WO2018188072A1 - OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME - Google Patents

OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
WO2018188072A1
WO2018188072A1 PCT/CN2017/080571 CN2017080571W WO2018188072A1 WO 2018188072 A1 WO2018188072 A1 WO 2018188072A1 CN 2017080571 W CN2017080571 W CN 2017080571W WO 2018188072 A1 WO2018188072 A1 WO 2018188072A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
film
composite
titanium alloy
layer
Prior art date
Application number
PCT/CN2017/080571
Other languages
French (fr)
Inventor
Shengguan QU
Bin Wang
Xiaoqiang Li
Xiaobing Cao
Gang Li
Zhun CHENG
Xiang-long LI
Original Assignee
South China University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University Of Technology filed Critical South China University Of Technology
Priority to PCT/CN2017/080571 priority Critical patent/WO2018188072A1/en
Publication of WO2018188072A1 publication Critical patent/WO2018188072A1/en
Priority to ZA2019/00313A priority patent/ZA201900313B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3663Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors

Definitions

  • Certain example embodiments of this invention relate to optics mirrors, and methods of making the same. More particularly, the invention relates to a high volume fraction SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror.
  • anSiC composite material As a new kind of optical material, anSiC composite material has been widely used in the aerospace, military, electronics, instrumentation and other fields.
  • the visible light band reflectivity of the SiC composite material mirror is less than 90%.
  • the low reflectivity is related to the physical properties of the silicon carbide particle reinforced aluminium matrix.
  • the material removal from the silicon carbide particles and the aluminium matrix is different in the process of ultra-precision grinding of the silicon carbide particles, which leads to the existence of steps in the interface of silicon carbide particles and the aluminium matrix.
  • the step defects cause a scattering phenomenon of the incident light of the surface of matrix, which reduces the reflectivity of the mirror.
  • the SiC mirror has the characteristics of high hardness, being brittle and having poor thermal conductivity, which causes the long processing duration, high cost and low yield of SiC mirror products. As a result, it is relatively difficult to prepare large size and light weight products with a complex structure. Furthermore, since a SiC material with low thermal conductivity results in an extension of the thermal equilibrium time of the optical system, the thermal expansion coefficient of the support member and frame does not match the SiC, resulting in the associated connecting member being deformed, and thus affecting the optical system reliability and alignment schedule and image quality.
  • space reflectors have been widely used in space telescopes, space surveillance cameras and so on. . However, the reflectivity data between 450 and 720 nm for the current mirrors have been rarely studied and reported. It will be of great importance to obtain quality optics mirrors with high reflectivity at a wavelength range of 450-720 nm in this situation.
  • U.S. Pat. No. 7871664 provides a reflector that includes a front glass plate, a second glass plate and a reflection layer which is widely used in various fields.
  • a reflector in order to actualise the high reflectance and lightweight mirror, it is required for the front glass plate to have a high transparency.
  • the structure of the front glass plate of a reflector is thinly formed as about 0.25mm to 0.5mm, for example. By making the front glass plate thin, it is expected that the transparency of the front glass plate is increased and the reflectance of the reflector is increased. However, there is a possibility that the durability of the reflector is decreased just by making the front glass plate be thin. In particular, if a thin front glass plate is used, the mechanical characteristics of the front glass may be decreased.
  • the U.S. patent does not disclose any measures to take when encountering such problems with the front glass plate.
  • a solar thermal power generation apparatus is often provided at a place with strong sunshine, and in such a case, the “blur” phenomenon may occur within a shorter period due to the high temperature of the front glass plate.
  • a method for making SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror, and a multi-layer optics Al-mirror which having the maximum reflectivity of 97 %in a wavelength range of 450-720 nm, and outstanding strength and stability comprises: a step of preparing a mirror substrate and a step of fabricating the mirror with multi-layer films.
  • the step of preparing the mirror substrate comprising: machining SiC p /Al composite sample, titanium alloy sample and the bismuthate glass sample, grinding and polishing the top and the bottom of all samples, and bonding the SiC p /Al composite sample, titanium alloy sample andthe bismuthate glass as the mirror substrate products in an oxygen furnace.
  • the distance between the targets and the substrate is 50 mm.
  • the substrate temperature is 200°C.
  • the electron gun voltage and current are 9 KV and 13 A, respectively.
  • the sputtering angle is 5-8°.
  • the deposition rate of the Cr, Al, SiO 2 and Ta 2 O 5 films is 0.2, 2.0, 0.7 and 0.3 nm s -1 , respectively.
  • the thickness of each layer is controlled by the electron beam vapour deposition time.
  • the multi-layer is formed on the surface of glass substrate.
  • the product is measured and observed in the following ways: using an atomic force microscope (AFM, Dimension Icon, Bruker) to measure the surface roughness, using a Zygo GPI XP/D4 laser interferometer to measure the peak-to-valley (PV) value, using the Veeco NT9100 surface profiler to observe the surface morphology, using a Scanning Electron Microscope to observe the film structure, and using UV-visible spectroscopy (LAMBDA 900, US) with a wavelength range of 450-720 nm and a fixed 5° incident angle to examine the reflective index.
  • AFM atomic force microscope
  • ZDM Zygo GPI XP/D4 laser interferometer
  • PV peak-to-valley
  • LAMBDA 900 UV-visible spectroscopy
  • the size of SiC p /Al composite sample is 74 mm in diameter, with a thickness of 11 mm
  • the size of titanium alloy sample is 74 mm in diameter, with a thickness of 0.6 mm
  • the size of bismuthate glass sample is 74 mm in diameter, with a thickness of 2 mm.
  • the temperature of the oxygen furnace is 565°C.
  • the ultra-precision grinding is utilised in the grinding process to manufacture a high quality mirror with a nano-metric surface roughness.
  • a SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror comprising, in sequence, at least: a glass substrate, a transition layer, a reflection layer, a protection layer and a transmission enhanced layer.
  • the glass substrate is SiCp/Al composite-titanium alloy -bismuthate glass
  • the transition layer is a Cr film
  • the reflector layer is an Al film
  • the protective layer is SiO 2
  • the transmission enhanced layer is Ta 2 O 5.
  • the thickness of the Cr film and Al film is about 31.4 nm and 52.7 nm, respectively, and the thicknesses of the Ta 2 O 5 and SiO 2 optical films are 120 nm and 41.5 nm.
  • the interface of the Cr film and the glass base is straight, the Al film is tightly bonded to the Cr film, the SiO 2 film is covered on the surface of Al film, and the Ta 2 O 5 film is deposited on the SiO 2 film.
  • the SiC p /Al composite-titanium alloy -bismuthate glass Al-mirror is a circular mirror with a diameter of 74 mm, a thickness of 13.6 mm and a weight of 0.22 kg weight, which is made of SiCp/Al composite sample with a diameter of 74 mm and a thickness of 11 mm, titanium alloy sample with a diameter of 74 mm and a thickness of 0.6 mm and bismuthate glass sample with a diameter of 74 mm and a thickness of 2 mm.
  • An Al film is a material with high reflectivity in the visible light range, and the surface of the Al film comes into contact with the atmosphere to produce a thin layer Al 2 O 3 film, which is more stable and reliable. Compared with Au and Ag films, Al films are also cheaper. Furthermore, the Al film is widely used as a remote reflector in the visible light range.
  • a SiO 2 film is a practical optical material, with high hardness, good wear resistance, high light transmittance, stability, a compact structure and no moisture absorption and so on.
  • Ta 2 O 5 films are often used for coating, due to the characteristics of having a high density, chemical stability, and strong resistance to mechanical force and laser damage. Ta 2 O 5 films have good transparency, a high refractive index (2.08) , high mechanical stability and high mechanical strength.
  • SiO 2 films also have a low refractive index (1.47) , a small extinction coefficient and fine film formation.
  • a Ta 2 O 5 /SiO 2 /Al/Cr multi-layer structure is chosen to fabricate the current thin film system.
  • Al-film is used due to the advantages as mentioned above.
  • a problem regarding the poor adhesion of Al films with the matrix exists.
  • a transition layer between the matrix and the Al film is deposited on the matrix surface.
  • a protective layer is coated on the outside of the Al-film.
  • a transparent protective dielectric coating layer, such as SiO 2 should be deposited onto the surface of the metal mirror in the same cycle as the metal reflection film is deposited, so as to withstand chemical and environmental corrosion and mechanical wear.
  • the Ta 2 O 5 film is deposited on the SiO 2 film.
  • the function of the Al film is to reflect the incident energy.
  • the Al film thickness is mainly considered to reduce irradiation light energy loss.
  • free electrons of Al atoms are excited to produce a transition and release the same frequency of light waves. Since the mean free path of free electrons is limited within the range of tens of nanometres by the dense Al film, the thickness of the Al film is obviously larger than the mean free path of free electrons. Thus, the excitation of free electrons cannot penetrate through the Al-film, and can only be reflected by the Al film.
  • the invention has the following advantages:
  • the SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror has outstanding optical features: maximum reflectivity 97 %in a wavelength range of 450-720 nm, and outstanding strength and stability.
  • the mirror can achieve less than 0.109 ⁇ at 632.8 nm PV surface error, and less than 0.019 nm surface roughness.
  • the Ta 2 O 5 /SiO 2 /Al/Cr multi-layer structure has significant strong points.
  • the Ta 2 O 5 film is a desirable film for use in coating, due to its high density, chemical stability, and strong resistance to mechanical force and laser damage.
  • SiO 2 films have the characteristics of high hardness, good wear resistance, high light transmittance, stability, a compact structure and no moisture absorption.
  • the surface of the Al film can produce a thin layer Al 2 O 3 film when coming into contact with the atmosphere, which is more stable and reliable. Compared with Au and Ag films, Al films are also cheaper.
  • Figure 1 schematic of optimum SiC p /Al-titanium alloy-bismuthate glass plus multilayer thin films design.
  • Figure 2 AFM surface image of Cr/Al/SiO 2 /Ta 2 O 5 multilayer thin films in a 5 ⁇ m ⁇ 5 ⁇ marea.
  • Figure 3 morphology of the mirror deposited with Ta 2 O 5 /SiO 2 /Al/Cr films using magnetron sputtering.
  • Figure 4 reflectance, absorption and luminescent property spectra taken for 5° of light incidence for the mirror with deposited Ta 2 O 5 /SiO 2 /Al/Cr multilayer thin films.
  • Figure 5 appearances of mirror surface obtained from different processes:
  • Figure 6 surface shape error of SiC p /Al composite-titanium alloy-bismuthate glass metal mirror a, b, c deposited Ta 2 O 5 /SiO 2 /Al/Cr films (9.0 cm ⁇ 9.0 cm) .
  • Figure 7 interferometric microscopy image of the SiC p /Al composite-titanium alloy-bismuthate glass metal mirror surface a, b deposited Ta 2 O 5 /SiO 2 /Al/Cr films (3.95 ⁇ m) .
  • a SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror which comprises , in sequence, at least: a glass substrate, a transition layer, a reflection layer, a protection layer, and a transmission enhanced layer.
  • the method of making SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror mainly comprise: a step of preparing a mirror substrate, and a step of fabricating the mirror.
  • Step 1 Preparing the mirror substrate
  • the method of Ultra-precision grinding (UPG) is chosen to manufacture a high quality mirror with a nano-metric surface roughness, and having no machining damage occurs on the ground mirror surface.
  • Step2 Fabricating the mirror with multi-layer films
  • Ta 2 O 5 /SiO 2 /Al/Cr multilayer thin films are prepared on the surface of a SiCp/Al composite-titanium alloy-bismuthate glass metal substrate by utilising an electron beam vapour deposition system. Cr, Al, SiO 2 and Ta 2 O 5 layer is coated on the glass substrate sequentially by changing targets of the machine. The optimised vacuum degree is pumped down to the base pressure of 1.3 ⁇ 10 -4 Pa. The purity of the target material is 5 N.
  • planetary rotation of the high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal substrate and its holder occurs at 50 HZ. The distance between the targets and the substrate is 50 mm. The substrate temperature is 200°C.
  • the electron gun voltage and current are 9 KV and 13 A, respectively.
  • the sputtering angle is 5-8°.
  • the deposition rate of the Cr, Al, SiO 2 and Ta 2 O 5 films is 0.2, 2.0, 0.7 and 0.3 nm s -1 , respectively.
  • the thickness of each layer is controlled by the electron beam vapour deposition time.
  • the multi-layer is formed on the surface of glass substrate.
  • the method also comprises the step of measuring and observing the products, which includes using an atomic force microscope (AFM, Dimension Icon, Bruker) to measure the surface roughness, using a Zygo GPI XP/D4 laser interferometer to measure the peak-to-valley (PV) value, using the Veeco NT9100 surface profiler to observe the surface morphology, using a Scanning Electron Microscope to observe the film structure, and using UV-visible spectroscopy (LAMBDA 900, US) with a wavelength range of 450-720 nm and a fixed 5° incident angle toexamine the reflective index.
  • AFM atomic force microscope
  • V peak-to-valley
  • the light-weight SiC p /Al composite-titanium alloy-bismuthate glass Al-mirror with a diameter of 74 mm is made into the circular mirror with a diameter of 74 mm, a thickness of 13.6 mm and a weight of 0.22kg.
  • the density (according to the formula of mass divided by surface area) is 41.85 kg/m 2 .
  • the surface roughness of the Cr/Al/SiO 2 /Ta 2 O 5 multi-layer thin films measured by AFM in Fig. 2 is 0.965 nm (r.m.s) .
  • the area of the surface images of the Ta 2 O 5 /SiO 2 /Al/Cr metal plus dielectric films is 5 ⁇ m ⁇ 5 ⁇ m.
  • the surface shape error of the Al-mirror of Cr/Al/SiO 2 /Ta 2 O 5 multilayer thin films (9.0cm ⁇ 9.0cm) is tested by a Zygo interferometer, as shown in Figure 6.
  • the PV surface error is less than 0.109 ⁇ at 632.8 nm.
  • the roughness of the multilayer thin films Al-mirror is tested by a Veeco interferometer, as shown in Figure 7.
  • the polished Al-mirror is put into the microstructure of high-powered field scanning electron microscope, and the cross-sectional photographs of the Al-mirror are shown in Figure 3.
  • the deposited layers can be clearly seen: high volume fraction SiC p /Al composite-titanium alloy-bismuthate glass metal substrate, the transition layer of Cr, the reflector layer of Al, the protective layer of SiO 2 and the transmission enhanced layer of Ta 2 O 5 .
  • the thickness of the Cr film and the Al film is about 31.4 nm and 52.7 nm, respectively.
  • the thicknesses of the Ta 2 O 5 and SiO 2 optical films are 120 nm and 41.5 nm.
  • the interface of the Cr film and the base is straight.
  • This also shows that the stress between the Cr film and bismuthate glass is smaller than that of the bonding force between the Cr film and the base surface (bismuthate glass layer) .
  • This may be ascribed to a chemical oxyidation reaction of gaseous Cr particles with bismuthate glass layer on the interface.
  • defects (such as membrane pores and grain growing) are not observed inside of the Cr film.
  • the film is bright white. It can be clearly seen that the Al film is tightly bonded to the Cr film as shown in Figure 3. This indicates that the stress is smaller than the bonding force between the Cr film and the Al film. There are no defects and cracks in the Al film, such as holes and large size grains. Micro-cracks of the Cr film is filled to the bottom by Al atoms. The Al film thickness (52.7 nm) is reasonable. In this experiment, the excitation of free electrons cannot penetrate through the Al-film, and can only be reflected by the Al film.
  • BEIs backscattered electron images
  • a continuous and tight SiO 2 film is formed on the Al film, and the SiO 2 film and Ta 2 O 5 films are closely adhered together.
  • the sputtered SiO 2 layer should not be too thin or too thick, or else the reflectivity will decrease.
  • the thickness of the Ta 2 O 5 film and the SiO 2 film (120 nm and 41.5 nm) is also reasonable for enhancing light reflection which is based on the principle of optical interference. Its main function is to form a protection film for the Al film.
  • the advantage of this design is avoiding the generation of ghost images.
  • the reflective properties of the Al-mirror mainly are influenced by the Al-mirror base surface accuracy, surface roughness and degree of detail.
  • the deposited layers on the base surface of the Al film are very smooth; therefore, ensuring that the reflective properties of the Al mirror are excellent in a wavelength range of 450-720 nm.
  • the SiO 2 film is covered on the surface of Al film.
  • the Al film is tightly bonded together with SiO 2 film with no defects or cracks, so that the Al film and the air are completely isolated.
  • the Ta 2 O 5 film is deposited on the SiO 2 film.
  • the interface of the SiO 2 and Ta 2 O 5 is flat, continuous, tight, and contains no cracks or other defects.
  • the work wavelength range of the Al-mirror is 450-720 nm.
  • the Ta 2 O 5 film has good transparency, a high refractive index (2.08) , high mechanical stability and high mechanical strength, and the SiO 2 film has a low refractive index (1.47) , small extinction coefficient, and creates a fine and smooth film.
  • a Ta 2 O 5 /SiO 2 film system with high/low refractive index is fabricated.
  • the thicknesses of these two films are set to enhance the light reflection, and are determined based on the principle of light wave interference. Additionally, the film thickness selection is for reducing the incident light absorption and protecting the Al film for a wavelength of 450-720 nm.
  • Figure 5 shows the appearance of the mirror surface. After grinding with Fe2O3 particles with a diameter of 10 ⁇ m, the surface of the mirror substrate in Figure 5a appears to be very rough. There are a large number of obvious white pits on the surface. When polished with 5 ⁇ m CeO 2 particles, the white pits disappeared and the surface presented a defect-free specular surface, as shown in Figure 5b. The results indicate that the grain size is an important parameter for obtaining a smooth optical surface.
  • the SiC p /Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films Al-mirror is manufactured (Figure 5c) .
  • Four adherent layers of Ta 2 O 5 /SiO 2 /Al/Cr are preferred for much easier manufacturing.
  • the novel high volume fraction SiC p /Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films mirrors are as shown in Figure5c.

Abstract

A method of making a high volume fraction SiCp/Al composite-Titanium alloy-bismuthate glass metal plus dielectric multi-layer films optics Al-mirror, the method comprising: a step of preparing a novel mirror substrate, and a step of fabricating the mirror of film design. A high volume fraction SiCp/Al composite-Titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror comprising, in sequence, at least: a high volume fraction SiCp/Al composite-Titanium alloy-bismuthate glass metal substrate, a transition layer, a reflection layer, a protection layer, and a transmission enhanced layer. The substrate is high volume fraction SiCp/Al composite-Titanium alloy-bismuthate glass metal substrate, the transition layer is a Cr film, the reflector layer is an Al film, the protective layer is SiO2 and the transmission enhanced layer is Ta2O5. The high volume fraction SiCp/Al composite-Titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror has outstanding optical features: the maximum reflectivity can reach up to 97% in a visible wavelength range of 450-720 nm, and lightweight and stability than traditional optical pure glass mirror.

Description

OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME FIELD OF THE INVENTION
Certain example embodiments of this invention relate to optics mirrors, and methods of making the same. More particularly, the invention relates to a high volume fraction SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror.
BACKGROUND ART
As a new kind of optical material, anSiC composite material has been widely used in the aerospace, military, electronics, instrumentation and other fields. However, the visible light band reflectivity of the SiC composite material mirror is less than 90%. The low reflectivity is related to the physical properties of the silicon carbide particle reinforced aluminium matrix. The material removal from the silicon carbide particles and the aluminium matrix is different in the process of ultra-precision grinding of the silicon carbide particles, which leads to the existence of steps in the interface of silicon carbide particles and the aluminium matrix. The step defects cause a scattering phenomenon of the incident light of the surface of matrix, which reduces the reflectivity of the mirror. Furthermore, the SiC mirror has the characteristics of high hardness, being brittle and having poor thermal conductivity, which causes the long processing duration, high cost and low yield of SiC mirror products. As a result, it is relatively difficult to prepare large size and light weight products with a complex structure. Furthermore, since a SiC material with low thermal conductivity results in an extension of the thermal equilibrium time of the optical system, the thermal expansion coefficient of the support member and frame does not match the SiC, resulting in the associated connecting member being deformed, and thus affecting the optical system reliability and alignment schedule and image quality. Nowadays, space reflectors have been widely used in space telescopes, space surveillance cameras and so on. . However, the reflectivity data between 450 and 720 nm for the current mirrors have been rarely studied and reported. It will be of great importance to obtain quality optics mirrors with high reflectivity at a wavelength range of 450-720 nm in this situation.
U.S. Pat. No. 7871664 provides a reflector that includes a front glass plate, a second glass plate and a reflection layer which is widely used in various fields. In such a reflector, in order to actualise the high reflectance and lightweight mirror, it is required for the front glass plate to have a high transparency. The structure of the front glass plate of a reflector is thinly formed as about 0.25mm to 0.5mm, for example. By making the front glass plate thin, it is expected that the transparency of the front glass plate is increased and the reflectance of the reflector is increased. However, there is a possibility that the durability of the reflector is decreased just by making the front glass plate be thin. In particular, if a thin front glass plate is used, the mechanical characteristics of the front glass may be decreased. However, the U.S. patent does not disclose any measures to take when encountering  such problems with the front glass plate. In particular, a solar thermal power generation apparatus is often provided at a place with strong sunshine, and in such a case, the “blur” phenomenon may occur within a shorter period due to the high temperature of the front glass plate.
SUMMARY OF THE INVENTION
In the invention, there is provided a method for making SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror, and a multi-layer optics Al-mirror which having the maximum reflectivity of 97 %in a wavelength range of 450-720 nm, and outstanding strength and stability. The method comprises: a step of preparing a mirror substrate and a step of fabricating the mirror with multi-layer films.
The step of preparing the mirror substratecomprising: machining SiCp/Al composite sample, titanium alloy sample and the bismuthate glass sample, grinding and polishing the top and the bottom of all samples, and bonding the SiCp/Al composite sample, titanium alloy sample andthe bismuthate glass as the mirror substrate products in an oxygen furnace.
The step of fabricatingmulti-layer filmscomprising: Ta2O5/SiO2/Al/Cr multilayer thin films are prepared on the surface of a SiCp/Al composite-titanium alloy-bismuthate glass metal plus substratebyutilising an electron beam vapour deposition system. Cr, Al, SiO2and Ta2O5 layer is coated on the glass substrate sequentially by changing targets of the machine. The optimised vacuum degree is pumped down to the base pressure of 1.3×10-4 Pa. The purity of the target material is 5 N. During the deposition, planetary rotation of the high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal substrate and its holder occurs at 50 HZ. The distance between the targets and the substrate is 50 mm. The substrate temperature is 200℃. The electron gun voltage and current are 9 KV and 13 A, respectively. The sputtering angle is 5-8°. The deposition rate of the Cr, Al, SiO2 and Ta2O5 films is 0.2, 2.0, 0.7 and 0.3 nm s-1, respectively. The thickness of each layer is controlled by the electron beam vapour deposition time. Thus, the multi-layer is formed on the surface of glass substrate.
The product is measured and observed in the following ways: using an atomic force microscope (AFM, Dimension Icon, Bruker) to measure the surface roughness, using a Zygo GPI XP/D4 laser interferometer to measure the peak-to-valley (PV) value, using the Veeco NT9100 surface profiler to observe the surface morphology, using a Scanning Electron Microscope to observe the film structure, and using UV-visible spectroscopy (LAMBDA 900, US) with a wavelength range of 450-720 nm and a fixed 5° incident angle to examine the reflective index.
In the step of preparing the mirror substrate: the size of SiCp/Al composite sample is 74 mm in diameter, with a thickness of 11 mm, the size of titanium alloy sample is 74 mm in diameter, with a thickness of 0.6 mm, and the size of bismuthate glass sample is 74 mm in diameter, with a thickness of 2 mm. The temperature of the oxygen furnace is 565℃. The ultra-precision grinding is utilised in the grinding process to manufacture a high quality mirror with a nano-metric surface roughness.
A SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror comprising, in sequence, at least: a glass substrate, a transition layer, a reflection layer, a  protection layer and a transmission enhanced layer.
The glass substrate is SiCp/Al composite-titanium alloy -bismuthate glass, the transition layer is a Cr film, the reflector layer is an Al film, the protective layer is SiO2 and the transmission enhanced layer is Ta2O5.
The thickness of the Cr film and Al film is about 31.4 nm and 52.7 nm, respectively, and the thicknesses of the Ta2O5 and SiO2 optical films are 120 nm and 41.5 nm.
The interface of the Cr film and the glass base is straight, the Al film is tightly bonded to the Cr film, the SiO2 film is covered on the surface of Al film, and the Ta2O5 film is deposited on the SiO2 film.
The SiCp/Al composite-titanium alloy -bismuthate glass Al-mirror is a circular mirror with a diameter of 74 mm, a thickness of 13.6 mm and a weight of 0.22 kg weight, which is made of SiCp/Al composite sample with a diameter of 74 mm and a thickness of 11 mm, titanium alloy sample with a diameter of 74 mm and a thickness of 0.6 mm and bismuthate glass sample with a diameter of 74 mm and a thickness of 2 mm.
The mass of the mirror is 0.18kg, the area is 0.0043 m2, the area density is 41.85, the wave front error <0.109 (λ=632.8 nm) , the surface roughness Ra is <0.965 nm, and the maximum reflectivity reaches up to 97%.
The design and principle of the SiCp/Al composite-titanium alloy-bismuthate glass metal plus dielectric films Al-mirror is:
An Al film is a material with high reflectivity in the visible light range, and the surface of the Al film comes into contact with the atmosphere to produce a thin layer Al2O3 film, which is more stable and reliable. Compared with Au and Ag films, Al films are also cheaper. Furthermore, the Al film is widely used as a remote reflector in the visible light range. A SiO2 film is a practical optical material, with high hardness, good wear resistance, high light transmittance, stability, a compact structure and no moisture absorption and so on. Ta2O5 films are often used for coating, due to the characteristics of having a high density, chemical stability, and strong resistance to mechanical force and laser damage. Ta2O5 films have good transparency, a high refractive index (2.08) , high mechanical stability and high mechanical strength. SiO2 films also have a low refractive index (1.47) , a small extinction coefficient and fine film formation. As a result, a Ta2O5/SiO2/Al/Cr multi-layer structure is chosen to fabricate the current thin film system.
In this invention, in order to achieve a high reflectivity at a wavelength range of 450-720 nm, Al-film is used due to the advantages as mentioned above. However, a problem regarding the poor adhesion of Al films with the matrix exists. in order to solve the problem, a transition layer between the matrix and the Al film is deposited on the matrix surface. To this end, a protective layer is coated on the outside of the Al-film. A transparent protective dielectric coating layer, such as SiO2, should be deposited onto the surface of the metal mirror in the same cycle as the metal reflection film is deposited, so as to withstand chemical and environmental corrosion and mechanical wear. The Ta2O5 film is deposited on the SiO2 film. By depositing a Ta2O5 film on SiO2, a Ta2O5/SiO2 film system with a high/low refractive index is fabricated to enhance the light reflection.
The function of the Al film is to reflect the incident energy. The Al film thickness is mainly considered to reduce irradiation light energy loss. When the light is cast at the Al film surface, free electrons of Al atoms are excited to produce a transition and release the same frequency of light waves. Since the mean free path of free electrons is limited within the range of tens of nanometres by the dense Al film, the thickness of the Al film is obviously larger than the mean free path of free electrons. Thus, the excitation of free electrons cannot penetrate through the Al-film, and can only be reflected by the Al film.
The invention has the following advantages:
1. The SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror has outstanding optical features: maximum reflectivity 97 %in a wavelength range of 450-720 nm, and outstanding strength and stability. The mirror can achieve less than 0.109 λ at 632.8 nm PV surface error, and less than 0.019 nm surface roughness.
2. The Ta2O5/SiO2/Al/Cr multi-layer structure has significant strong points. The Ta2O5 film is a desirable film for use in coating, due to its high density, chemical stability, and strong resistance to mechanical force and laser damage. SiO2 films have the characteristics of high hardness, good wear resistance, high light transmittance, stability, a compact structure and no moisture absorption. The surface of the Al film can produce a thin layer Al2O3 film when coming into contact with the atmosphere, which is more stable and reliable. Compared with Au and Ag films, Al films are also cheaper.
3. Four layers are formed during deposition: high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal substrate, the transition layer of Cr, the reflector layer of Al, the protective layer of SiO2 and the transmission enhanced layer of Ta2O5. The deposition process of the Cr layer is delicate and smooth, and there are no membrane pores or grain growing defects. No defects and cracks are formed in the Al film, such as holes and large-sized grains. The Ta2O5 film and SiO2 film can enhance light reflection, and avoid the generation of ghost images. Four adherent layers of Ta2O5/SiO2/Al/Cr are much easier to manufacture.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1: schematic of optimum SiCp/Al-titanium alloy-bismuthate glass plus multilayer thin films design.
Figure 2: AFM surface image of Cr/Al/SiO2/Ta2O5multilayer thin films in a 5 μm × 5 μmarea.
Figure 3: morphology of the mirror deposited with Ta2O5/SiO2/Al/Cr films using magnetron sputtering.
Figure 4: reflectance, absorption and luminescent property spectra taken for 5° of light incidence for the mirror with deposited Ta2O5/SiO2/Al/Cr multilayer thin films.
Figure 5: appearances of mirror surface obtained from different processes:
5 (a) mirror substrate ground with 10μm Fe2O3 particles;
5 (b) mirror substrate polished with 0.5μm diamond powders particles;
5 (c) mirror substrate polished with 5μm CeO2 particles;
5 (d) mirror deposited Ta2O5/SiO2/Al/Cr films.
Figure 6: surface shape error of SiCp/Al composite-titanium alloy-bismuthate glass metal mirror a, b, c deposited Ta2O5/SiO2/Al/Cr films (9.0 cm × 9.0 cm) .
Figure 7: interferometric microscopy image of the SiCp/Al composite-titanium alloy-bismuthate glass metal mirror surface a, b deposited Ta2O5/SiO2/Al/Cr films (3.95 μm) .
DESCRIPTION OF EXAMPLE EMBODIMENTS OF THE INVENTION
Referring now to Fig. 1-3, there is provided a SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror which comprises , in sequence, at least: a glass substrate, a transition layer, a reflection layer, a protection layer, and a transmission enhanced layer. And the method of making SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror mainly comprise: a step of preparing a mirror substrate, and a step of fabricating the mirror.
Step 1: Preparing the mirror substrate
Preparing the SiCp/Al composite sample with a diameter of 74 mm, a thickness of 11 mm, titanium alloy sample with a diameter of 74 mm, a thickness of 0.6 mm and the bismuthate glass sample with a diameter of 74 mm, a thickness of 2 mm, respectively. ; grinding and polishing the top and the bottom of all samples; bondingcomposite sample, titanium alloy sample, and bismuthate glass sample as the mirror substrate productin an oxygen furnace at 565℃. The method of Ultra-precision grinding (UPG) is chosen to manufacture a high quality mirror with a nano-metric surface roughness, and having no machining damage occurs on the ground mirror surface.
Step2: Fabricating the mirror with multi-layer films
Ta2O5/SiO2/Al/Cr multilayer thin films are prepared on the surface of a SiCp/Al composite-titanium alloy-bismuthate glass metal substrate by utilising an electron beam vapour deposition system. Cr, Al, SiO2and Ta2O5 layer is coated on the glass substrate sequentially by changing targets of the machine. The optimised vacuum degree is pumped down to the base pressure of 1.3×10-4 Pa. The purity of the target material is 5 N. During the deposition, planetary rotation of the high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal substrate and its holder occurs at 50 HZ. The distance between the targets and the substrate is 50 mm.The substrate temperature is 200℃. The electron gun voltage and current are 9 KV and 13 A, respectively. The sputtering angle is 5-8°. The deposition rate of the Cr, Al, SiO2 and Ta2O5 films is 0.2, 2.0, 0.7 and 0.3 nm s-1, respectively. The thickness of each layer is controlled by the electron beam vapour deposition time. Thus, the multi-layer is formed on the surface of glass substrate.
The method also comprises the step of measuring and observing the products, which includes using an atomic force microscope (AFM, Dimension Icon, Bruker) to measure the surface roughness, using a Zygo GPI XP/D4 laser interferometer to measure the peak-to-valley (PV) value, using the Veeco NT9100 surface profiler to observe the surface morphology, using a Scanning Electron Microscope to observe the film structure, and using UV-visible spectroscopy (LAMBDA 900, US) with a wavelength range of 450-720 nm and a fixed 5° incident angle toexamine the reflective index.
The light-weight SiCp/Al composite-titanium alloy-bismuthate glass Al-mirror with a diameter  of 74 mm is made into the circular mirror with a diameter of 74 mm, a thickness of 13.6 mm and a weight of 0.22kg. The density (according to the formula of mass divided by surface area) is 41.85 kg/m2.
The surface roughness of the Cr/Al/SiO2/Ta2O5 multi-layer thin films measured by AFM in Fig. 2 is 0.965 nm (r.m.s) . The area of the surface images of the Ta2O5/SiO2/Al/Cr metal plus dielectric films is 5 μm × 5 μm. The surface shape error of the Al-mirror of Cr/Al/SiO2/Ta2O5 multilayer thin films (9.0cm × 9.0cm) is tested by a Zygo interferometer, as shown in Figure 6. The PV surface error is less than 0.109 λ at 632.8 nm. The roughness of the multilayer thin films Al-mirror is tested by a Veeco interferometer, as shown in Figure 7.
The tested results showed that the Al-mirror maximum reflectivity at the wavelength range of 450-720 nm reached up to 97%, as shown in Figure 4. This indicates that the design of the Ta2O5/SiO2/Al/Cr multi-layer thin films is very reasonable and applicable, and the measured maximum reflectivity of the Ta2O5/SiO2/Al/Cr multilayer thin films could even reach up to 97%.
The polished Al-mirror is put into the microstructure of high-powered field scanning electron microscope, and the cross-sectional photographs of the Al-mirror are shown in Figure 3. The deposited layers can be clearly seen: high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal substrate, the transition layer of Cr, the reflector layer of Al, the protective layer of SiO2 and the transmission enhanced layer of Ta2O5. The thickness of the Cr film and the Al film is about 31.4 nm and 52.7 nm, respectively. The thicknesses of the Ta2O5 and SiO2 optical films are 120 nm and 41.5 nm.
The interface of the Cr film and the base is straight. The phenomenon where the Cr film debonding from the base surface cannot be observed, which benefits from the delicate and smooth deposition process of the Cr layer. This also shows that the stress between the Cr film and bismuthate glass is smaller than that of the bonding force between the Cr film and the base surface (bismuthate glass layer) . This may be ascribed to a chemical oxyidation reaction of gaseous Cr particles with bismuthate glass layer on the interface. Furthermore, defects (such as membrane pores and grain growing) are not observed inside of the Cr film.
As a result of the typical backscattered electron images (BEIs) of the heavy metal Al film, the film is bright white. It can be clearly seen that the Al film is tightly bonded to the Cr film as shown in Figure 3. This indicates that the stress is smaller than the bonding force between the Cr film and the Al film. There are no defects and cracks in the Al film, such as holes and large size grains. Micro-cracks of the Cr film is filled to the bottom by Al atoms. The Al film thickness (52.7 nm) is reasonable. In this experiment, the excitation of free electrons cannot penetrate through the Al-film, and can only be reflected by the Al film.
A continuous and tight SiO2 film is formed on the Al film, and the SiO2 film and Ta2O5 films are closely adhered together. The sputtered SiO2 layer should not be too thin or too thick, or else the reflectivity will decrease. The thickness of the Ta2O5 film and the SiO2 film (120 nm and 41.5 nm) is also reasonable for enhancing light reflection which is based on the principle of optical interference. Its main function is to form a protection film for the Al film. The advantage of this  design is avoiding the generation of ghost images. The reflective properties of the Al-mirror mainly are influenced by the Al-mirror base surface accuracy, surface roughness and degree of detail. Due to a high surface accuracy and a low surface roughness of the good Al-mirror base, the deposited layers on the base surface of the Al film are very smooth; therefore, ensuring that the reflective properties of the Al mirror are excellent in a wavelength range of 450-720 nm.
The SiO2 film is covered on the surface of Al film. The Al film is tightly bonded together with SiO2 film with no defects or cracks, so that the Al film and the air are completely isolated. The Ta2O5 film is deposited on the SiO2 film. The interface of the SiO2and Ta2O5 is flat, continuous, tight, and contains no cracks or other defects. In this experiment, the work wavelength range of the Al-mirror is 450-720 nm. The Ta2O5 film has good transparency, a high refractive index (2.08) , high mechanical stability and high mechanical strength, and the SiO2 film has a low refractive index (1.47) , small extinction coefficient, and creates a fine and smooth film. By depositing the Ta2O5 film on SiO2, a Ta2O5/SiO2 film system with high/low refractive index is fabricated. Herein, the thicknesses of these two films are set to enhance the light reflection, and are determined based on the principle of light wave interference. Additionally, the film thickness selection is for reducing the incident light absorption and protecting the Al film for a wavelength of 450-720 nm.
Figure 5 shows the appearance of the mirror surface. After grinding with Fe2O3 particles with a diameter of 10 μm, the surface of the mirror substrate in Figure 5a appears to be very rough. There are a large number of obvious white pits on the surface. When polished with 5 μm CeO2 particles, the white pits disappeared and the surface presented a defect-free specular surface, as shown in Figure 5b. The results indicate that the grain size is an important parameter for obtaining a smooth optical surface. Thus, the SiCp/Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films Al-mirror is manufactured (Figure 5c) . Four adherent layers of Ta2O5/SiO2/Al/Cr are preferred for much easier manufacturing. The novel high volume fraction SiCp/Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films mirrors are as shown in Figure5c.
The weights and some parameters of these novel SiCp/Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films mirrors are listed in Table 1.
Table 1
Parameters of SiCp/Al composite-titanium alloy-bismuthate glass metal plus multilayer thin films Al-mirror
Figure PCTCN2017080571-appb-000001
Figure PCTCN2017080571-appb-000002

Claims (15)

  1. Method for making a SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror, the method comprising:
    preparing a mirror substrate: machining SiCp/Al composite sample, titanium alloy sample and the bismuthate glass sample for experiments, grinding and polishing the top and the bottom of all samples, bonding the SiCp/Al composite sample, titanium alloy sampleandthe bismuthate sample as themirror substrate product in an oxygen furnace;
    fabricating the mirror with multi-layer films: coating multi-layer films on the surface of SiCp/Al composite-titanium alloy -bismuthate glass substrate by utilising an electron beam vapour deposition system, said multi-layer films referring to Cr, Al, SiO2and Ta2O5 films which are sequentially coated on the glass substrate;
    Method according to claim 1, wherein the size of the SiCp/Al composite sample is 74 mm in diameter, with a thickness of 11 mm, titanium alloy sample is 74 mm in diameter, with a thickness of 0.6 mm, and the size of the bismuthate glass sample is diameter 74 mm in diameter, with a thickness of 2 mm.
  2. Method according to claim 1, wherein the temperature of the oxygen furnace is 565℃.
  3. Method according to claim 1, wherein ultra-precision grinding is utilised in the grinding process to manufacture a high quality mirror with a nano-metric surface roughness.
  4. Method according to claim 1, wherein in the electron beam vapour deposition process, the optimisedvaccum degree is pumped down to the base pressure of 1.3×10-4 Pa.
  5. Method according to claim 1, wherein in the electron beam vapour deposition process, the purity of the target material is set at 5 N, and the distance between the targets and the substrate is 50 mm.
  6. Method according to claim 1, wherein in the electron beam vapour deposition process, the glass substrate and its holder are rotated at 50 HZ, and the electron gun voltage and current are 9 KV and 13 A respectively.
  7. Method according to claim 1, wherein in the electron beam vapour deposition process, the substrate temperature is 200℃, the deposition rate of Cr, Al, SiO2 and Ta2O5 films is 0.2, 2.0, 0.7 and 0.3 nm s-1, respectively, and the thickness of each layer is controlled by the electron beam vapour deposition time.
  8. Method according to claim 1, wherein the method also comprises the step of measuring and observing the products, which includes using an atomic force microscope (AFM, Dimension Icon, Bruker) to measure the surface roughness, using a Zygo GPI XP/D4 laser interferometer to measure the peak-to-valley (PV) value, using the Veeco NT9100 surface profiler to observe the surface morphology, using a Scanning Electron Microscope to observe the film structure, and using UV-visible spectroscopy (LAMBDA 900, US) with a wavelength range of 450-720 nm and a fixed 5° incident angle to examine the reflective index.
  9. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror comprising, in sequence, at least: a glass substrate, a transition layer, a reflection layer, a  protection layer and a transmission enhanced layer.
  10. SiCp /Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 11, wherein the glass substrate is SiCp/Al composite-titanium alloy-bismuthate glass metal substrate.
  11. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 11, wherein the transition layer is a Cr film, the reflector layer is an Al film, the protective layer is SiO2 and the transmission enhanced layer is Ta2O5.
  12. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 12, wherein the thicknesses of the Cr film and the Al film are about 31.4 nm and 52.7 nm, respectively, and the thicknesses of the Ta2O5 film and SiO2 optical film are 120 nm and 41.5 nm.
  13. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 13, wherein the interface of the Cr film and the glass base is straight, the Al film is bonded to the Cr film, the SiO2 film is covered on the surface of Al film, and the Ta2O5 film is deposited on the SiO2 film.
  14. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 11, wherein the SiCp/Al composite-titanium alloy-bismuthate glass Al-mirror is a circular mirror with a diameter of 74 mm, a thickness of 13.6 mm and a weight of 0.22 kg, which is made of SiCp/Al composite sample with a diameter of 74 mm and a thickness of 11 mm, titanium alloy sample with a diameter of 74 mm and a thickness of 0.6 mm and bismuthate glass sample with a diameter of 74 mm and a thickness of 2 mm.
  15. SiCp/Al composite-titanium alloy-bismuthate glass metal plus multi-layer films optics Al-mirror according to claim 12, wherein the mass of the mirror is 0.18kg, the area is 0.0043 m2, the area density is 41.85, the wave front error <0.109 at λ=632.8 nm, the surface roughness Ra is <0.965 nm, and the maximum reflectivity reaches up to 97%at the wavelength range of 450-720 nm.
PCT/CN2017/080571 2017-04-14 2017-04-14 OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME WO2018188072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/080571 WO2018188072A1 (en) 2017-04-14 2017-04-14 OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME
ZA2019/00313A ZA201900313B (en) 2017-04-14 2019-01-16 Optics al-mirror with high volume fraction sicp/al composite-titanium alloy-bismuthate glass metal plus dielectric multiple films and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080571 WO2018188072A1 (en) 2017-04-14 2017-04-14 OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
WO2018188072A1 true WO2018188072A1 (en) 2018-10-18

Family

ID=63792085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080571 WO2018188072A1 (en) 2017-04-14 2017-04-14 OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME

Country Status (2)

Country Link
WO (1) WO2018188072A1 (en)
ZA (1) ZA201900313B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227734A (en) * 2019-05-14 2019-09-13 太原理工大学 A method of improving Mg/Ti linkage interface performance
CN114114490A (en) * 2021-12-06 2022-03-01 湖北久之洋红外系统股份有限公司 Ultralow-stress durable metal reflecting film and preparation method and application thereof
CN114369791A (en) * 2021-12-24 2022-04-19 重庆四联特种装备材料有限公司 Method for improving white spots on surface of metal film
CN117512549A (en) * 2023-11-03 2024-02-06 北京创思镀膜有限公司 Film plating fixture and prism film plating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580832A (en) * 2004-05-20 2005-02-16 中国科学院上海技术物理研究所 Heavy-cabiber light composite material mirror and its preparing method
US7871664B2 (en) * 2006-03-23 2011-01-18 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
CN202305855U (en) * 2011-10-27 2012-07-04 西北工业大学 Light reflector blank
CN103894719A (en) * 2014-03-04 2014-07-02 华南理工大学 Method for connecting high-volume-fraction silicon carbide particle reinforcement aluminum matrix composite and titanium alloy
CN103145343B (en) * 2013-03-06 2015-11-18 宁波大学 A kind of metal nanoparticle composite block glass material and preparation method thereof
CN105174720A (en) * 2015-10-30 2015-12-23 哈尔滨工业大学 Manufacturing method for light reflecting mirror

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580832A (en) * 2004-05-20 2005-02-16 中国科学院上海技术物理研究所 Heavy-cabiber light composite material mirror and its preparing method
US7871664B2 (en) * 2006-03-23 2011-01-18 Guardian Industries Corp. Parabolic trough or dish reflector for use in concentrating solar power apparatus and method of making same
CN202305855U (en) * 2011-10-27 2012-07-04 西北工业大学 Light reflector blank
CN103145343B (en) * 2013-03-06 2015-11-18 宁波大学 A kind of metal nanoparticle composite block glass material and preparation method thereof
CN103894719A (en) * 2014-03-04 2014-07-02 华南理工大学 Method for connecting high-volume-fraction silicon carbide particle reinforcement aluminum matrix composite and titanium alloy
CN105174720A (en) * 2015-10-30 2015-12-23 哈尔滨工业大学 Manufacturing method for light reflecting mirror

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227734A (en) * 2019-05-14 2019-09-13 太原理工大学 A method of improving Mg/Ti linkage interface performance
CN114114490A (en) * 2021-12-06 2022-03-01 湖北久之洋红外系统股份有限公司 Ultralow-stress durable metal reflecting film and preparation method and application thereof
CN114369791A (en) * 2021-12-24 2022-04-19 重庆四联特种装备材料有限公司 Method for improving white spots on surface of metal film
CN117512549A (en) * 2023-11-03 2024-02-06 北京创思镀膜有限公司 Film plating fixture and prism film plating method

Also Published As

Publication number Publication date
ZA201900313B (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2018188072A1 (en) OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME
US5506038A (en) Abrasion wear resistant coated substrate product
CN104977632A (en) Hard anti-reflection coating layer and manufacture and use thereof
US20130057952A1 (en) Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof
US20150285957A1 (en) Hafnium or Zirconium Oxide Coating
JP2716230B2 (en) Infrared transparent material
US20130342900A1 (en) Reflection layer system for solar applications and method for the production thereof
EP0553161A1 (en) Abrasion wear resistant polymeric substrate product
Gao et al. Influence of sputtering pressure on the structure and properties of ZrO2 films prepared by rf reactive sputtering
EP1274660A1 (en) Method for applying an antireflection coating to inorganic optically transparent substrates
JP2020523642A (en) Expanding the reflection bandwidth of silver-coated laminates for high reflectors
JP6713485B2 (en) Coated optical object and method for manufacturing coated optical object
Özhan et al. Development of hard, anti-reflective coating for mid wave infrared region
CN100418913C (en) Transparent zirconium oxide - tantalum and/or tantalum oxide coating
Xu et al. SiNx thickness dependence of spectral properties and durability of protected-silver mirrors
WO2019019138A1 (en) OPTICAL Ag MIRROR WITH HIGH VOLVUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-PbO GLASS METAL PLUS DIELECTRIC FILMS, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF
CN111856628A (en) Anti-reflection film for sapphire substrate and preparation method thereof
US5120602A (en) Optical elements and method of manufacture
JP5916821B2 (en) Hafnium oxide coating
Wang et al. Optics Ag-mirror with high volume fraction-SiCp/Al composite–titanium alloy–PbO system glass metal plus dielectric multi-layer films
Kiryukhantsev-Korneev et al. Structure and properties of protective amorphous ZrBN coating
Meng et al. Ion beam assisted electron beam vacuum deposition of antireflective SiO2 coating on MgAl2O4 spinel
US20200132894A1 (en) Support for reflective optical element
TWI656231B (en) Method for preparing polycrystalline aluminum nitride high reflection mirror
JP3028576B2 (en) Heat shielding glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31-01-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905452

Country of ref document: EP

Kind code of ref document: A1