CN115155599A - 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用 - Google Patents

一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115155599A
CN115155599A CN202210373943.3A CN202210373943A CN115155599A CN 115155599 A CN115155599 A CN 115155599A CN 202210373943 A CN202210373943 A CN 202210373943A CN 115155599 A CN115155599 A CN 115155599A
Authority
CN
China
Prior art keywords
sio2
al2o3
catalyst
hollow mesoporous
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210373943.3A
Other languages
English (en)
Other versions
CN115155599B (zh
Inventor
杨钧
官万兵
王建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hydrogen Technology Co ltd
Original Assignee
Zhejiang Hydrogen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Hydrogen Technology Co ltd filed Critical Zhejiang Hydrogen Technology Co ltd
Priority to CN202210373943.3A priority Critical patent/CN115155599B/zh
Publication of CN115155599A publication Critical patent/CN115155599A/zh
Application granted granted Critical
Publication of CN115155599B publication Critical patent/CN115155599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • B01J35/398
    • B01J35/40
    • B01J35/615
    • B01J35/617
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明提供了一种包覆Ni‑In@SiO2‑Al2O3的中空介孔纳米催化剂及其制备方法和应用。催化剂由Ni、Si、Al、O、In元素组成,Ni‑In纳米颗粒以无定形状态存在于载体SiO2内部,所述载体SiO2外含有包覆层Al2O3作为催化剂的壳体。本发明提供的包覆Ni‑In@SiO2‑Al2O3的中空介孔纳米催化剂具有独特的中空二氧化硅壳结构,使得Ni‑In纳米颗粒能够保持高度的分散性,大大提高了催化剂的反应活性;由于In金属的添加,使得催化剂的抗积炭和耐高温能力均得到了大幅的提高;本发明的催化剂用于甲烷水蒸汽重整制氢反应,原料气甲烷的转化率最以及合成气氢气的选择性高。

Description

一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备 方法和应用
技术领域
本发明属于催化剂制备领域,具体涉及一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用。
背景技术
氢气具有热转化效率高、环境零污染、能量密度高和输送成本低等优点,是目前最具吸引力的清洁高效能源,在石油化工和动力燃料行业中均有广泛应用,发展大规模和低成本制氢技术,已成为国家的能源战略方向。氢能与其他能源相比,具有明显的提取与应用优势,它不仅可通过传统的化石能源提取,还可以通过太阳能、风能等可再生能源制备,并具有热值高、无污染、利用形式多样、储运方便等优点。
我国天然气储量极为丰富,环境接受性良好。天然气的主要成分是甲烷,杂质含量少,因此甲烷不仅在自然界分布广泛,而且可以直接用作高效、优质、清洁的能源,还可以通过转化生产更有意义的化工原料。以天然气为原料制氢主要有水蒸汽重整、CO2重整和部分氧化法。其中甲烷水蒸汽重整后具有较高的氢气产率,故而常被用作制氢的一种高效方法。
目前甲烷水蒸气重整制氢催化剂多为负载型催化剂,活性组分有以Rh、Pt、Pb、Ir为主的贵金属,以及以Ni、Co、Fe为主的非贵金属。贵金属催化剂在高温下通常因活性组分易烧结和流失而造成失活,并且贵金属价格昂贵,不适于大规模工业化生产。与贵金属催化剂相比,非贵金属催化剂因具有良好的催化活性和稳定性,并且价格低廉。然而,在反应温度过高时,非贵金属催化剂表面易积炭以及金属颗粒易团聚失活等缺点。因此,开发一种天然气水蒸气重整制氢的长寿命高效率的催化剂就具有较高的应用价值。
发明内容
本发明为解决催化剂金属颗粒易团聚失活,以及抗积炭和耐高温能力差的问题。本发明提供了一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法,该催化剂用于甲烷水蒸汽重整制氢反应,能够大大提高催化剂的反应活性,同时使得催化剂的抗积炭和耐高温能力均得到了大幅的提高。
本发明提供一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂,所述催化剂由Ni、Si、Al、O、In元素组成,Ni-In纳米颗粒以无定形状态存在于载体SiO2内部,所述载体SiO2外含有包覆层Al2O3作为催化剂的壳体。
作为进一步的优选,所述催化剂中Ni和In两种元素的摩尔比为Ni:In=1:(0~2)。
作为进一步的优选,所述载体SiO2与包覆层Al2O3的质量比为SiO2:Al2O3=(0.5~15):(70~150)。
作为进一步的优选,所述催化剂的比表面积400m2/g~700m2/g,孔容0.5cm3/g~1.5cm3/g,孔径5nm~20nm。
作为进一步的优选,一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的制备方法,包括如下步骤:
步骤S1:将Al2O3载体在马弗炉中300℃~500℃下加热3h~6h后降至室温待用;
步骤S2:将高分子有机物聚乙烯亚胺PEI和表面活性剂CTAB混合于去离子水中,搅拌5~10分钟,用氢氧化钠和硝酸的水溶液调节pH至4,得到第一混合溶液;
步骤S3:将镍盐和铟盐混于一定量的去离子水中,完全溶解后加入步骤S2中得到的第一混合溶液,磁力搅拌约10h~12h,形成第二混合溶液;
步骤S4:在步骤S3形成的第二混合溶液加入硅源,搅拌至有白色的絮状物出现,静置处理后,将所述第二混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,将离心后的固体放入40℃~80℃的烘箱烘干8h~10h;
步骤S5:将步骤S4得到的固体粉末放入马弗炉在空气气氛下焙烧,以5℃/min~10℃/min升温至500℃~700℃,再恒温3h~5h,再将焙烧完的固体粉末放入陶瓷方舟在500℃~700℃下氢气还原3h~5h;
步骤S6:将步骤S5得到的固体粉末与步骤S1得到的Al2O3载体混合,加入去离子水制成湿物料,将所述湿物料加入挤条机中挤出成型后得到中空介孔纳米催化剂。
作为进一步的优选,所述步骤S3中的镍盐为Ni(NO3)2·6H2O,铟盐为In(NO3)3·4H2O。
作为进一步的优选,所述步骤S3中的镍盐和铟盐的摩尔比为1:(0~2)。
作为进一步的优选,所述步骤S4中的硅源为正硅酸四甲酯或正硅酸四乙酯。
作为进一步的优选,将所述包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂用于甲烷水蒸气重整制氢反应。
本发明的技术方案具有如下优点或有益效果:
(1)本发明在传统的Ni基催化剂的基础上添加了In金属,并通过一种独特的合成方法合成了Ni-In@SiO2-Al2O3中空介孔纳米催化剂。这种催化剂具有独特的中空二氧化硅壳结构,通过限域效应能够很好的保护内部的Ni-In金属颗粒防止其在高温还原中团聚失活,使得Ni-In纳米颗粒能够保持高度的分散性,且壳层上丰富的孔结构也为反应提供了优异的传质通道,大大提高了催化剂的反应活性。
(2)本发明由于In金属的添加,使得催化剂的抗积炭和耐高温能力均得到了大幅的提高。
(3)本发明中的催化剂的催化性能优越,在甲烷水蒸气重整制氢反应中原料气甲烷的转化率最高可达97.5%,合成气中氢气选择性最高可达95.2%。
附图说明
图1是本发明的实施例1制备的催化剂Ni-In@SiO2的TEM谱图;
图2是本发明的实施例1制备的催化剂Ni-In@SiO2的XRD谱图。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到的。
实施例1:
A.先将1.5mL浓度为0.1M聚乙烯亚胺(PEI)和十六烷基三甲基溴化铵(CTAB)水溶液混合于36g的去离子水中,搅拌5分钟,用氢氧化钠和硝酸的水溶液调节溶液的pH至4左右,再向其中分别加入1.5mL浓度为0.1M的Ni(NO3)2·6H2O和In(NO3)3·4H2O的水溶液,继续稳定pH在4左右,磁力搅拌约12h。在上述搅拌后的溶液中加入1.2mL的硅酸四乙酯,搅拌2天至烧杯中有大量白色的絮状物出现。
B.将上述溶液静置12h后,将混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,并将离心后的固体放入60℃的烘箱烘干10h,再将烘干后得到的固体粉末放入马弗炉在空气气氛下焙烧,以10℃/min升温至500℃,再恒温3h,最后将焙烧完得到的固体粉末放入陶瓷方舟在500℃下氢气还原3h,得到Ni1-In1@SiO2催化剂。
C.将上述还原后的催化剂研磨成固体粉末,再与在马弗炉中500℃焙烧后的Al2O3载体按1:100的比例混合,加入去离子水,再将湿物料加入挤条机中挤出成型,得到Ni1-In1@SiO2-Al2O3催化剂,编号为1#。
实施例2:
A.先将1.5mL浓度为0.1M聚乙烯亚胺(PEI)和十六烷基三甲基溴化铵(CTAB)水溶液混合于36g的去离子水中,搅拌5分钟,用氢氧化钠和硝酸的水溶液调节溶液的pH至4左右,再向其中分别加入1.5mL浓度为0.1M的Ni(NO3)2·6H2O的水溶液,继续稳定pH在4左右,磁力搅拌约12h。在上述搅拌后的溶液中加入1.2mL的硅酸四乙酯,搅拌2天至烧杯中有大量白色的絮状物出现。
B.将上述溶液静置12h后,将混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,并将离心后的固体放入60℃的烘箱烘干10h,再将烘干后得到的固体粉末放入马弗炉在空气气氛下焙烧,以10℃/min升温至500℃,再恒温3h,最后将焙烧完得到的固体粉末放入陶瓷方舟在500℃下氢气还原3h,得到Ni@SiO2催化剂。
C.将上述还原后的催化剂研磨成固体粉末,再与在马弗炉中500℃焙烧后的Al2O3载体按1:100的比例混合,加入去离子水,再将湿物料加入挤条机中挤出成型,得到Ni@SiO2-Al2O3催化剂,编号为2#。
实施例3:
A.先将1.5mL浓度为0.1M聚乙烯亚胺(PEI)和十六烷基三甲基溴化铵(CTAB)水溶液混合于36g的去离子水中,搅拌5分钟,用氢氧化钠和硝酸的水溶液调节溶液的pH至4左右,再向其中分加入1.5mL和0.75mL浓度为0.1M的Ni(NO3)2·6H2O和In(NO3)3·4H2O的水溶液,继续稳定pH在4左右,磁力搅拌约12h。在上述搅拌后的溶液中加入1.2mL的硅酸四乙酯,搅拌2天至烧杯中有大量白色的絮状物出现。
B.将上述溶液静置12h后,将混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,并将离心后的固体放入60℃的烘箱烘干10h,再将烘干后得到的固体粉末放入马弗炉在空气气氛下焙烧,以10℃/min升温至500℃,再恒温3h,最后将焙烧完得到的固体粉末放入陶瓷方舟在500℃下氢气还原3h,得到Ni1-In0.5@SiO2催化剂。
C.将上述还原后的催化剂研磨成固体粉末,再与在马弗炉中500℃焙烧后的Al2O3载体按1:100的比例混合,加入去离子水,再将湿物料加入挤条机中挤出成型,得到Ni1-In0.5@SiO2-Al2O3催化剂,编号为3#。
实施例4:
A.先将1.5mL浓度为0.1M聚乙烯亚胺(PEI)和十六烷基三甲基溴化铵(CTAB)水溶液混合于36g的去离子水中,搅拌5分钟,用氢氧化钠和硝酸的水溶液调节溶液的pH至4左右,再向其中分加入1.5mL浓度为0.1M的Ni(NO3)2·6H2O和In(NO3)3·4H2O的水溶液,继续稳定pH在4左右,磁力搅拌约12h。在上述搅拌后的溶液中加入1.2mL的硅酸四甲酯,搅拌2天至烧杯中有大量白色的絮状物出现。
B.将上述溶液静置12h后,将混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,并将离心后的固体放入60℃的烘箱烘干10h,再将烘干后得到的固体粉末放入马弗炉在空气气氛下焙烧,以10℃/min升温至500℃,再恒温3h,最后将焙烧完得到的固体粉末放入陶瓷方舟在500℃下氢气还原3h,得到Ni1-In1@SiO2催化剂。
C.将上述还原后的催化剂研磨成固体粉末,再与在马弗炉中500℃焙烧后的Al2O3载体按1:100的比例混合,加入去离子水,再将湿物料加入挤条机中挤出成型,得到Ni1-In1@SiO2-Al2O3催化剂,编号为4#。
将上述实施例中得到的各编号催化剂用于甲烷水重整反应,取200mg上述制备的催化剂将其装入石英反应管的恒温区。原料气中稀释气体为氦气,其与原料气中甲烷的体积比约为He:CH4=15:2,其中原料水蒸气由蠕动泵进液体去离子水后汽化(液体水流速=0.2ml/min)。反应条件为,反应温度为800℃;操作压力为1MPa;水气比为3。
各催化剂的催化性能如下表所示
催化剂 CH<sub>4</sub>转化率(%) H<sub>2</sub>选择性(%)
1# 97.5 95.2
2# 90.1 90.6
3# 93.6 91.6
4# 95.2 92.8
图1为实施例1制备的Ni-In@SiO2催化剂的透射电镜(TEM)图。在电镜图中可以观察到明显的中空结构,Ni-In纳米颗粒均匀的分散在SiO2壳内,催化剂颗粒大小为18~20nm,其内部空腔大小约为15~18nm。
图2为实施例1制备的Ni-In@SiO2催化剂的X射线粉末衍射(XRD)谱图,在该谱图中可以清楚的观察到SiO2的特征峰,结合上述的透射电镜图,可以说明催化剂在上述制备条件下形成了中空的SiO2壳结构。此外,在XRD上没有观察到Ni-In纳米颗粒的明显特征峰,说明在SiO2壳内的活性组分Ni-In高度均匀分散。
本发明在传统的Ni基催化剂的基础上添加了In金属,并通过一种独特的合成方法合成了Ni-In@SiO2-Al2O3中空介孔纳米催化剂。这种催化剂具有独特的中空二氧化硅壳结构,通过限域效应能够很好的保护内部的Ni-In金属颗粒防止其在高温还原中团聚失活,使得Ni-In纳米颗粒能够保持高度的分散性。在甲烷水蒸气重整制氢反应中原料气甲烷的转化率最高可达97.5%,合成气中氢气选择性最高可达95.2%。
最后说明的是,以上仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (9)

1.一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂,其特征在于,催化剂由Ni、Si、Al、O、In元素组成,Ni-In纳米颗粒以无定形状态存在于载体SiO2内部,所述载体SiO2外含有包覆层Al2O3作为催化剂的壳体。
2.如权利要求1所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂,其特征在于,所述催化剂中Ni和In两种元素的摩尔比为Ni:In=1:(0~2)。
3.如权利要求1所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂,其特征在于,所述载体SiO2与包覆层Al2O3的质量比为SiO2:Al2O3=(0.5~15):(70~150)。
4.如权利要求1所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂,其特征在于,所述催化剂的比表面积400m2/g~700m2/g,孔容0.5cm3/g~1.5cm3/g,孔径5nm~20nm。
5.一种如权利要求1所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的制备方法,其特征在于,包括如下步骤:
步骤S1:将Al2O3载体在马弗炉中300℃~500℃下加热3h~6h后降至室温待用;
步骤S2:将高分子有机物聚乙烯亚胺PEI和表面活性剂CTAB混合于去离子水中,搅拌5~10分钟,用氢氧化钠和硝酸的水溶液调节pH至4,得到第一混合溶液;
步骤S3:将镍盐和铟盐混于一定量的去离子水中,完全溶解后加入步骤S2中得到的第一混合溶液,磁力搅拌约10h~12h,形成第二混合溶液;
步骤S4:在步骤S3形成的第二混合溶液加入硅源,搅拌至有白色的絮状物出现,静置处理后,将所述第二混合液移至离心管,用去离子水和乙醇分别离心洗涤3~5次,用滴管吸出上层溶液,将离心后的固体放入40℃~80℃的烘箱烘干8h~10h;
步骤S5:将步骤S4得到的固体粉末放入马弗炉在空气气氛下焙烧,以5℃/min~10℃/min升温至500℃~700℃,再恒温3h~5h,再将焙烧完的固体粉末放入陶瓷方舟在500℃~700℃下氢气还原3h~5h;
步骤S6:将步骤S5得到的固体粉末与步骤S1得到的Al2O3载体混合,加入去离子水制成湿物料,将所述湿物料加入挤条机中挤出成型后得到中空介孔纳米催化剂。
6.如权利要求5所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的制备方法,其特征在于,所述步骤S3中的镍盐为Ni(NO3)2·6H2O,铟盐为In(NO3)3·4H2O。
7.如权利要求5所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的制备方法,其特征在于,所述步骤S3中的镍盐和铟盐的摩尔比为1:(0~2)。
8.如权利要求5所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的制备方法,其特征在于,所述步骤S4中的硅源为正硅酸四甲酯或正硅酸四乙酯。
9.一种如权利要求1所述的包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂的应用,其特征在于,将所述包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂用于甲烷水蒸气重整制氢反应。
CN202210373943.3A 2022-04-11 2022-04-11 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用 Active CN115155599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210373943.3A CN115155599B (zh) 2022-04-11 2022-04-11 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210373943.3A CN115155599B (zh) 2022-04-11 2022-04-11 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115155599A true CN115155599A (zh) 2022-10-11
CN115155599B CN115155599B (zh) 2023-07-25

Family

ID=83482840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210373943.3A Active CN115155599B (zh) 2022-04-11 2022-04-11 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115155599B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419195A1 (de) * 1993-07-12 1995-01-19 Degussa Strukturierter Katalysator, bestehend aus mikroporösen Oxiden von Silicium, Aluminium und Titan
CN1729138A (zh) * 2002-12-20 2006-02-01 本田技研工业株式会社 用于氢产生的无贵金属的镍催化剂配方
JP2014105120A (ja) * 2012-11-26 2014-06-09 National Institute Of Advanced Industrial & Technology メタン改質方法および、それに用いるメタン改質触媒
CN104056633A (zh) * 2014-06-18 2014-09-24 太原理工大学 一种SiO2包裹的核壳结构催化剂的制备方法
CN104511279A (zh) * 2014-11-26 2015-04-15 北京化工大学 一种高效甲烷二氧化碳重整Ni/SiO2催化剂及其静电纺丝的制备方法
CN106902826A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2O3@Al2O3‑SiO2催化剂及制备方法和应用
CN107552054A (zh) * 2017-08-18 2018-01-09 南昌大学 一种甲烷干气重整核壳结构镍基催化剂及制备方法
CN107921427A (zh) * 2015-07-01 2018-04-17 沙特基础工业全球技术公司 甲烷干重整反应、用于甲烷干重整反应的含镍和铈的核壳结构的催化剂及其制备
CN108380197A (zh) * 2017-11-23 2018-08-10 天津工业大学 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法
CN108906070A (zh) * 2018-07-02 2018-11-30 青岛大学 用于生物质合成气定向催化转化的核壳型催化剂及制备
CN109967081A (zh) * 2019-04-01 2019-07-05 大连理工大学 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
US20190275501A1 (en) * 2018-03-12 2019-09-12 Su Yun Ha Catalysts comprising silicon modified nickel
CN110721671A (zh) * 2018-07-17 2020-01-24 中国科学院宁波材料技术与工程研究所 一种无定形SiO2-Al2O3负载金属型催化剂及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419195A1 (de) * 1993-07-12 1995-01-19 Degussa Strukturierter Katalysator, bestehend aus mikroporösen Oxiden von Silicium, Aluminium und Titan
CN1729138A (zh) * 2002-12-20 2006-02-01 本田技研工业株式会社 用于氢产生的无贵金属的镍催化剂配方
JP2014105120A (ja) * 2012-11-26 2014-06-09 National Institute Of Advanced Industrial & Technology メタン改質方法および、それに用いるメタン改質触媒
CN104056633A (zh) * 2014-06-18 2014-09-24 太原理工大学 一种SiO2包裹的核壳结构催化剂的制备方法
CN104511279A (zh) * 2014-11-26 2015-04-15 北京化工大学 一种高效甲烷二氧化碳重整Ni/SiO2催化剂及其静电纺丝的制备方法
CN107921427A (zh) * 2015-07-01 2018-04-17 沙特基础工业全球技术公司 甲烷干重整反应、用于甲烷干重整反应的含镍和铈的核壳结构的催化剂及其制备
CN106902826A (zh) * 2017-02-28 2017-06-30 山西大学 一种包覆Ni‑Al2O3@Al2O3‑SiO2催化剂及制备方法和应用
CN107552054A (zh) * 2017-08-18 2018-01-09 南昌大学 一种甲烷干气重整核壳结构镍基催化剂及制备方法
CN108380197A (zh) * 2017-11-23 2018-08-10 天津工业大学 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法
US20190275501A1 (en) * 2018-03-12 2019-09-12 Su Yun Ha Catalysts comprising silicon modified nickel
CN108906070A (zh) * 2018-07-02 2018-11-30 青岛大学 用于生物质合成气定向催化转化的核壳型催化剂及制备
CN110721671A (zh) * 2018-07-17 2020-01-24 中国科学院宁波材料技术与工程研究所 一种无定形SiO2-Al2O3负载金属型催化剂及其制备方法和应用
CN109967081A (zh) * 2019-04-01 2019-07-05 大连理工大学 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法

Also Published As

Publication number Publication date
CN115155599B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN110252378B (zh) 一种单原子双活性中心Co基氨合成催化剂及其制备方法
JP6185073B2 (ja) 封入ナノ粒子
CN108855095B (zh) 甲烷重整多核壳空心型催化剂镍-镍硅酸盐-SiO2的制备方法
CN100443223C (zh) 原位合成碳纳米管/镍/铝增强增韧氧化铝基复合材料制备方法
CN108786822B (zh) 一种甲烷重整多核壳空心型镍-镍硅酸盐-CeO2的制备方法
CN113548684B (zh) 一种介孔氧化铝基核壳复合材料及其单胶束导向界面组装方法和应用
CN108636412B (zh) 甲烷和二氧化碳重整多核壳空心型催化剂镍-镍硅酸盐的制备方法
CN114453000A (zh) 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN111229276B (zh) 一种双层复合型电解水阳极催化剂及其制备方法
CN114950502B (zh) 一种具有光催化析氢活性和稳定性的纳米棒状红磷光催化剂的制备方法
CN114570415B (zh) 一种用于丙烷脱氢制丙烯的Pt@多级孔沸石催化剂及其制备方法
CN107282083B (zh) 一种硅锌掺杂的石墨相氮化碳纳米材料及其在光催化还原中的应用
CN101857267B (zh) 一种具有核壳结构的二氧化钛纳米材料的制备方法
CN107572509A (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
US11845666B2 (en) Method for preparing synthesis gas
CN110668446A (zh) 耐高温SiC气凝胶的制备方法
Abboud et al. Unsupported and silica-supported nickel nanoparticles: Synthesis and application in catalysis
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN112939081B (zh) 一种蛋黄-蛋壳结构的钴掺杂二硫化钼的制备方法
CN115155599B (zh) 一种包覆Ni-In@SiO2-Al2O3的中空介孔纳米催化剂及其制备方法和应用
JP4930915B2 (ja) 高純度SiC微粉末の製造方法
US10376865B2 (en) Methods of synthesizing nano-sized tungsten particles by sol-gel process and method of preparing light oil from extra-heavy oil using the synthesized nano-sized tungsten particles
CN113522296B (zh) CO加氢制乙醇CuZn催化剂及其制备方法和应用
CN112661125A (zh) 一种介孔氮化碳中空微球及其制备方法
CN114522707A (zh) 一种碱土金属碳酸盐负载纳米钌复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant