CN115136285A - 蚀刻或沉积的方法 - Google Patents

蚀刻或沉积的方法 Download PDF

Info

Publication number
CN115136285A
CN115136285A CN202180014408.2A CN202180014408A CN115136285A CN 115136285 A CN115136285 A CN 115136285A CN 202180014408 A CN202180014408 A CN 202180014408A CN 115136285 A CN115136285 A CN 115136285A
Authority
CN
China
Prior art keywords
substrate
wocl
precursor
film
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180014408.2A
Other languages
English (en)
Inventor
R·L·赖特二世
T·H·鲍姆
D·M·埃默特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Publication of CN115136285A publication Critical patent/CN115136285A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种方法,用于(a)蚀刻Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN或TiN的膜,或(b)将钨沉积于选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Ir、SiN、TiN、TaN、WN及SiO2的膜的表面上,或(c)将钨选择性沉积于金属衬底(例如W、Mo、Co、Ru、Ir及Cu)上,而非沉积于金属氮化物或介电氧化物膜上,所述方法包括在工艺条件下在还原气体存在下使所述膜暴露于WOCl4

Description

蚀刻或沉积的方法
技术领域
本公开大体上关于蚀刻某些材料(包括氧化铝、氧化锆、氧化铪,及其组合,及氮化钛、氮化钽、氮化钨),并使用WOCl4将钨沉积于某些材料(包括微电子装置上存在的钨、钼、钴、钌、铝、氧化铝、氮化钛、氮化钽、氮化钨及二氧化硅膜)上。
背景技术
在许多微电子装置(特别是利用原子层蚀刻)上,对表现为电容器膜的氧化铝(Al2O3)表面的蚀刻表现出极大兴趣。当前方法一般需多个步骤,复杂且昂贵。另外,已证明金属的成核及一般在氧化铝膜的表面上的等高沉积是困难的,且即使成功,这两种材料之间的粘附仍无法令人满意。此外,现有方法一般无法在氧化铝表面上提供钨的保形覆盖。针对接触件、互连件、成核层、种晶层的应用及针对硬质屏蔽应用,可需将钨金属沉积到各种衬底。关于所有这些可能的应用,于沉积膜内具有均匀性的高纯度金属对实现沉积膜的最高性能水平来说是理想的。
发明内容
一般来说,本公开提供一种方法,用于(a)蚀刻Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN或TiN的膜,或(b)将钨沉积于选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Ir、SiN、TiN、TaN、WN及SiO2的膜的表面上,所述方法包括在异质工艺条件下在还原气体存在下使所述膜暴露于WOCl4,其中蚀刻膜或将钨沉积于膜的表面上。主要蚀刻工艺或主要沉积工艺之间的偏差能夠通过以下方法控制:1)改变衬底的温度(即,(Tsub));2)经由操控前体蒸气压、沉积(或蚀刻)压力或浓度直接改变WOCl4前体的气相浓度;及/或3)改变正暴露于WOCl4蒸气的衬底的类型。
因此,在一个方面,本公开提供一种方法,其包括:
在以下条件下在反应区中使衬底暴露于WOCl4及还原气体:
(a)在第一组异质工艺条件下可控制地蚀刻衬底,其中所述衬底包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru及SiN膜的膜;或
(b)在第二组异质工艺条件下将钨可控制地沉积于衬底的表面上,其中所述衬底包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜的膜。
在另一方面,本公开提供一种方法,其包括:
在反应区中,使包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru及SiN膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)还原气体,其中所述反应区中的压力是约0.5到500托;衬底温度是约200℃到1000℃,还原气体流动速率是每分钟约0.1到10升,载气流动速率是每分钟约0.001到1升,WOCl4在所述反应区中的浓度是大于1000ppm,及前体安瓿温度是约10℃到约180℃,由此蚀刻包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru及SiN膜的膜的衬底。
在另一方面,本公开提供一种方法,其包括:
在反应区中,使包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)还原气体,其中所述反应区中的压力是约0.5托到500托;衬底温度是约200℃到1000℃,还原气体流动速率是每分钟约0.1到10升,载气流动速率是每分钟约0.001到1升,WOCl4的浓度是小于1000ppm,及前体安瓿温度是约10℃到约180℃,由此将钨沉积于包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜的膜的衬底的表面上。
在另一方面中,本公开提供一种方法,其包括:
在反应区中,使包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Cu、Ir、SiN、TiN及SiO2膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)共反应物还原气体,其中所述反应区中的压力是约0.5托到500托;衬底温度是约200℃到1000℃,还原气体流动速率是每分钟约0.1到10升,载气流动速率是每分钟约0.001到1升,WOCl4的浓度是小于1000ppm,及前体安瓿温度是约10℃到约180℃之间,由此将钨选择性沉积于金属导体膜(例如W、Mo、Co、Ru、Cu、Ir),及其它合适的金属导体膜上,而非沉积于氮化物及/或介电氧化物膜上。
附图说明
考虑结合附图的各种说明性实施例的以下描述,可更彻底地了解本公开。
图1是在化学气相蚀刻(CVE)工艺中Al2O3蚀刻速率
Figure BDA0003794504880000021
与衬底温度(℃)的图。
图2是TiN在430、475及520℃的温度下的蚀刻速率的图。在脉冲化学气相蚀刻(脉冲CVE)工艺中绘制TiN蚀刻速率
Figure BDA0003794504880000022
与循环数的图。
图3是使用WOCl4作为前体在430、475及520℃的温度下TiN上钨沉积的图。此数据是使用80托压力,100sccm的氩载气,及2000sccm的H2流量的脉冲化学气相沉积条件产生。绘制以
Figure BDA0003794504880000031
为单位的钨沉积与循环数的图。
图4阐述使用WOCl4作为前体,脉冲化学气相沉积(脉冲CVD)钨于氮化钛上。绘制以
Figure BDA0003794504880000032
为单位的钨沉积与针对所述前体以秒为单位的脉冲“工作时间”的图。
图5阐述使用WOCl4作为前体,脉冲“关闭时间”对氮化钛衬底暴露于脉冲CVD条件的效应。其它条件包括80托压力、100sccm的氩载气及1000sccm的连续H2流量。绘制氮化钛蚀刻速率与脉冲“关闭时间”的图。
图6是实践本公开的方法的原子层沉积(ALD)工艺的简化绘图。
图7是实践本公开的方法的化学气相沉积(CVD)工艺的简化绘图。
图8是实践本公开的方法的“脉冲CVD”工艺的简化绘图。
图9是适用于进行本公开的方法的反应室的简化绘图。
尽管本公开可进行各种修改及替代形式,但其详情已借助于实例在图式中显示且将经详细描述。然而,应了解本公开未将本公开的方面限制于本文描述的特定说明性实施例。相反,意欲涵盖落于本公开的精神及范围内的所有修饰、等同物及替代物。
具体实施方式
如本说明书及随附权利要求书中使用,除非内文另有明确规定,否则单数形式“一”、“一个”及“所述”包括复数个参考物。如本说明书及随附权利要求书中使用,除非内文另有明确规定,否则术语“或”一般以其包括“及/或”的意义采用。
术语“约”一般是指认为等同于列举值的数值范围(例如,具有相同函数或结果)。在许多情况下,术语“约”可包括四舍五入到最接近的有效数字的数值。
使用端点表示的数值范围包括所述范围内的所有数值(例如,1到5包括1、1.5、2、2.75、3、3.80、4及5)。
如上文指示,在第一方面,本公开提供一种方法,其包括:
在以下条件下在反应区中使衬底暴露于WOCl4及还原气体:
(a)在第一组工艺条件下可控制地蚀刻包含Al2O3或TiN的衬底膜;或
(b)在第二组工艺条件下将钨可控制地沉积于衬底的表面上,其中所述衬底是选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜。
一般来说,上文参考的工艺条件是那些化学气相沉积及原子层沉积共享的条件。在這方面,压力一般是约1托到约80托,及温度是约350℃到约750℃。将WOCl4前体材料与所需衬底及惰性载气(例如氩、氦或氮)连同共反应物还原气体(例如氢气)进料到反应室内。共反应物还原气体是引入系统内与前体材料反应产生中间物化合物及/或反应副产物的气体。膜能夠通过使用CVD、脉冲CVD及/或ALD反应工艺来沉积或蚀刻。
共反应物还原气体能夠选自CVD/ALD技术中已知的那些,且包括H2、NH3、肼及烷基化肼(例如N2H4、CH3HNNH2、CH3HNNHCH3)。
在某些实施例中,所述方法在单相中进行,且在可控条件下将衬底处理选定时间期间,以蚀刻选定膜或将钨沉积于所述选定膜上。在某些实施例及工艺条件中,首先发生蚀刻,接着发生沉积。
在其它实施例中,反应能夠在脉冲工艺中进行。在此工艺中,循序处理步骤一般称为“脉冲”或循环。这些工艺是基于前体化学品的可控、自限性表面反应。气相反应是通过使衬底与一或多种前体交替且循序接触避免。工艺反应物是例如通过在反应物脉冲之间自反应室移除过量的反应物及/或反应物副产物及时地在衬底表面上彼此分离。在一些实施例中,将所述前体脉冲到室内,同时使共反应物还原气体连续流入反应器内。此实施例将称为“脉冲CVD”模式。在一些实施例中,一或多个衬底表面与两种或更多种工艺前体或反应物交替且循序接触。使衬底表面与气相反应物接触意谓反应物蒸气与所述衬底表面接触有限或可控的时间期间。换言之,可了解使所述衬底表面暴露于工艺前体历时有限时间期间。
可用于生长薄膜的反应器能夠用于本文描述的沉积。这些反应器包括ALD反应器,及配备用于以“脉冲”方式提供前体(例如,WOCl4)及共反应物(即,还原气体)的适当设备及构件的CVD反应器。根据某些实施例,所述反应器中的喷头还可用于提供将WOCl4前体均匀输送到晶圆。可使用的合适的反应器的实例包括可购买获得的设备,及自制反应器,且将为所属CVD、脉冲CVD及/或ALD领域的技术人员知晓。例示性反应器显示于图9中。
简言之,一般在约0.5到500托的压力下,将包含上文列举的所需膜的衬底加热到在200℃到1000℃的范围内的合适的沉积或蚀刻温度。在其它实施例中,所述温度是约350℃到700℃或400℃到600℃。沉积或蚀刻温度一般保持在低于WOCl4前体的热分解温度,且足够高以避免反应物凝结并提供足够的能量来启动所需的表面反应。所述衬底的表面是与WOCl4前体接触。在某些实施例中,向含有所述衬底的反应空间提供WOCl4前体的脉冲。在其它实施例中,将所述衬底移动到含有WOCl4前体的反应空间。工艺条件一般是经选择,使得不超过约一个单层的WOCl4前体以自限性方式吸附到所述衬底表面上。适当的接触时间可由熟习技工基于特定工艺条件、衬底及反应器配置容易地确定。自所述衬底表面移除过量的WOCl4前体及反应副产物(若有的话),例如通过用惰性气体吹扫、用还原气体吹扫或通过在第一反应物的存在下移除所述衬底。
吹扫意谓自衬底表面及工艺室移除工艺前体及/或工艺副产物,例如通过使用真空泵将室排空及/或通过用惰性气体(例如氩、氦或氮)置换反应器内部的气体,及/或通过用还原气体(例如氢气)置换反应器内部的气体。在某些实施例中,吹扫时间是约0.05到120秒,在约0.05到10秒之间,或在约0.05到2秒之间。然而,视需要,可利用其它吹扫时间,例如在遇到极高纵横比结构或其它复杂表面形态结构上的高度保形阶梯覆盖的情况下。
在一些实施例中,各循环的各阶段一般是自限性的。在各阶段中均供应过量的反应物前体,以使敏感结构表面饱和。表面饱和确保反应物占据所有可用反应性位点(例如,目标受物理尺寸或“空间位阻”约束),且因此确保极佳的阶梯覆盖。通常,各循环沉积少于一个分子层的材料,然而,在一些实施例中,在各循环期间沉积多于一个分子层。
移除过量的反应物可包括将反应空间的一些内容物排空及/或用氦、氮、氩或另一惰性气体吹扫反应空间。在一些实施例中,吹扫可用还原气体进行。在某些实施例中,吹扫可包括关闭反应性气体流,同时继续使惰性载气或还原气体流动到所述反应空间。在另一实施例中,吹扫步骤可采用真空步骤以自表面移除过量的反应物。在某些实施例中,将WOCl4前体脉冲到含有衬底/膜的反应室内,历时约0.05到约20秒的期间,及然后尽管未脉冲,但载气及共反应物还原气体仍连续流动到所述反应器内,因此用于自所述反应室吹扫过量的前体。在一各别实施例中,将所述前体脉冲到所述反应室内,然后吹扫,将还原气体脉冲到所述反应器内,及然后吹扫,并重复此循环以实现所需厚度的沉积钨膜或通过蚀刻所需厚度的经暴露的膜来移除。
在本公开的方法中,在以下条件下,前体WOCl4的用途偏向于薄膜钨沉积:
·压力=>0.5托到500托;
·温度=>200℃到1000℃;
·H2流动速率=>每分钟0.1到10升;
·载气流量=>每分钟0.001到1升;及
·前体安瓿温度=>10℃到180℃。
钨在各种衬底上的沉积直接取决于WOCl4前体的浓度(其在本文中表示为[WOCl4])、衬底特性及衬底温度。一般来说,但非严格地说,在如本文列举的CVD工艺中需<1000ppm的WOCl4浓度以进行钨膜生长。
另外或或者,根据本公开的方法,在以下条件下,WOCl4偏向于衬底蚀刻:
·压力=>0.5托到500托;
·温度=>200℃到1000℃;
·H2流动速率=>每分钟0.1到10升;
·载气流量=>每分钟0.001到1升;及
·前体安瓿温度=>10℃到180℃。
各种衬底的蚀刻直接取决于前体的浓度[WOCl4]、衬底特性及衬底温度。一般来说,但非严格地说,在连续暴露模式(即,CVE=化学气相蚀刻)工艺中,[WOCl4]的浓度>1000ppm。前体的浓度取决于[WOCl4]、衬底材料及衬底温度的组合。
此外,另外或或者,根据本公开的方法,将钨选择性沉积于金属导体膜上,其通过在以下条件下,在反应区中使包括选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Cu、Ir、SiN、TiN及SiO2膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)共反应物还原气体,
·所述反应区中的压力是约0.5托到500托;
·衬底温度是约200℃到1000℃,
·还原气体流动速率是每分钟约0.1到10升,
·载气流量是每分钟约0.001到1升,
·[WOCl4]的浓度是小于1000ppm,及
·前体安瓿温度是约10℃到约180℃,
由于这些工艺条件,由此将钨选择性沉积于金属导体膜(例如W、Mo、Co、Ru、Cu、Ir)及其它合适的金属导体膜上,而非沉积于氮化物及/或介电氧化物膜上。
实例
表1
Figure BDA0003794504880000061
在实施例1到5中,其结果汇总于上表1中,在使用X射线荧光(XRF)之前及之后进行量测。正(+)数指示钨膜沉积,及负(-)数表示衬底膜蚀刻。在这些实验中,WOCl4安瓿温度设定为90℃,Ar载气流动速率设定为100sccm(每分钟标准立方厘米,即,流动速率),并使WOCl4暴露于所述衬底历时约600秒。如表中可见,由于缺乏在较高温度下注意到的竞争性钨沉积工艺,因此在此研究中,Al2O3具有最高每分钟暴露蚀刻速率。另外,可观测到蚀刻速率取决于前体[WOCl4]浓度、衬底特性及Tsub(即,衬底温度)。较高的前体浓度及较高的衬底温度导致衬底蚀刻,而当所述前体的浓度过低以致于无法进行所述衬底的蚀刻时,观测到钨沉积。观测到钨沉积在550℃
Figure BDA0003794504880000073
及650℃
Figure BDA0003794504880000074
Figure BDA0003794504880000075
下发生,而衬底蚀刻在400℃
Figure BDA0003794504880000076
下发生。在这些钨沉积实例中,发现所得膜的电阻率在钨衬底上低到11.5μΩ-cm(实施例3)及在TiN衬底上低到26.7μΩ-cm。另外,显示高前体浓度导致钨衬底(即,孤立晶粒)上的柱状晶体生长,且在较高Tsub下具有较高电阻率(19μΩ-cm)。
如可由表1中的数据指出,将钨金属选择性沉积于钨或其它合适的金属导体膜(例如Mo、Co、Ru、Ir及Cu)上,而非将钨沉积于氮化物及/或介电氧化物膜上,所述选择性沉积可通过在沉积期间仔细控制工艺条件来实现。在一些实施例中,可在选择性沉积的前使用预蚀刻所述衬底,以增强接触电阻及薄膜粘附性质。不希望受理论束缚,但将钨金属选择性沉积于其它合适的金属导体膜(例如Mo、Co、Ru、Ir及Cu)上,而非将钨沉积于氮化物及/或介电氧化物膜上,还可通过在沉积期间仔细控制工艺条件实现。
表2
Figure BDA0003794504880000071
在实施例6到10中,其结果汇总于表2中,氩载气的流动速率设定为100sccm,H2气体的流动速率设定为2000sccm,及钨CVD沉积时间为600秒。自表2中的数据,可观测到,在大多数测试条件下,WOCl4蚀刻氮化钛。还可观测到,在较低前体浓度下,针对较高的Tsub,氮化钛蚀刻的速率/程度增加,而钨沉积仅在650℃下发生。
表3a(仅H2)
Figure BDA0003794504880000072
Figure BDA0003794504880000081
表3b(仅氩)
Figure BDA0003794504880000082
在实施例11到20中,其结果汇总于表3a及3b中,所使用的氩载为100sccm;另外,在表3a中,H2气体是以2000sccm的速率引入(无其它氩气体)。在表3b中,除以100sccm的速率加入氩载气(无其它H2气体)外,氩吹扫气体是以2000sccm的速率引入。一般来说,Al2O3的蚀刻速率在Ar中低于当使用H2共反应物气流时。此数据还可显示,与以H2在低衬底温度条件与低室压力(较高的WOCl4浓度)的组合相比,Al2O3于氩中蚀刻更快。
表4
Figure BDA0003794504880000083
*未知
实施例21到25关于蚀刻SiO2的尝试。结果汇总于表4中。在这些实验中,所使用的氩载气为100sccm,及所使用的H2气体为2000sccm。钨沉积仅在650℃下在较低的前体浓度下发生。电阻率是约18μΩ-cm。在任何温度下,针对[WOCl4]<1000ppm,均未观测到SiO2蚀刻。不希望受理论束缚,基于蚀刻工艺的力学,据信在一些实例中,在WOCl4前体的较高浓度下,SiO2的蚀刻可缓慢发生。
表5
Figure BDA0003794504880000084
Figure BDA0003794504880000091
在实例26到34中,其结果显示于上表5中,使氮化钛衬底经受脉冲CVD条件,利用80托的前体室压力,100sccm的氩载气,2000sccm的H2气体(连续)。WOCl4前体的脉冲在40秒循环间隔中历时1秒。所述WOCl4前体的脉冲循环数分别为1、5、10、15及25个循环。此数据显示,在此脉冲CVD工艺中,氮化钛蚀刻速率在第一个循环中是相当大的,且在>5个循环中急剧下降。随循环数增加到超过10个循环,钨沉积开始发生。另外,较低的衬底温度(430℃)在第一个循环中将氮化钛蚀刻速率增加约10%。
表6
Figure BDA0003794504880000092
在实验35到37中,其结果汇总于表6中,数据是使用脉冲化学气相沉积条件,利用WOCl4作为前体产生,所述脉冲化学气相沉积条件包括80托的前体室压力,及100sccm的氩载气速率。在实例35到37中,将H2气体以2000sccm的恒定速率注入反应器室。在实例35到37中,针对10秒工作时间,增加WOCl4前体“工作时间”将氮化钛蚀刻速率增加30%。另外,钨沉积速率随15个循环运行的工作时间增加而增加。注意:TiN的损耗增加可由于通过钨膜的x射线信号的损耗。
表7
Figure BDA0003794504880000093
表7中的实例表示在CVD条件下,利用100sccm的氩载气、2000sccm的H2(连续),及分别600、600、300、300及300s的钨沉积,蚀刻氮化钛衬底。此数据阐述,增加前体(WOCl4)浓度增加蚀刻速率;前体浓度可通过降低室压力、减少共反应物还原气体及/或增加安瓿温度增加。
表8a
Figure BDA0003794504880000101
表8b
Figure BDA0003794504880000102
在实例42到47的各者中,其数据汇总于表8a及8b中,前体为WOCl4,H2气体流动速率为2000sccm,钨沉积时间为300s,室压力为10托,且所得钨厚度为
Figure BDA0003794504880000104
表8a中的数据显示,由于反应在质传受限的方案中在10托的压力下进行,因此氮化钛蚀刻速率不随Tsub变化。表8b显示增加前体载气增加前体浓度及氮化钛蚀刻速率,因此显示蚀刻的质传速率限制在430℃下。另外,氮化钛蚀刻的质传限制在10托的压力下,且表面反应速率限制在在80托的压力下。
表9
Figure BDA0003794504880000103
在实例48到50的各者(ALE工艺)中,其数据汇总于表9中,前体为WOCl4,Ar载气流动速率为200sccm,H2气体流动速率为2000sccm,氩吹扫气体流动速率为500sccm,钨沉积时间为60个循环,及衬底温度为520℃。此数据显示,钨在氮化钛上的沉积速率随压力降低(自80托到20托)而降低(即,WOCl4浓度增加)。另外,TiN蚀刻速率随压力降低而增加;然而,40托可指示沉积与蚀刻之间的过渡。在这些工艺条件下,沉积的钨薄膜的电阻率非常好。此数据还阐述,衬底蚀刻及沉积可在不改变实验条件的情况下发生,且可实时竞争。
表10
Figure BDA0003794504880000111
在实例51到52的各者中,其数据汇总于表10中,前体是WOCl4,氩载气流动速率是200sccm,H2气体流动速率是2000sccm,氩吹扫气体流动速率是500sccm,钨沉积时间为60个循环,压力为20托,及衬底温度为520℃。此数据证实,增加WOCl4“工作时间”增加氮化钛衬底的钨沉积速率及氮化钛蚀刻速率两者。在这些工艺条件下,钨电阻率显示几乎无变化。
表11
Figure BDA0003794504880000112
在实例53及54中,其数据汇总于表11中,前体为WOCl4,Ar载气流动速率为200sccm,H2气体流动速率为2000sccm,氩吹扫气体流动速率为500sccm,压力为20托,及衬底温度为520℃。此数据显示,存在约30个循环成核延迟,以在氮化钛上沉积一层钨。另外,在用钨覆盖表面后,沉积速率随循环数增加而增加。蚀刻速率随时间降低而降低,还随表面覆盖的钨增加而降低。针对这些钨薄膜,观测到钨电阻率良好。
表12
Figure BDA0003794504880000113
在实例55到57的各者中,其数据汇总于表12中,前体为WOCl4,Ar载气流动速率为200sccm,H2气体流动速率为1000sccm,氩吹扫气体流动速率为500sccm,及Al2O3衬底温度为650℃。实例55运行40个循环,及实例56及57运行30个循环。此数据显示,钨沉积速率随压力降低而降低,而Al2O3蚀刻速率增加。如可预期,由于不完全覆盖及非优化形态,钨膜越薄,电阻率越高。
表13
Figure BDA0003794504880000121
在实例58到60的各者中,其数据汇总于表13中,前体为WOCl4,H2气体流动速率为1000sccm,及Al2O3衬底温度为650℃。此数据显示,钨沉积速率及Al2O3蚀刻速率均随氩载气流量降低及氩吹扫气体流量增加而降低。电阻率在自约23到59μΩ-cm的范围内变化。
表14
Figure BDA0003794504880000122
在实例61到63的各者中,其数据汇总于表14中,前体是WOCl4,Ar载气流动速率为50sccm,H2气体流动速率为1000sccm,氩吹扫气体流动速率为700sccm,及Al2O3衬底温度为650℃。此数据显示,随Al2O3表面覆盖越来越多钨,钨沉积速率随循环数增加而增加。Al2O3蚀刻速率还增加,但其可由于Al2O3顶部的钨膜吸收x射线。如预期,由于钨膜中针孔或空隙的减少,电阻率随钨膜厚度增加而降低。
粘附测试ASTM D 3359-02结果显示极佳的粘附,即,在650℃下沉积于氮化钛衬底上的
Figure BDA0003794504880000123
膜及沉积于氧化铝衬底上的
Figure BDA0003794504880000124
钨膜未自所述衬底剥离。
参考附图及上文列举的实验数据,图1是Al2O3蚀刻速率
Figure BDA0003794504880000125
与衬底温度(℃)的图。此数据显示,如与仅与氩反应相比,当与H2共反应时,Al2O3蚀刻速率是约两倍。另外,蚀刻速率随压力降低而降低。较低的压力增加WOCl4的浓度,其应增加蚀刻。此数据指示,沉积随衬底温度增加而增加,并因此反应速率受限,且停留时间还决定蚀刻速率。(参见表1)。
图2是TiN在430、475及520℃的温度下的蚀刻速率的图。绘制TiN蚀刻速率
Figure BDA0003794504880000126
Figure BDA0003794504880000127
与循环数的图。还参见表1及2中提供的数据。此数据使用以下的脉冲化学气相沉积条件产生:80托压力、100sccm的Ar载气及2000sccm共反应物的H2流量,1秒WOCl4脉冲,历时40秒总循环时间。430及475℃的衬底温度的数据阐述质传速率受限工艺中的操作,因为蚀刻速率不随衬底温度增加而增加。另外,蚀刻的量受限,及蚀刻的最大部分发生在第一个循环中,并在接下来5个循环中逐渐减小。
图3是使用WOCl4作为前体,在TiN上在430、475及520℃的温度下的钨沉积的图。此数据使用以下的脉冲化学气相沉积条件产生:80托压力、100sccm的氩载气及2000sccm的H2流量。绘制钨沉积
Figure BDA0003794504880000131
相对于循环数的图。此数据阐述,在475℃及520℃操作温度下,在经5个循环后,发生钨沉积,但针对430℃操作温度,则需更多时间(在10个循环后),其指示衬底温度取决于成核延迟。
图4阐述使用WOCl4作为前体,钨在氮化钛上的脉冲CVD沉积。绘制以
Figure BDA0003794504880000132
计的钨沉积相对于针对所述前体以秒计的脉冲“工作时间”的图。此数据阐述,在所述前体的10秒工作时间内,钨沉积显著增加(~6x)。脉冲CVD条件包括80托压力,100sccm的氩载气,2000sccm的H2流量(连续)。在这些条件下,且在衬底温度(Tsub)为430℃的情况下,未观测到钨沉积,但观测到氮化钛膜蚀刻。(参见表6)
图5阐述使用WOCl4作为前体,脉冲“关闭时间”对氮化钛衬底暴露于脉冲CVD条件的影响。其它条件包括80托压力、100sccm的氩载气及1000sccm的连续H2流量。绘制氮化钛蚀刻速率相对于脉冲“关闭时间”的图。随关闭时间增加,由于较少Ar流量通过安瓿而冷却降低,所以安瓿温度增加,且因此前体浓度增加。此图还阐述氮化钛蚀刻速率直接取决于WOCl4前体浓度;另外,在此情况下,由于暴露时间较短(5个循环),因此无钨沉积。
图6是用于实践本公开的方法的“ALD”(或在蚀刻的情况下为“ALE”)工艺的简化绘图。WOCl4及共反应物(即,还原气体)在一部分循环时间内是经脉冲“接通”。真空或惰性气体吹扫发生在前体与共反应物脉冲之间。将所述循环重复多次,以产生特定膜厚度(或实现所需量的蚀刻)。
图7是用于实践本公开的方法的“CVD”(或在蚀刻的情况下为“CVE”)工艺的简化绘图。将WOCl4及共反应物均连续进料到反应区内,直到已发生所需量的沉积(或蚀刻)。
图8是用于实践本公开的方法的“脉冲CVD”(或在蚀刻的情况下为“CVE”)工艺的简化绘图。在给定的时间期间内,将WOCl4前体以脉冲形式注入反应区内,接着为“关闭”期间,同时将共反应物连续进料到所述反应区内。以此方式,当“关闭”脉冲时,在这些期间内,所述共反应物必须自所述反应区吹扫所述前体。
图9是适用于进行本公开的方法的反应室的简化绘图。
本公开的其它方面包括以下:
方面1是一种方法,其包括在以下条件下在反应区中使衬底暴露于WOCl4及还原气体:
(a)在第一组工艺条件下可控制地蚀刻衬底,其中所述衬底包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru、Ir、Cu、SiO2及SiN膜的膜;
(b)在第二组工艺条件下,将钨可控制地沉积于衬底的表面上,其中所述衬底包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Ir、Cu、SiN、TiN及SiO2膜的膜;或
(c)在第三组工艺条件下,将钨选择性沉积于金属导电的W、Mo、Co、Ru、Ir、Cu衬底上,而非沉积于相邻的氮化物或介电氧化物膜上。
方面2是方面1的方法,其中所述第一组工艺条件包含约200℃到约1000℃的衬底温度范围,约800ppm到约20,000ppm的WOCl4浓度,及约0.5到约500托的压力。
方面3是方面1的方法,其中所述第二组工艺条件包含约200℃到约1000℃的衬底温度范围,约5ppm到约1200ppm的WOCl4浓度,及约0.5到约500托的压力。
方面4是方面1的方法,其中所述还原气体是选自氢气、肼或烷基化肼。
方面5是方面2或3的方法,其中所述还原气体是氢气,且所述氢气是以每分钟约0.1升到约10升的速率进料到反应区内。
方面6是一种方法,其包括在反应区中使包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru及SiN膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)还原气体,其中所述反应区中的压力是约0.5到500托;衬底温度是约200℃到1000℃,还原气体流动速率是每分钟约0.1到10升,载气流量是每分钟约0.001到1升,WOCl4在所述反应区中的浓度是大于1000ppm,及前体安瓿温度是约10℃到约180℃,由此蚀刻包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru及SiN膜的膜的衬底。
方面7是方面6的方法,其中WOCl4在所述反应区中的浓度是约1000ppm到约10,000ppm。
方面8是方面6的方法,其中使所述衬底暴露于WOCl4前体及还原气体的连续流。
方面9是方面6的方法,其中使所述衬底暴露于还原气体的连续流,同时使WOCl4前体脉冲到所述反应区内历时预定时间期间。
方面10是方面9的方法,其中将所述WOCl4前体脉冲到所述反应区内,历时0.05到约20秒的期间,接着为0.05到约120的关闭期间,并重复所需数量的脉冲直到已在所述衬底上发生所需量的蚀刻。
方面11是方面9的方法,其中将所述WOCl4前体脉冲到所述反应区内,历时.1到约10秒的期间,接着为1到约60的关闭期间。
方面12是方面9的方法,其中所述衬底是Al2O3膜。
方面13是方面6的方法,其中使所述衬底循序进行以下:
(i)暴露于WOCl4前体,接着
(ii)通过真空或惰性气体吹扫,接着
(iii)暴露于还原气体,接着
(iv)通过真空或惰性气体吹扫并重复(i)到(iv)的顺序,直到已在衬底上发生所需量的蚀刻。
方面14是方面6的方法,其中WOCl4前体在所述反应区中的浓度是约2000ppm到约5000ppm。
方面15是方面6的方法,其中所述衬底温度是约300℃到约450℃。
方面16是一种方法,其包括在反应区中使包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜的膜的衬底暴露于:
(i)WOCl4连同自前体安瓿输送的载气,及
(ii)还原气体,
其中所述反应区中的压力是约0.5托到500托;衬底温度是约200℃到1000℃,还原气体流动速率是每分钟约0.1到10升,载气流量是每分钟自约0.001到1升,WOCl4的浓度是小于1000ppm,及前体安瓿温度是约10℃到约180℃,
由此将钨沉积于包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、SiN、TiN及SiO2膜的膜的衬底的表面上。
方面17是方面16的方法,其中WOCl4在所述反应区中的浓度是约75ppm到约1000ppm。
方面18是方面16的方法,其中,使所述衬底循序地进行以下:
(i)暴露于WOCl4前体,接着
(ii)通过真空或惰性气体吹扫,接着
(iii)暴露于还原气体,接着
(iv)通过真空或惰性气体吹扫,并重复(i)到(iv)的顺序,直到已在衬底上沉积所需量的钨。
方面19是方面16的方法,其中所述暴露是,其中使所述衬底暴露于WOCl4前体及还原气体的连续流。
方面20是方面16的方法,其中所述暴露是其中使所述衬底暴露于还原气体的连续流,同时将WOCl4前体脉冲到所述反应区内历时预定时间期间。
方面21是方面20的方法,其中将WOCl4前体脉冲到所述反应区内,历时0.1到约10秒的期间,接着为1到约60秒的关闭期间,并重复所需数量的脉冲直到已在衬底上发生所需量的钨沉积。
方面22是方面16的方法,其中WOCl4前体在所述反应区中的浓度是约100ppm到约800ppm。
方面23是方面16的方法,其中所述衬底温度是约550℃到约700℃。
方面24是一种将钨选择性沉积于金属导体膜上的方法,其包括在反应区中使包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Cu、Ir、SiN、TiN及SiO2膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)共反应物还原气体,在包括以下的处理条件下:所述反应区中的压力是约0.5托到500托;衬底温度是约200℃到1000℃;还原气体流动速率是每分钟约0.1到10升;载气流量是每分钟自约0.001到1升;[WOCl4]的浓度小于1000ppm,其中所述前体安瓿温度是约10℃到约180℃,且
其中将钨选择性沉积于金属导体膜(例如W、Mo、Co、Ru、Cu、Ir)及其它合适的金属导体膜上,而非沉积于氮化物及/或介电氧化物膜上。
方面25是钨膜,其具有约
Figure BDA0003794504880000161
到约
Figure BDA0003794504880000162
的厚度,且分别具有约100到约50μΩ-cm的电阻率。
方面26是钨膜,其具有约
Figure BDA0003794504880000163
到约
Figure BDA0003794504880000164
的厚度,且分别具有约50到约13μΩ-cm的电阻率。
方面27是钨膜,其具有大于
Figure BDA0003794504880000165
的厚度,且具有约小于15μΩ-cm的电阻率。
因此已经描述本公开的若干说明性实施例,所属领域的技术人员将容易知晓,可于随附权利要求书的范围内,作出并使用又其它实施例。已在前述说明书中列举本文件涵盖的本发明的许多优势。然而,应了解,在许多方面中,本发明仅为说明性的。可在细节中作出改变,而不超出本发明的范围。本发明的范围当然由表达随附权利要求书的语言定义。

Claims (20)

1.一种方法,其包括在以下条件下在反应区中使衬底暴露于WOCl4及还原气体:
(a)在第一组工艺条件下可控制地蚀刻衬底,其中所述衬底包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Ru、Ir、Cu、SiO2及SiN膜的膜;
(b)在第二组工艺条件下将钨可控制地沉积于衬底的表面上,其中所述衬底包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Ru、Ir、Cu、SiN、TiN及SiO2膜的膜;或
(c)在第三组工艺条件下将钨选择性沉积于金属导电衬底W、Mo、Co、Ru、Ir、Cu上,而非沉积于相邻氮化物或介电氧化物膜上。
2.根据权利要求1所述的方法,其中所述第一组工艺条件包含约200℃到约1000℃的衬底温度范围,约800ppm到约20,000ppm的WOCl4浓度,及约0.5到约500托的压力。
3.根据权利要求1所述的方法,其中所述第二组工艺条件包含约200℃到约1000℃的衬底温度范围,约5ppm到约1200ppm的WOCl4浓度,及约0.5到约500托的压力。
4.根据权利要求1所述的方法,其中所述第三组工艺条件包含约200℃到约1000℃的衬底温度范围,约5ppm到约1200ppm的WOCl4浓度,约0.5到约500托的压力及多个衬底,由此将钨金属仅沉积于导电金属膜上,而非沉积于相邻氮化物或介电氧化物膜上。
5.根据权利要求1所述的方法,其中所述还原气体是选自氢气、肼或烷基化肼。
6.根据权利要求2所述的方法,其中所述还原气体是氢气,及以每分钟约0.1到约10升的速率将所述氢气进料到反应区内。
7.一种方法,其包括在反应区中使包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Cu、Ru、Ir、SiO2及SiN膜的膜的衬底暴露于(i)WOCl4连同自前体安瓿输送的载气,及(ii)还原气体,其中所述反应区中的压力是约0.5到500托;所述衬底温度是约200℃到1000℃,所述还原气体流动速率是每分钟约0.1到10升,所述载气流量是每分钟约0.001到1升,WOCl4在所述反应区中的浓度是大于1000ppm,及所述前体安瓿温度是约10℃到约180℃,由此蚀刻包含选自Al2O3、TiN、HfO2、ZrO2、W、Mo、Co、Cu、Ru、Ir、SiO2及SiN膜的膜的衬底。
8.根据权利要求7所述的方法,其中WOCl4在所述反应区中的浓度是约1000ppm到约10,000ppm。
9.根据权利要求7所述的方法,其中使所述衬底循序:
(i)暴露于WOCl4前体,接着
(ii)通过真空或惰性气体吹扫,接着
(iii)暴露于还原气体,接着
(iv)通过真空或惰性气体吹扫并重复(i)到(iv)的工序,直到已在所述衬底上发生所需量的蚀刻。
10.根据权利要求7所述的方法,其中使所述衬底暴露于WOCl4前体及还原气体的连续流。
11.根据权利要求7所述的方法,其中使所述衬底暴露于还原气体的连续流,同时将WOCl4前体脉冲到所述反应区内历时预定时间段。
12.根据权利要求7所述的方法,其中WOCl4前体在所述反应区中的浓度是约2000ppm到约5000ppm。
13.根据权利要求7所述的方法,其中所述衬底温度是约300℃到约450℃。
14.一种方法,其包括在反应区中使包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Cu、Ru、Ir、SiN、TiN及SiO2膜的膜的衬底暴露于:
(i)WOCl4连同自前体安瓿输送的载气,及
(ii)还原气体,
其中所述反应区的压力是约0.5托到500托;所述衬底温度是约200℃到1000℃,所述还原气体流动速率是每分钟约0.1到10升,所述载气流量是每分钟约0.001到1升,WOCl4的浓度是小于1000ppm,及所述前体安瓿温度是约10℃到180℃,
由此将钨沉积于包含选自Al2O3、HfO2、ZrO2、W、Mo、Co、Cu、Ru、Ir、SiN、TiN及SiO2膜的膜的所述衬底的表面上。
15.根据权利要求14所述的方法,其中WOCl4在所述反应区中的浓度是约75ppm到约1000ppm。
16.根据权利要求14所述的方法,其中将所述WOCl4前体脉冲到所述反应区内,历时0.05到约20秒的时段,接着0.05到约120秒的关闭时段,并重复所需脉冲数直到已在所述衬底上发生所需量的沉积。
17.根据权利要求16所述的方法,其中将所述WOCl4前体脉冲到所述反应区内,历时.1到约10秒的时段,接着1到约60秒的关闭时段。
18.根据权利要求14所述的方法,其中使所述衬底循序:
(i)暴露于WOCl4前体,接着
(ii)通过真空或惰性气体吹扫,接着
(iii)暴露于还原气体,接着
(iv)通过真空或惰性气体吹扫,并重复(i)到(iv)的工序,直到已在所述衬底上发生所需量的钨沉积。
19.根据权利要求14所述的方法,其中所述暴露是,其中使所述衬底暴露于WOCl4前体及还原气体的连续流。
20.一种钨膜,其具有约
Figure FDA0003794504870000031
到约
Figure FDA0003794504870000032
的厚度,及约100到约50μΩ-cm的电阻率。
CN202180014408.2A 2020-01-16 2021-01-15 蚀刻或沉积的方法 Pending CN115136285A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062961939P 2020-01-16 2020-01-16
US62/961,939 2020-01-16
PCT/US2021/013731 WO2021146623A1 (en) 2020-01-16 2021-01-15 Method for etching or deposition

Publications (1)

Publication Number Publication Date
CN115136285A true CN115136285A (zh) 2022-09-30

Family

ID=76856731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180014408.2A Pending CN115136285A (zh) 2020-01-16 2021-01-15 蚀刻或沉积的方法

Country Status (7)

Country Link
US (1) US11624111B2 (zh)
EP (1) EP4091192A4 (zh)
JP (1) JP7486588B2 (zh)
KR (1) KR20220126745A (zh)
CN (1) CN115136285A (zh)
TW (2) TWI843931B (zh)
WO (1) WO2021146623A1 (zh)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923287A (ja) * 1995-07-07 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> 公衆電話網を用いた監視情報通知システム
JPH09232287A (ja) * 1996-02-26 1997-09-05 Sony Corp エッチング方法及びコンタクトプラグ形成方法
GB9816720D0 (en) * 1998-08-01 1998-09-30 Pilkington Plc Process for coating glass
US20020176927A1 (en) * 2001-03-29 2002-11-28 Kodas Toivo T. Combinatorial synthesis of material systems
US7579285B2 (en) 2005-07-11 2009-08-25 Imec Atomic layer deposition method for depositing a layer
US8178439B2 (en) * 2010-03-30 2012-05-15 Tokyo Electron Limited Surface cleaning and selective deposition of metal-containing cap layers for semiconductor devices
KR102131581B1 (ko) 2012-03-27 2020-07-08 노벨러스 시스템즈, 인코포레이티드 텅스텐 피처 충진
US20140273451A1 (en) * 2013-03-13 2014-09-18 Applied Materials, Inc. Tungsten deposition sequence
US20150348840A1 (en) * 2014-05-31 2015-12-03 Lam Research Corporation Methods of filling high aspect ratio features with fluorine free tungsten
TW201606115A (zh) * 2014-07-07 2016-02-16 液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於薄膜沉積之含鉬及鎢之前驅物
TWI656232B (zh) * 2014-08-14 2019-04-11 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 鉬組成物及其用於形成氧化鉬膜之用途
US9972504B2 (en) * 2015-08-07 2018-05-15 Lam Research Corporation Atomic layer etching of tungsten for enhanced tungsten deposition fill
US10121671B2 (en) * 2015-08-28 2018-11-06 Applied Materials, Inc. Methods of depositing metal films using metal oxyhalide precursors
KR102179230B1 (ko) * 2016-06-03 2020-11-16 엔테그리스, 아이엔씨. 하프니아 및 지르코니아의 기상 에칭
WO2018013778A1 (en) * 2016-07-14 2018-01-18 Entegris, Inc. Cvd mo deposition by using mooc14
US10014185B1 (en) * 2017-03-01 2018-07-03 Applied Materials, Inc. Selective etch of metal nitride films
US10600688B2 (en) * 2017-09-06 2020-03-24 Micromaterials Llc Methods of producing self-aligned vias
US10910262B2 (en) * 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
WO2019213207A1 (en) 2018-05-01 2019-11-07 Applied Materials, Inc. Methods of increasing selectivity for selective etch processes
US11549175B2 (en) 2018-05-03 2023-01-10 Lam Research Corporation Method of depositing tungsten and other metals in 3D NAND structures
CN112105758A (zh) * 2018-05-04 2020-12-18 应用材料公司 金属膜沉积
US20210384035A1 (en) * 2020-06-04 2021-12-09 Applied Materials, Inc. Fluorine-Free Tungsten ALD And Tungsten Selective CVD For Dielectrics

Also Published As

Publication number Publication date
EP4091192A1 (en) 2022-11-23
WO2021146623A1 (en) 2021-07-22
TW202132600A (zh) 2021-09-01
KR20220126745A (ko) 2022-09-16
JP7486588B2 (ja) 2024-05-17
US11624111B2 (en) 2023-04-11
US20210222292A1 (en) 2021-07-22
EP4091192A4 (en) 2024-07-03
TWI843931B (zh) 2024-06-01
TW202428919A (zh) 2024-07-16
JP2023510607A (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
JP7182676B2 (ja) 周期的堆積により基材上に金属性膜を形成する方法及び関連する半導体デバイス構造
JP6813983B2 (ja) アルミニウム及び窒素を含む材料の選択的堆積
US7611751B2 (en) Vapor deposition of metal carbide films
JP5551681B2 (ja) アルミニウム炭化水素化合物を使用する金属炭化物膜の原子層堆積
US11608557B2 (en) Simultaneous selective deposition of two different materials on two different surfaces
CN110872703B (zh) 用于制备含硅和氮的膜的方法
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
CN112805405B (zh) 用于制备含硅和氮的膜的方法
CN113423864B (zh) 氮化硅的选择性沉积
US9236467B2 (en) Atomic layer deposition of hafnium or zirconium alloy films
CN115136285A (zh) 蚀刻或沉积的方法
US20220084817A1 (en) Silicon oxide deposition method
US20230142966A1 (en) Molybdenum precursor compounds
CN118280833A (zh) 相对于电介质表面在金属表面上选择性形成介电层方法
TW202419661A (zh) 用於選擇性沉積的高純度炔基胺
KR20240141817A (ko) 고 전도성 금속 필름을 선택적으로 침착시키는 방법
TW202430680A (zh) 用於選擇性地沉積過渡金屬之方法及總成
CN117242548A (zh) 低温沉积工艺
CN118119734A (zh) 选择性的热原子层蚀刻

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination