CN115141366B - 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用 - Google Patents

一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用 Download PDF

Info

Publication number
CN115141366B
CN115141366B CN202110337636.5A CN202110337636A CN115141366B CN 115141366 B CN115141366 B CN 115141366B CN 202110337636 A CN202110337636 A CN 202110337636A CN 115141366 B CN115141366 B CN 115141366B
Authority
CN
China
Prior art keywords
reaction
temperature
maleic anhydride
hours
polyether polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110337636.5A
Other languages
English (en)
Other versions
CN115141366A (zh
Inventor
朱建海
杨正勇
夏军
胡丽云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN202110337636.5A priority Critical patent/CN115141366B/zh
Publication of CN115141366A publication Critical patent/CN115141366A/zh
Application granted granted Critical
Publication of CN115141366B publication Critical patent/CN115141366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

本发明涉及一种提高马来酸酐类大分子单体合成过程中安全性的制备方法及应用。所述方法包括如下步骤:在50℃以下将聚醚多元醇和固体马来酸酐混合,然后在0.2~0.4MPa条件下升温至45~65℃,保持1~3小时,接着升温进行酯化反应,酯化反应完成后,加入碱性催化剂,最后加入环氧化物进行接枝反应,得到所述大分子单体。本发明降低了马来酸酐在升温溶解过程中的升华量,大大减少了废渣的产生,防止上述废渣遇到高浓度的钾离子,发生分解反应,造成温度和压力迅速聚集,再结合反应体系内存在环氧化物,从而带来极大的安全隐患。

Description

一种提高马来酸酐类大分子单体合成过程中安全性的方法及 应用
技术领域
本发明涉及聚合物多元醇的技术领域,具体地说,是涉及一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用。
背景技术
聚合物多元醇(POP)是用于制备聚氨酯泡沫的主要原材料,该多元醇含有羟基,侧链上带有苯乙烯或丙烯腈的聚合物形成的微小颗粒,可进行聚氨酯发泡,并使泡沫具有更好的承载性,是制造高回弹软质泡沫的主要原料。在制造泡沫的配方中加入聚合物多元醇可提高泡沫的承载性,改善粒子增强材料的加工工艺,分散填充的聚合物超细粒子对聚氨酯基体起着活性填料的增强作用,可提高PU泡沫的模量、拉伸强度、撕裂强度、硬度等。主要应用于飞机和汽车工业、软垫家具、鞋材和工艺制品。
目前国内聚合物多元醇厂家其大分子单体的主要生产工艺是将聚醚跟固体马来酸酐进行反应,引入双键,然后再用环氧化物进行封端,制成大分子单体,但是该方法由于要用到马来酸酐,其易在50℃左右下进行升华,在反应釜气相局部区域结聚而没有参与酯化反应,不仅影响大分子单体的转化率,而且结聚的马来酸酐在钾离子条件下会发生分解反应,随之放出二氧化碳和大量热量,反应温度和压力会迅速聚集,造成釜内压力急剧上升,引发环氧化物局部闪爆,带来安全隐患。
目前聚合物多元醇厂家普遍的做法是定期对大分子单体反应釜进行水枪冲洗,将釜壁废渣清干净,但该方法不仅费时费力,而且并不能彻底消灭安全隐患。
或者按照专利CN105622920A(一种大分子单体的制备方法),在酯化反应步骤中采用液体马来酸酐代替固体马来酸酐与聚醚多元醇进行酯化反应,包括步骤:(1)在反应釜内投入聚醚多元醇和液体马来酸酐,搅拌条件下进行酯化反应;(2)酯化完全后,加入环氧化物,并在碱性催化剂存在条件下,进行接枝反应;(3)然后真空脱气既得所述的大分子单体。该方法使用液体马来酸酐进行酯化反应,能够使马来酸酐充分反应,从而避免生产过程中产生废渣的情况。但是液体马来酸酐粘度较大,产品质量不够稳定,且投料过程结束后极易堵塞管道。
发明内容
本发明的目的在于克服以上现有技术中存在的缺点,提供一种提高马来酸酐类大分子单体合成过程中安全性的方法,具有反应不产生废渣,反应过程安全系数高等特点。
本发明目的之一为提供一种提高马来酸酐类大分子单体合成过程中安全性的方法,包括以下步骤:
在50℃以下将聚醚多元醇和固体马来酸酐混合,然后在0.2~0.4MPa条件下升温至45~65℃,保持1~3小时,接着升温进行酯化反应,酯化反应完成后,加入碱性催化剂,最后加入环氧化物进行接枝反应,得到所述大分子单体。
本发明所述方法中,所述聚醚多元醇优选自2~6官能度的聚醚多元醇,所述聚醚多元醇的分子量优选为3000~15000。
本发明所述方法中,所述环氧化物优选自环氧乙烷、环氧丙烷、环氧丁烷的一种或多种。
本发明所述方法中,所述碱性催化剂优选自氢氧化钾、氢氧化钠、咪唑中的一种或多种。
本发明所述方法中,所述碱性催化剂在总反应物料中的浓度为50~300ppm,优选为80~250ppm。
本发明所述方法中,所述固体马来酸酐和聚醚多元醇的摩尔之比为(0.5~1.5):1,优选(0.6~1.3):1。
本发明所述方法中,所述环氧化物与聚醚多元醇的摩尔之比为(1~10):1,优选(1.5~5):1。
本发明所述方法中,所述酯化反应可采用本领域通常的反应条件。
根据本发明一种实施方式,所述酯化反应的温度优选为80~140℃,更优选为100~130℃。
根据本发明一种实施方式,所述酯化反应的压力优选为0.1~0.4MPa。
根据本发明一种实施方式,所述酯化反应时间优选为1~5小时,更优选为2~4小时。
本发明所述方法中,加入碱性催化剂时,优选在真空以及搅拌停运和真空阀门关闭状态下吸入碱性催化剂。
本发明所述方法中,所述接枝反应可采用本领域通常的反应条件。
根据本发明一种实施方案,所述接枝反应的温度优选为100~150℃,更优选为110~140℃。
根据本发明一种实施方式,所述接枝反应的压力优选为-0.1~0.5MPa。
根据本发明一种实施方式,所述接枝反应的时间优选为5~15小时,更优选为6~12小时。
根据本发明一种优选的实施方式,所述方法可包括以下步骤:
(1)在反应釜内投入聚醚多元醇,并降温至50℃以下后投入固体马来酸酐;
(2)反应釜充氮加压至0.2~0.4MPa,开搅拌进行升温,升温至45~65℃后,保持该温度搅拌1~3小时,再升温进行酯化反应;
(3)酯化反应完成后,吸入碱性催化剂;
(4)反应釜中加入环氧化物,进行接枝反应;
(5)反应釜抽真空脱气。
根据本发明一种实施方案,步骤(3)中,酯化反应完成后,反应釜停止搅拌,抽真空并关真空阀门,吸入碱性催化剂。
根据本发明一种实施方案,步骤(5)中,真空脱气的温度为100~150℃,压力为-0.095~-0.088MPa,时间为1~5小时。
本发明目的之二为提供所述的方法在制备马来酸酐类大分子单体中的应用。
本发明方法可应用于马来酸酐类大分子单体的生产中。
在本发明中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。在下文中,各个技术方案之间原则上可以相互组合而得到新的技术方案,这也应被视为在本文中具体公开。
本发明是通过以下技术方案实现的:
本发明通过大量实验发现,废渣的产生主要是由于固体马来酸酐升温溶解过程中因升华而产生的,因此本发明提供一种用于防止大分子单体制备过程中废渣产生和提高安全性的方法,为降低马来酸酐升华冷却凝结在釜顶表面,增加马来酸酐在升华阶段的加压恒温控制,将原先直接升温至反应温度调整为先升至45~65℃,溶解过程中对系统增压至0.2~0.4MPa,恒温、稳压1~3小时后继续升温,使马来酸酐完全溶解以减少马来酸酐升华、凝结的情况;进一步的,拉真空吸入催化剂时必须真空阀门关闭,并确保搅拌处于停运状态,防止钾离子溅入气相釜璧结渣上,引发环氧化物局部闪爆,而带来安全隐患。
本发明降低了马来酸酐在升温溶解过程中的升华量,提高了大分子单体的双键转化率,大大减少了废渣的产生,防止上述废渣遇到高浓度的钾离子,发生分解反应,造成温度和压力迅速聚集,再结合反应体系内存在环氧化物,从而带来极大的安全隐患。
附图说明
图1为对比例1的工艺3个月后反应釜结垢情况。
图2为实施例1的工艺3个月后反应釜结垢情况。
从图1中可以看出,在马来酸酐直接进行升温进行酯化反应过程中,马来酸酐发生升华现象;在生产进行3个月后,在反应釜面上的加料口发现有马来酸酐升华形成的针状结晶物。
从图2中可以看出,通过增加马来酸酐在升华阶段的加压恒温控制,可以减少马来酸酐升华、凝结的情况;在生产进行3个月后,在反应釜面上基本没有发现马来酸酐升华形成的针状结晶物。
具体实施方式
下面结合具体实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明的进一步说明,不能理解为对本发明保护范围的限制,本领域技术人员根据本发明内容对本发明做出的一些非本质的改进和调整仍属本发明的保护范围。
另外需要说明的是,在以下具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
实施例与对比例中采用的原料,如果没有特别限定,那么均是现有技术公开的,例如可直接购买获得或者根据现有技术公开的制备方法制得。
在实施例和对比例中,大分子单体的酸值是通过酸碱滴定进行测定,粘度是通过旋转粘度计进行测定。
在本发明一个优选的实施方案中,所述提高马来酸酐类大分子单体合成过程中安全性的制备方法,可包括以下步骤:
(1)在反应釜内投入聚醚多元醇,并降温至50℃以下后投入固体马来酸酐;
(2)反应釜充氮加压至0.2~0.4MPa,开搅拌进行升温,升温至45~65℃后,保持该温度搅拌1~3小时,再升温至反应温度进行酯化反应,反应时间1~5小时;
(3)酯化反应完成后,吸入碱性催化剂;
(4)反应釜加入环氧化物,并在碱性催化剂存在条件下,进行接枝反应;
(5)最后反应釜拉真空脱除未反应的环氧化物既得所述的大分子单体;
在一种优选的实施方式中,步骤(1)中,所述聚醚多元醇选自2~6官能度的聚醚多元醇,分子量为3000~15000。
在一种优选的实施方式中,步骤(1)中,所述固体马来酸酐和聚醚多元醇的摩尔之比为(0.5~1.5):1;优选(0.6~1.3):1。
在一种优选的实施方式中,步骤(2)中,所述酯化反应的温度为80~140℃,优选为100~130℃;
酯化反应的压力为0.1~0.4MPa,
酯化反应时间为1~5小时,优选为2~4小时。
在一种优选的实施方式中,步骤(3)中,所述碱性催化剂选自氢氧化钾、氢氧化钠、咪唑中的一种或多种。
所述碱性催化剂在接枝反应物料中的浓度为50~300ppm,优选为80~250ppm。
在一种优选的实施方式中,步骤(3)中,酯化反应完成后,反应釜停止搅拌,抽真空并关真空阀门,吸入碱性催化剂。
在一种优选的实施方式中,步骤(4)中,所述环氧化物选自环氧乙烷、环氧丙烷、环氧丁烷的一种或多种。
在一种优选的实施方式中,步骤(4)中,所述环氧化物与聚醚多元醇的摩尔之比为(1~10):1;优选(1.5~5):1。
在一种优选的实施方式中,步骤(4)中,所述接枝反应的温度为100~150℃,优选110~140℃;
接枝反应的压力为-0.1~0.5MPa;
接枝反应的时间为5~15小时,优选6~12小时。
在一种优选的实施方式中,步骤(5)中,所述真空脱气的温度为100~150℃,压力为-0.095~-0.088MPa,时间为1~5小时。
实施例1
在常温下,在反应釜中加入15g的固体马来酸酐和800g的聚醚多元醇(GEP-330N),反应釜充氮加压至0.3MPa后,开启搅拌进行升温,升温至50℃后,保持该温度搅拌1小时,再升温至反应温度115℃进行酯化反应,反应压力为0.3MPa,计时2小时;酯化反应结束后,反应釜停搅拌,拉真空后关真空阀门,吸入0.1g催化剂氢氧化钾和40g环氧乙烷,在115℃反应温度和0.2MPa的反应压力下,接枝反应8小时,接枝反应结束后,在上述温度下,拉真空脱气2小时,得到815g大分子单体A;该产品酸值为0.186mgKOH/g,粘度4512mpas/25℃,双键转化率95.6%。
实施例2
在常温下,在反应釜中加入14g的固体马来酸酐和800g的聚醚多元醇(GEP-330N),反应釜充氮加压至0.35MPa后,开启搅拌进行升温,升温至55℃后,保持该温度搅拌2小时,再升温至反应温度120℃进行酯化反应,反应压力为0.35MPa,计时3小时;酯化反应结束后,反应釜停搅拌,拉真空后关真空阀门,吸入0.14g催化剂氢氧化钾和45g环氧乙烷,在120℃反应温度和0.25MPa的反应压力下,接枝反应9小时,接枝反应结束后,在上述温度下,拉真空脱气2小时,得到814g大分子单体B;该产品酸值为0.175mgKOH/g,粘度4357mpas/25℃,双键转化率96.8%。
实施例3
在常温下,在反应釜中加入16g的固体马来酸酐和800g的聚醚多元醇(GEP-628),反应釜充氮加压至0.4MPa后,开启搅拌进行升温,升温至60℃后,保持该温度搅拌1.5小时,再升温至反应温度110℃进行酯化反应,反应压力为0.4MPa,计时4小时;酯化反应结束后,反应釜停搅拌,拉真空后关真空阀门,吸入0.16g催化剂氢氧化钾和50g环氧丙烷,在125℃反应温度和0.3MPa的反应压力下,接枝反应10小时,接枝反应结束后,在上述温度下,拉真空脱气2小时,得到814g大分子单体C;该产品酸值为0.163mgKOH/g,粘度4716mpas/25℃,双键转化率96.2%。
实施例4
在常温下,在反应釜中加入13g的固体马来酸酐和800g的聚醚多元醇(GEP-628),反应釜充氮加压至0.25MPa后,开启搅拌进行升温,升温至65℃后,保持该温度搅拌1小时,再升温至反应温度105℃进行酯化反应,反应压力为0.25MPa,计时5小时;酯化反应结束后,反应釜停搅拌,拉真空后关真空阀门,吸入0.18g催化剂氢氧化钾和35g环氧丙烷,在125℃反应温度和0.35MPa的反应压力下,接枝反应11小时,接枝反应结束后,在上述温度下,拉真空脱气2小时,得到814g大分子单体D;该产品酸值为0.157mgKOH/g,粘度4089mpas/25℃,双键转化率95.7%。
对比例1
在反应釜中加入15g的固体马来酸酐和800g的聚醚多元醇(GEP-330N),开启搅拌直接进行升温至反应温度115℃,反应压力为0.4MPa,酯化反应2小时;酯化反应结束后,加入40g环氧乙烷,并加入0.1g氢氧化钾作为催化剂,在120℃反应温度和0.25MPa的反应压力下,接枝反应8小时;接枝反应结束后,在上述温度下,拉真空脱气2小时,得到815g大分子单体E;该产品酸值为0.175mgKOH/g,粘度4457mpas/25℃,双键转化率91.9%。
由于马来酸酐直接进行升温进行酯化反应过程中,马来酸酐发生升华现象;反应结束后,在反应釜面上的加料口发现有马来酸酐升华形成的针状结晶物。
聚合物多元醇的制备
以实施例1-4和对比例1制得的大单体A-E为原料制备聚合物多元醇,包括如下步骤:
(1)在混配釜中加入900g基础聚醚多元醇GEP-563,400g苯乙烯、300g丙烯腈以及70g大单体分子,降温至20℃后加入偶氮二异丁腈1g,搅拌混合1小时;
(2)将混配釜内混合液移至反应釜进行反应,温度控制100~150℃,压力控制0.3~0.7Mpa,反应6小时;
(3)反应结束后进行真空脱气,温度控制130~170℃,压力控制-0.099~-0.088MPa,脱气8小时,即得成品聚合物多元醇POP-2045。
分别对以上得到的聚合物多元醇POP-2045的相关指标进行分析,具体见下表1。
表1聚合物多元醇POP-2045的分析指标
符合POP-2045的国家标准(羟值26~30mgKOH/g,水份≤0.05%(wt),PH为6.0~9.0,粘度3500~5500mpa.s(25℃),外观为乳白色或微黄乳白色粘稠液体)。
本发明方法降低了马来酸酐在升温溶解过程中的升华量,提高了大分子单体的双键转化率,大大减少了废渣的产生,防止上述废渣遇到高浓度的钾离子,发生分解反应,造成温度和压力迅速聚集,再结合反应体系内存在环氧化物,带来极大的安全隐患。

Claims (12)

1.一种提高马来酸酐类大分子单体合成过程中安全性的方法,包括以下步骤:
(1)在反应釜内投入聚醚多元醇,并降温至50℃以下后投入固体马来酸酐;
(2)反应釜充氮加压至0.2~0.4MPa,开搅拌进行升温,升温至45~65℃后,保持该温度搅拌1~3小时,再升温进行酯化反应;
(3)酯化反应完成后,吸入碱性催化剂;
(4)反应釜中加入环氧化物,进行接枝反应;
(5)反应釜抽真空脱气;
步骤(3)中,酯化反应完成后,反应釜停止搅拌,抽真空并关真空阀门,吸入碱性催化剂。
2.根据权利要求1所述的方法,其特征在于:
所述聚醚多元醇选自2~6官能度的聚醚多元醇,所述聚醚多元醇的分子量为3000~15000;和/或,
所述环氧化物选自环氧乙烷、环氧丙烷、环氧丁烷的一种或多种。
3.根据权利要求1所述的方法,其特征在于:
所述碱性催化剂选自氢氧化钾、氢氧化钠、咪唑中的一种或多种;和/或,
所述碱性催化剂在总反应物料中的浓度为50~300ppm。
4.根据权利要求3所述的方法,其特征在于:
所述碱性催化剂在总反应物料中的浓度为80~250ppm。
5.根据权利要求1所述的方法,其特征在于:
所述固体马来酸酐和聚醚多元醇的摩尔之比为(0.5~1.5):1;和/或,
所述环氧化物与聚醚多元醇的摩尔之比为(1~10):1。
6.根据权利要求5所述的方法,其特征在于:
所述固体马来酸酐和聚醚多元醇的摩尔之比为(0.6~1.3):1;和/或,
所述环氧化物与聚醚多元醇的摩尔之比为(1.5~5):1。
7.根据权利要求1所述的方法,其特征在于:
所述酯化反应的温度为80~140℃;
所述酯化反应的压力为0.1~0.4MPa;
所述酯化反应时间为1~5小时。
8.根据权利要求7所述的方法,其特征在于:
所述酯化反应的温度为100~130℃;
所述酯化反应时间为2~4小时。
9.根据权利要求1所述的方法,其特征在于:
所述接枝反应的温度为100~150℃;
所述接枝反应的压力为-0.1~0.5MPa;
所述接枝反应的时间为5~15小时。
10.根据权利要求9所述的方法,其特征在于:
所述接枝反应的温度为110~140℃;
所述接枝反应的时间为6~12小时。
11.根据权利要求1所述的制备方法,其特征在于:
步骤(5)中,真空脱气的温度为100~150℃,压力为-0.095~-0.088MPa,时间为1~5小时。
12.根据权利要求1~11之任一项所述方法在制备马来酸酐类大分子单体中的应用。
CN202110337636.5A 2021-03-30 2021-03-30 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用 Active CN115141366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337636.5A CN115141366B (zh) 2021-03-30 2021-03-30 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337636.5A CN115141366B (zh) 2021-03-30 2021-03-30 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用

Publications (2)

Publication Number Publication Date
CN115141366A CN115141366A (zh) 2022-10-04
CN115141366B true CN115141366B (zh) 2023-08-08

Family

ID=83404414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337636.5A Active CN115141366B (zh) 2021-03-30 2021-03-30 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用

Country Status (1)

Country Link
CN (1) CN115141366B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997857A (en) * 1986-09-30 1991-03-05 Arco Chemical Technology, Inc. Stabilizers for polymer/polyols
CN105622920A (zh) * 2014-11-05 2016-06-01 中国石油化工集团公司 一种大分子单体的制备方法
CN106519148A (zh) * 2016-11-03 2017-03-22 万华化学集团股份有限公司 一种梳型大分子单体及其制备方法,一种聚合物多元醇及聚氨酯泡沫
CN106883403A (zh) * 2017-04-10 2017-06-23 甘肃九桓新材料有限公司白银分公司 马来酸单烷基酯聚醚的制备方法
CN109705281A (zh) * 2018-12-28 2019-05-03 红宝丽集团泰兴化学有限公司 一种制备聚合物多元醇的方法
CN109762154A (zh) * 2018-12-19 2019-05-17 万华化学集团股份有限公司 含有内酰胺结构的大分子单体及其在制备聚合物多元醇中的用途
CN110577636A (zh) * 2019-09-25 2019-12-17 淮安巴德聚氨酯科技有限公司 一种聚合物多元醇用分散剂和聚合物多元醇的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057100A2 (en) * 2008-11-14 2010-05-20 Dow Global Technologies Inc. Modified natural oils and products made therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997857A (en) * 1986-09-30 1991-03-05 Arco Chemical Technology, Inc. Stabilizers for polymer/polyols
CN105622920A (zh) * 2014-11-05 2016-06-01 中国石油化工集团公司 一种大分子单体的制备方法
CN106519148A (zh) * 2016-11-03 2017-03-22 万华化学集团股份有限公司 一种梳型大分子单体及其制备方法,一种聚合物多元醇及聚氨酯泡沫
CN106883403A (zh) * 2017-04-10 2017-06-23 甘肃九桓新材料有限公司白银分公司 马来酸单烷基酯聚醚的制备方法
CN109762154A (zh) * 2018-12-19 2019-05-17 万华化学集团股份有限公司 含有内酰胺结构的大分子单体及其在制备聚合物多元醇中的用途
CN109705281A (zh) * 2018-12-28 2019-05-03 红宝丽集团泰兴化学有限公司 一种制备聚合物多元醇的方法
CN110577636A (zh) * 2019-09-25 2019-12-17 淮安巴德聚氨酯科技有限公司 一种聚合物多元醇用分散剂和聚合物多元醇的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马来酸双聚乙二醇单甲醚酯合成影响因素分析;马保国;潘伟;温小栋;谭洪波;柯凯;黄华;;武汉理工大学学报;30(第01期);第44-47页 *

Also Published As

Publication number Publication date
CN115141366A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
KR100550881B1 (ko) 폴리머 폴리올 및 안정화제 시스템
CN1156507C (zh) 改进湿强度和脱模时间的聚氨酯高弹体以及适于其制备的聚氧亚烷基多元醇
KR100235793B1 (ko) 개선된 중합체/폴리올 및 예비 안정제 시스템
JP5527920B2 (ja) 高ヒドロキシル価を特徴とする低粘度ポリマーポリオール
JP2021050313A (ja) ポリマーポリオール用分散剤及びポリマーポリオールの製造方法
EP3249000B1 (en) Method for circularly preparing polyether polyol by using dmc catalyst
JPS63165433A (ja) 安定なポリマー/ポリオールの製造方法
EP3512888B1 (en) Improved polymer polyol quality
CN104045763B (zh) 连续生产聚合物多元醇预聚体的方法
CN111303401B (zh) 一种双金属氰化物络合催化剂及其制备方法
CN115141366B (zh) 一种提高马来酸酐类大分子单体合成过程中安全性的方法及应用
CN101235197A (zh) 一种铸型尼龙的增韧改性处理方法
JP6761308B2 (ja) コアシェル構造を有するポリマー微粒子含有軟質ポリウレタンフォーム用硬化性組成物
CN105860052B (zh) 一种改善聚醚多元醇颜色的方法
CN111057193A (zh) 聚酯聚合物多元醇的制备方法
CN111154095B (zh) 硅改性大分子单体稳定剂及其制备方法和用途
CN112708124B (zh) 一种高官能度聚醚多元醇的制备方法及其应用
EP1493767B1 (en) Process to produce unsaturated polyester polyols
EP1828252B1 (en) Improved method for preparation of high enzymatic resistance hydroxyalkylcellulose derivatives
CN107964074A (zh) 一种低成本低voc聚合物多元醇的制备方法
EP3872110B1 (en) Process for preparing polymer polyols
CN114479050B (zh) 一种稳定剂前体及其制备方法和应用
EP4169963A1 (en) Processes and production plants for producing polymer polyols
CN118240364A (zh) 一种基于回收pet的tpu发泡鞋材及其制备工艺
EP3632962A1 (en) Method for producing oxidized lignins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant