红外硫系玻璃基红外光学薄膜的透过率和结合性能,仍是目前红外硫系玻璃基片镀膜技术发展的难点和热点问题。
发明内容
鉴于此,本发明实施例提供一种玻璃基片薄膜结构及其制备方法,其采用组分渐变的过渡层结构与匹配层形成薄膜结构,对红外波段透过率高、表面剩余反射低、且玻璃基片表面和光学薄膜结合牢固度高。
为解决上述技术问题,本发明实施例第一方面提供的一种玻璃基片薄膜结构,设置在待处理的玻璃基片表面,所述薄膜结构包括:所述薄膜结构包括:沉积于所述玻璃基片第一表面上的渐变过渡层和设置在所述渐变过渡层上的匹配层;
其中,所述渐变过渡层的组分包括第一组分和第二组分,所述第一组分的元素构成为玻璃基片的主体元素,所述第二组分为Ge;其中第一组分中各元素的含量自所述玻璃基片至所述匹配层递减,第二组分的Ge含量自所述玻璃基片至所述匹配层递增。
相对于现有技术,本发明实施例采用渐变结构的发明构思,通过引入组分渐变的渐变过渡层材料,过渡层起始组分比例与基底材料相同或相近,随着过渡层物理厚度的增加,过渡层膜组分逐渐过渡至Ge。这样,渐变过渡层靠近玻璃基片的一侧与玻璃基片的组分相似,热力学参数及应力与玻璃基片的相应参数匹配;渐变过渡层靠近匹配层的一侧,与匹配层的热力学参数和应力参数匹配。从而,有效改善玻璃基片与薄膜结构的热力学参数及其应力匹配状态,显著提升薄膜结构与玻璃基片之间的结合性能以及复杂环境的适应性。同时,本发明实施例还提出了一种与过渡渐变层相匹配的匹配层结构,以有效实现玻璃基片与薄膜结构、薄膜结构与空气之间的光学导纳匹配,可显著提升硫系玻璃红外波段透过率、降低其表面的剩余反射。
可选的,所述渐变过渡层的组分包括第一组分和第二组分,所述第一组分的元素构成为玻璃基片的主体元素,所述第二组分为Ge;其中第一组分中各元素的含量自所述玻璃基片至所述匹配层递减,第二组分的Ge含量自所述玻璃基片至所述匹配层递增。
可选的,所述渐变过渡层靠近所述玻璃基片的一侧,所述第一组分中各元素含量与所述玻璃基片主体元素的比例相同、所述第二组分的含量为0;所述渐变过渡层靠近所述匹配层的一侧,主成分为所述第二组分。
可选的,所述玻璃基片为红外硫系玻璃基片,所述红外硫系玻璃基片的主体组分包括S、Se或Te元素中一种或多种,以及Ge、Si、As或Sb元素中一种或多种玻璃基片。
可选的,所述渐变过渡层的厚度为50nm-350nm。
可选的,所述匹配层为红外增透匹配层或硬质保护匹配层。
可选的,所述红外增透匹配层为高折射率薄膜层、中折射率薄膜层或低折射率薄膜层中一层或多层组合,其中,所述高折射率薄膜层的材质为Si或Ge中一种或多种,所述中折射率薄膜层或所述低折射率薄膜层的材质为ZnSe、ZnS、Y2O3、YbF3、YF3、MgF2、Al2O3或CaF2中一种或多种。
可选的,所述硬质保护匹配层为金刚石、类金刚石、Y2O3、HfON、SiON、HfO2、BP或Ge1-xCx中一种或多种,其中,0<x<1。
本发明实施例的第二方面提供一种玻璃基片薄膜的制备方法,所述玻璃基片薄膜的结构包括一渐变过渡层和一匹配层,其玻璃基片薄膜的制备包括以下步骤:
确定所述玻璃基片的主体组分,确定第一组分的各元素构成,并确定Ge作为第二组分,根据所述第一组分和第二组分,分别制备与所述第一组分匹配第一靶材、以及与所述第二组分相同的第二靶材,将所述第一靶材和第二靶材并列、间隔设置在溅射设备内,形成共溅射系统;
在真空条件下、以氩气作为反应气体,采用磁控溅射法轰击所述第一靶材和第二靶材,在所述玻璃基片上形成渐变过渡层,其中,所述渐变过渡层中第一组分中各元素的含量自所述玻璃基片递减、第二组分中元素的含量自所述玻璃基片递增;
在所述渐变过渡层上生长沉积红外增透匹配层或硬质保护匹配层,得所述玻璃基片薄膜结构。
可选的,所述第一靶材为1个,该第一靶材的各元素含量与所述玻璃基片主体元素的比例相同或相近,将所述第一靶材与第二靶材间隔50mm-500mm放置;基于磁控溅射方法,待真空条件为1.0×10-3Pa-2.0×10-3Pa时充入15sccm-25sccm高纯氩气,对所述第一靶材和第二靶材进行溅射,溅射时长为5min-30min,磁控溅射的同时,旋转所述玻璃基片;其中,对所述第一靶材的溅射功率逐渐减低,对第二靶材的溅射功率逐渐增加,在所述玻璃基片的第一表面获得组分渐变过渡至Ge的薄膜结构。
具体的,对所述第一靶材的溅射功率由400W-500W渐降低至为0W,对所述第二靶材的溅射功率由0w升高至350w-450w;所述玻璃基片设置在所述第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为30mm-150mm;所述第一靶材与所述玻璃基片的垂直距离为距离第一靶材距离的1/3-2/3处;所述玻璃基片的旋转速率为10rpm-40rpm;溅射的温度为25℃-130℃。
可选的,所述第一靶材为多个,多个所述第一靶材中所述第一组分中各元素的含量递减、第二组分含量递增,将多个第一靶材和第二靶材按照第二组分递增的顺序并列、间隔设置;基于磁控溅射方法,待真空条件为1.0×10-3Pa-2.0×10-3Pa时充入15sccm-25sccm高纯氩气,对所述第一靶材和第二靶材进行恒功率溅射,溅射时长为5min-30min,同时,所述玻璃基片由第一靶材的上方匀速缓慢移动至所述第二靶材的上方,在所述玻璃基片的第一表面获得组分渐变过渡至Ge的薄膜结构。
可选的,所述多个为2个、3个、4个、5个、6个、7个。
具体的,溅射的温度为25℃-130℃;当所述玻璃基片平移时,其平移速率为5mm/min-8mm/min,所述第一靶材或第二靶材的溅射速率为150W-250W;所述第一靶材与第一靶材间隔50mm-500mm放置;各靶材之间的间隔50mm-500mm放置;所述玻璃基片和第一靶材间隔50-150mm放置;所述玻璃基片设置在所述第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为30mm-150mm。
可选的,所述生长沉积硬质保护匹配层的生长沉积次数为3-7次。
可选的,所述红外增透匹配层生长沉积的方法为物理气相沉积法;在真空条件为1.0×10-3Pa-2.0×10-3Pa,沉积温度为100℃-130℃,等离子体辅助能量为250W-350W条件下,确定薄膜设计波长为3800nm-4200nm,对于折射率为2.40-2.80的玻璃基片,在8μm-12μm长波红外下红外增透匹配层的结构为:Sub//x1H y1M x2H y2M z1L y3M//Air,其中,Sub代表渐变过渡层,H代表高折射率薄膜层,具体为Ge薄膜层,L代表低折射率薄膜层,具体为ZnS薄膜层,M代表中折射率薄膜层,具体为YbF3薄膜层,Air代表空气,xi、yi、zi,i=1、2、3,代表每层膜的光学厚度系数,单位光学厚度为λ0/4,λ0为所述薄膜设计波长;其中,x1=1.31-1.59;y1=1.72-2.1;x2=1.9-2.32;y2=2.67-3.25;z1=1.56-1.9;y3=1.23-1.49;Ge薄膜层沉积速率0.2~0.5nm/s,ZnS薄膜层沉积速率0.3~1.5nm/s,YbF3薄膜层沉积速率0.3~0.6nm/s。
可选的,所述硬质保护匹配层生长沉积的方法为等离子体增强化学气相沉积法;在真空条件为1.0×10-3Pa-2.0×10-3Pa,沉积温度为25℃-50℃,等离子体辅助能量为600W-900W条件下,对所述生长沉积硬质保护匹配层的生长沉积次数为3-7次,每次冷却至25℃-50℃,冷却时间10min-20min,确定薄膜设计波长为3800nm-4200nm,对于折射率为2.4-2.8的玻璃基片,在3μm-5μm中波红外下硬质保护匹配层的结构为:cY,其中,Y为硬质保护匹配层,c为代表每层膜的光学厚度系数,单位光学厚度为λ0/4,λ0为所述薄膜设计波长,c为2.1-2.3。
相对于现有技术,本发明包括如发明点:
(1)本发明通过多靶位溅射结合蒸发复合沉积的方法,在显著提升玻璃基片和玻璃基片薄膜结合强度的同时,可有效降低玻璃基片在红外波段的剩余反射,起到增透或增透保护的作用;
(2)在进一步改进的方案中,本发明第一靶材的选择并不是单元素,靶材阵列由多块不同组分的靶材构成,靶材按照组分逐渐过渡至Ge的顺序,固定在金属背板上,制备出渐变过渡层;
(3)本发明玻璃基片薄膜的制备方法具有简便、高效,精度高,可控性强,批次一致性好等优点,可有效克服目前红外硫系玻璃材料镀膜过程中存在的可用过渡层材料有限、粘附性差、材料组分易失配等不足,显著降低玻璃基片镀膜的难度,提高其规模化生产的批次稳定性。
附图说明
图1为本发明实施例中玻璃基片、第一靶材和第二靶材形成共溅射系统的一种结构示意图;
图2为本发明实施例玻璃基片、多个第一靶材和第二靶材形成共溅射系统的另一结构示意图;
图3为本发明实施例玻璃基片薄膜的一种结构示意图;
图4为本发明实施例玻璃基片薄膜的另一结构示意图;
图5为本发明实施例1所制备的玻璃基片薄膜结构在长波红外(7.5μm-9.7μm)下透射光谱曲线;
图中,1为玻璃基片,2为第一靶材,2-1至2-7为第一靶材1至第一靶材7,3为第二靶材,4为渐变过渡层,5为红外增透匹配层,5-1为Ge薄膜层,5-2为ZnS薄膜层,5-3为Ge薄膜层,5-4为ZnS薄膜层,5-5为YbF3薄膜层,5-6为ZnS薄膜层,6为硬质保护匹配层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为解决红外硫系玻璃基片镀膜与基片的结合性能较差的问题,同时提高红外硫系玻璃基片红外光学薄膜的透过率,本申请采用组分渐变的过渡层结构与匹配层形成薄膜结构。具体的,玻璃基片薄膜结构包括沉积于玻璃基片第一表面上的渐变过渡层和设置在渐变过渡层上的匹配层。其中,渐变过渡层的组分包括第一组分和第二组分,第一组分的元素构成为玻璃基片的主体元素,第二组分为Ge。其中第一组分中各元素的含量自玻璃基片至匹配层递减,第二组分的Ge含量自玻璃基片至匹配层递增。
为了更好地提高薄膜结构的结合率,作为一种实施例,渐变过渡层的组分设置可以为:靠近玻璃基片的一侧,第一组分中各元素含量与玻璃基片主体元素的比例相同、第二组分的含量为0;渐变过渡层靠近匹配层的一侧,主成分为第二组分。
为了形成良好透光率,渐变过渡层的厚度可选范围50nm-350nm;优先地,渐变过渡层的厚度为100nm-250nm,更优选的,渐变过渡层的厚度为150nm-200nm。匹配层为红外增透匹配层或硬质保护匹配层。
以下通过具体的实施例说明渐变过渡层和匹配层的制备方法。
实施例1
本实施例针对红外组分为As40Se60的玻璃基片制作薄膜结构。
根据玻璃基片的主体组分As40Se60确定第一组分的各元素构成,包括元素及其配比,将按照该元素构成制作成第一靶材,本实施例中第一靶材设置为1个,第一靶材的组分为As40Se60。制作第二靶材,其组分为Ge。
本实施例采用磁控溅射的方法,在磁控溅射仪的测控溅射腔内,第一靶材与第二靶材并列设置,待处理的玻璃基片设置在第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为30mm。其中,第一靶材和第二靶材的距离为50mm;玻璃基片与第一靶材之间的水平间距为20mm。第一靶材和第二靶材的尺寸为80mm×300mm,如图1所示,玻璃基片、第一靶材和第二靶材形成共溅射系统。
在1.0×10-3Pa、30℃的真空条件下,充入25sccm高纯氩气作为反应气体,采用磁控溅射法轰击第一靶材和第二靶材,在玻璃基片上形成厚度为200nm的渐变过渡层。其中,第一靶材的轰击功率为由400W逐渐降低至0W,轰击功率可以选择线性递减。第二靶材的轰击的功率由0W逐渐升至350W,具体的轰击功率可以选择线性递增。整个轰击时间为5min,玻璃基片的旋转速度为10rpm。
在渐变过渡层上生长沉积红外增透匹配层,其中,红外增透匹配层采用物理气相沉积法,在真空条件为1.0×10-3Pa,沉积温度为130℃,等离子体辅助能量为350W条件下,确定薄膜设计波长为4000nm,对于折射率为2.80的玻璃基片,在12μm长波红外下红外增透匹配层的结构为:Sub//1.31Ge 1.72YbF3 1.9Ge 2.67YbF3 1.56ZnS 1.23YbF3//Air,其中,Sub代表渐变过渡层,Air代表空气;Ge薄膜层沉积速率0.2nm/s,ZnS薄膜层沉积速率0.3nm/s,YbF3薄膜层沉积速率0.3nm/s,得玻璃基片薄膜。
实施例2
本实施例针对红外组分为As40Se60的玻璃基片制作薄膜结构。
根据玻璃基片的主体组分As40Se60确定第一组分的各元素构成,包括元素及其配比,将按照该元素构成制作成第一靶材,本实施例中第一靶材设置为7个,确定第一靶材的组分分别为As40Se60、Ge10As40Se50、Ge22As20Se58、Ge33As12Se55、Ge44As12Se44、Ge55As10Se35、Ge64As11Se25,制备第二靶材,其组分为Ge。
本实施例采用磁控溅射的方法,在磁控溅射仪的测控溅射腔内,第一靶材与第二靶材并列设置,待处理的玻璃基片设置在第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为150mm。其中,各个第一靶材之间间隔距离为50mm,第一靶材和第二靶材的间距为50mm;玻璃基片与第一靶材的垂直间距为150mm。第一靶材和第二靶材的尺寸为100mm×200mm;如图2所示,玻璃基片、第一靶材和第二靶材形成共溅射系统。
在1.5×10-3Pa、50℃的真空条件下,充入15sccm高纯氩气作为反应气体,采用磁控溅射法轰击第一靶材和第二靶材,轰击功率为150w,在玻璃基片上形成厚度为240nm的渐变过渡层;
其中,玻璃基片在第一靶材上方匀速平移至第二靶材的上方,其平移速率为5mm/min;
在渐变过渡层上生长沉积红外增透匹配层,其中,红外增透匹配层采用物理气相沉积法,在真空条件为2.0×10-3Pa,沉积温度为120℃,等离子体辅助能量为300W条件下,确定薄膜设计波长为4000nm,对于折射率为2.50的玻璃基片,在10μm长波红外下红外增透匹配层的结构为:Sub//1.51Ge 1.95YbF3 2.3Ge 3.15YbF3 1.65ZnS 1.39YbF3//Air,其中,Sub代表渐变过渡层,Air代表空气,Ge薄膜层沉积速率0.4nm/s,ZnS薄膜层沉积速率1.4nm/s,YbF3薄膜层沉积速率0.5nm/s,如图3所示,得玻璃基片薄膜。
实施例3
本实施例针对红外组分为Ge10As40Se60的玻璃基片制备薄膜结构。
根据玻璃基片的主体组分Ge10As40Se60确定第一组分的各元素构成,包括元素及其配比,将按照该元素构成制作成第一靶材,本实施例中第一靶材设置为6个,确定第一靶材的组分分别为As40Se60、Ge10As40Se50、Ge33As12Se55、Ge44As12Se44、Ge55As10Se35、Ge64As11Se25,制备第二靶材,其组分为Ge。
本实施例采用磁控溅射的方法,在磁控溅射仪的测控溅射腔内,第一靶材与第二靶材并列设置,待处理的玻璃基片设置在第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为80mm。其中,各个第一靶材之间间隔距离为100mm,第一靶材和第二靶材的间距为100mm;玻璃基片与第一靶材的垂直间距为150mm。第一靶材和第二靶材的尺寸为900mm×220mm;玻璃基片、第一靶材和第二靶材形成共溅射系统。
在1.8×10-3Pa、120℃的真空条件下,充入20sccm高纯氩气作为反应气体,采用磁控溅射法轰击第一靶材和第二靶材,轰击功率为250w,在玻璃基片上形成厚度为280nm的渐变过渡层;
其中,玻璃基片在第一靶材上方匀速平移至第二靶材的上方,其平移速率为8mm/min;
在渐变过渡层上生长沉积硬质保护匹配层,其中,硬质保护匹配层采用等离子体增强化学气相沉积法,在真空条件为2.0×10-3Pa,沉积温度为40℃,等离子体辅助能量为700W条件下,对生长沉积硬质保护匹配层的生长沉积次数为5次,每次冷却至25℃,冷却时间15min;
确定薄膜设计波长为4000nm,对于折射率为2.79的玻璃基片,在5μm中波红外下硬质保护匹配层的结构为:2.2DLC,如图4所示,得玻璃基片薄膜。
对比例1
一种玻璃基片薄膜的制备方法,包括如下步骤:
确定玻璃基片的组分为As40Se60,在玻璃基片上生长沉积红外增透匹配层,其中,红外增透匹配层采用物理气相沉积法,在真空条件为1.0×10-3Pa,沉积温度为130℃,等离子体辅助能量为350W条件下,确定薄膜设计波长为4000nm,对于折射率为2.80的玻璃基片,在12μm长波红外下红外增透匹配层的结构为:Sub//1.31Ge 1.72YbF3 1.9Ge 2.67YbF31.56ZnS 1.23YbF3//Air,其中,Sub代表渐变过渡层,Air代表空气;Ge薄膜层沉积速率0.2nm/s,ZnS薄膜层沉积速率0.3nm/s,YbF3薄膜层沉积速率0.3nm/s,得玻璃基片薄膜。
对实施例1和对比例1所制备的玻璃基片薄膜结构进行三天泡水处理,对比例1的玻璃基片薄膜结构出现了脱膜现象,而实施例1的玻璃基片薄膜结构未出现脱膜、开裂等损伤现象,在GJB2485-95中所规定的附着力、湿热、温度、重摩擦、盐雾、特殊高温的实验条件下均符合要求;对实施例1进行7.5μm-9.7μm长波红外下,如图5所示,平均透过率大于98.5%,剩余反射小于0.3%。
本发明玻璃基片薄膜的制备方法具有简便、高效,精度高,可控性强,批次一致性好等优点,可有效克服目前红外硫系玻璃材料镀膜过程中存在的可用过渡层材料有限、粘附性差、材料组分易失配等不足,显著降低玻璃基片镀膜的难度,提高其规模化生产的批次稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种玻璃基片薄膜的制备方法,其特征在于,玻璃基片薄膜的结构包括依次设置玻璃基片第一表面上的一渐变过渡层和一匹配层,其中,玻璃基片薄膜的制备方法包括以下步骤:
根据玻璃基片的主体组分,确定第一组分的各元素构成,并确定Ge作为第二组分,根据所述第一组分和第二组分,分别制备与所述第一组分匹配第一靶材、以及与所述第二组分相同的第二靶材,将所述第一靶材和第二靶材并列、间隔设置在溅射设备内,形成共溅射系统;
在真空条件下、以氩气作为反应气体,采用磁控溅射法轰击所述第一靶材和第二靶材,在所述玻璃基片上形成渐变过渡层,其中,所述渐变过渡层中第一组分中各元素的含量自所述玻璃基片递减、第二组分中元素的含量自所述玻璃基片递增;
在所述渐变过渡层上生长沉积匹配层,得所述玻璃基片薄膜结构;
所述匹配层为红外增透匹配层;
所述玻璃基片为红外硫系玻璃基片;
其中,所述红外硫系玻璃基片的主体组分包括S、Se或Te元素中一种或多种,以及Ge、Si、As或Sb元素中一种或多种玻璃基片;
所述渐变过渡层的厚度为50nm-350nm;
所述红外增透匹配层生长沉积的方法为物理气相沉积法;在真空条件为1.0×10-3Pa-2.0×10-3Pa,沉积温度为100℃-130℃,等离子体辅助能量为250W-350W条件下,确定薄膜设计波长为3800nm-4200nm,对于折射率为2.40-2.80的玻璃基片,在8μm-12μm长波红外下红外增透匹配层的结构为:Sub//x1H y1M x2H y2M z1L y3M//Air,其中,Sub代表渐变过渡层,H代表高折射率薄膜层,具体为Ge薄膜层,L代表低折射率薄膜层,具体为ZnS薄膜层,M代表中折射率薄膜层,具体为YbF3薄膜层,Air代表空气,xi、yi、zi,i=1、2、3,代表每层膜的光学厚度系数,单位光学厚度为λ0/4,λ0为所述薄膜设计波长;其中,x1=1.31-1.59;y1=1.72-2.1;x2=1.9-2.32;y2=2.67-3.25;z1=1.56-1.9;y3=1.23-1.49;Ge薄膜层沉积速率0.2~0.5nm/s,ZnS薄膜层沉积速率0.3~1.5nm/s,YbF3薄膜层沉积速率0.3~0.6nm/s。
2.如权利要求1所述玻璃基片薄膜的制备方法,其特征在于,所述第一靶材为1个,该第一靶材的各元素含量与所述玻璃基片主体元素的比例相同,将所述第一靶材与第二靶材间隔50mm-500mm放置;
基于磁控溅射方法,待真空条件为1.0×10-3Pa-2.0×10-3Pa时充入15sccm-25sccm高纯氩气,对所述第一靶材和第二靶材进行溅射,溅射时长为5min-30min,磁控溅射的同时,旋转所述玻璃基片;
其中,对所述第一靶材的溅射功率逐渐减低,对第二靶材的溅射功率逐渐增加,在所述玻璃基片的第一表面获得组分渐变过渡至Ge的薄膜结构。
3.如权利要求2所述玻璃基片薄膜的制备方法,其特征在于,对所述第一靶材的溅射功率由400W-500W渐降低至为0W,对所述第二靶材的溅射功率由0W升高至350W-450W;
所述玻璃基片设置在所述第一靶材与第二靶材之间的上方空间、且距所述第一靶材或第二靶材顶部的距离为30mm-150mm;
所述玻璃基片的旋转速率为10rpm-40rpm;
溅射的温度为25℃-130℃。
4.如权利要求1所述玻璃基片薄膜的制备方法,其特征在于,所述第一靶材为多个,多个所述第一靶材中所述第一组分中各元素的含量递减、第二组分含量递增,将多个第一靶材和第二靶材按照第二组分递增的顺序并列、间隔设置;
基于磁控溅射方法,待真空条件为1.0×10-3Pa-2.0×10-3Pa时充入15sccm-25sccm高纯氩气,对所述第一靶材和第二靶材进行恒功率溅射,溅射时长为5min-30min,同时,所述玻璃基片由第一靶材的上方匀速缓慢移动至所述第二靶材的上方,在所述玻璃基片的第一表面获得组分渐变过渡至Ge的薄膜结构。
5.如权利要求4所述玻璃基片薄膜的制备方法,其特征在于,
溅射的温度为25℃-130℃;
所述玻璃基片的平移速率为5mm/min-8mm/min,多个所述第一靶材或第二靶材的溅射功率为150W-250W;
各靶材之间的间隔为50mm-500mm;所述第一靶材或第二靶材的顶部与所述玻璃基片底部之间的距离为30mm-150mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211028882.3A CN115161596B (zh) | 2022-08-26 | 2022-08-26 | 一种玻璃基片薄膜结构及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211028882.3A CN115161596B (zh) | 2022-08-26 | 2022-08-26 | 一种玻璃基片薄膜结构及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115161596A CN115161596A (zh) | 2022-10-11 |
CN115161596B true CN115161596B (zh) | 2022-11-29 |
Family
ID=83481002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211028882.3A Active CN115161596B (zh) | 2022-08-26 | 2022-08-26 | 一种玻璃基片薄膜结构及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115161596B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850604A (en) * | 1972-12-11 | 1974-11-26 | Gte Laboratories Inc | Preparation of chalcogenide glass sputtering targets |
CN105800954A (zh) * | 2016-03-29 | 2016-07-27 | 中国建筑材料科学研究总院 | 一种硫系玻璃及其制备方法 |
CN107227460A (zh) * | 2017-07-13 | 2017-10-03 | 南京波长光电科技股份有限公司 | 一种以硫系红外玻璃为基底的增透dlc膜及其制备方法 |
-
2022
- 2022-08-26 CN CN202211028882.3A patent/CN115161596B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850604A (en) * | 1972-12-11 | 1974-11-26 | Gte Laboratories Inc | Preparation of chalcogenide glass sputtering targets |
CN105800954A (zh) * | 2016-03-29 | 2016-07-27 | 中国建筑材料科学研究总院 | 一种硫系玻璃及其制备方法 |
CN107227460A (zh) * | 2017-07-13 | 2017-10-03 | 南京波长光电科技股份有限公司 | 一种以硫系红外玻璃为基底的增透dlc膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115161596A (zh) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109182972A (zh) | 大尺寸蓝宝石基底多光谱硬质增透膜及其制备方法 | |
Shang et al. | Investigation on thermal stability of Ta2O5, TiO2 and Al2O3 coatings for application at high temperature | |
CN101738652B (zh) | 三光合一超宽波段高增透膜的制备方法 | |
CN103018797B (zh) | 一种用于激光、红外双波段高反射膜的膜系结构及其制备方法 | |
CN105607159A (zh) | 大角度多波段红外高增透膜系的制备方法 | |
CN115161596B (zh) | 一种玻璃基片薄膜结构及其制备方法 | |
CN111304588A (zh) | 一种红外碳化锗膜、具有碳化锗膜的红外材料及其制备方法和应用 | |
CN1590086A (zh) | 制备透明导电层压材料的方法 | |
WO2018188072A1 (en) | OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME | |
CN115903114A (zh) | 一种基于光子晶体膜层结构的偏振不敏感角度滤波器及其制备方法 | |
CN112313359A (zh) | 复合钨氧化物膜及其制造方法以及具有该膜的膜形成基材和物品 | |
CN112962064A (zh) | 一种耐高温光学反射膜及其制备方法和用途 | |
CN114107917B (zh) | 一种铜掺氧化锌透明导电薄膜及其制备方法 | |
Tsai et al. | Effect of as-deposited residual stress on transition temperatures of VO2 thin films | |
CN102096136A (zh) | 空间用光学石英玻璃耐辐照滤紫外薄膜及制备方法 | |
CN113703078A (zh) | 一种可见光区宽带增透膜及其制备方法 | |
JP2007212948A (ja) | 反射防止膜形成方法及び、反射防止膜付き基板 | |
KR102456782B1 (ko) | 단결정 구리 박막 버퍼층을 이용한 대면적 단결정 은 박막 구조체 및 그 제조방법 | |
CN111812753B (zh) | 一种硅基底3-6μm红外窗口片 | |
CN116479377B (zh) | 一种改善塑胶表面光学薄膜在氙灯照射试验中的膜裂的方法 | |
CN116555762A (zh) | 一种金刚石系红外复合窗口材料及其制备方法 | |
KR102154899B1 (ko) | 몰리브덴 박막 표면의 미세구조 제어방법 | |
WO2003023084A1 (fr) | Cible de pulverisation cathodique de fluorure et son procede de preparation | |
CN105349949B (zh) | 一种空间用紫外反射膜的制备方法 | |
CN118050919A (zh) | 基于多层膜实现高效率光学手性装置及制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 065001 No. 4, Baihe Road, economic and Technological Development Zone, Langfang City, Hebei Province Patentee after: GRINM GUOJING ADVANCED MATERIALS Co.,Ltd. Address before: 065201 South Youyan Technology Group Co., Ltd. No.2, Xingdu village, Yanjiao, Sanhe City, Langfang City, Hebei Province Patentee before: GRINM GUOJING ADVANCED MATERIALS Co.,Ltd. |