CN115124350A - 一种应用于高温环境下的陶瓷复合材料的制备工艺 - Google Patents

一种应用于高温环境下的陶瓷复合材料的制备工艺 Download PDF

Info

Publication number
CN115124350A
CN115124350A CN202210728537.4A CN202210728537A CN115124350A CN 115124350 A CN115124350 A CN 115124350A CN 202210728537 A CN202210728537 A CN 202210728537A CN 115124350 A CN115124350 A CN 115124350A
Authority
CN
China
Prior art keywords
chromium
zrb
zirconium diboride
particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210728537.4A
Other languages
English (en)
Other versions
CN115124350B (zh
Inventor
林萍华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210728537.4A priority Critical patent/CN115124350B/zh
Publication of CN115124350A publication Critical patent/CN115124350A/zh
Application granted granted Critical
Publication of CN115124350B publication Critical patent/CN115124350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及ZrB2基高温陶瓷制备技术领域,且公开了一种应用于高温环境下的陶瓷复合材料的制备工艺,包括如下步骤:在微米粒径的二硼化锆ZrB2粒子上生成纳米粒径的铬铜复合团簇粒子,将其在真空下煅烧并在煅烧过程中采用氢气还原,得到二硼化锆ZrB2‑铬铜团簇粒子包覆型复合粉体,采用放电等离子体烧结的方法,制备应用于高温环境下的二硼化锆ZrB2‑铬铜团簇粒子包覆型陶瓷复合材料,其断裂韧性达到了5.84‑6.27MPa·m1/2,并且取得了降低二硼化锆ZrB2粒子烧结温度、促进致密化、具备优异抗高温氧化性的有益技术效果。

Description

一种应用于高温环境下的陶瓷复合材料的制备工艺
技术领域
本发明涉及ZrB2基高温陶瓷制备技术领域,具体为一种应用于高温环境下的陶瓷复合材料的制备工艺。
背景技术
由于ZrB2中极强的共价键结构和低原子扩散率,且在制备过程中无液相和气相传质途径,因此通常需要在极高的温度、长时间保温和施加压力的条件下才能烧结得到单相致密的ZrB2块体材料。除了ZrB2的本征因素外,减小粉末颗粒尺寸、提高粉体纯度以及降低氧含量均可促进ZrB2陶瓷材料的致密化过程。另外,在ZrB2中加入烧结助剂,不仅可以促进材料的烧结致密,而且还能提升制备得到ZrB2基超高温陶瓷的力学和抗氧化性能。
目前,ZrB2中添加的烧结助剂可以分为以下几类:1)金属粉末,如Fe、Ni、Cr等,在高温烧结时发生熔化形成液相填充陶瓷粉体之间的空隙,从而促进材料致密化;2)非金属粉末,如C、B等,可通过消除ZrB2粉末表面的杂质来促进材料烧结致密;3)陶瓷粉末,如B4C、Si3N4[、AlN、ZrN、HfN、SiC等,这类烧结助剂的致密化作用机理主要有:与ZrB2表面杂质反应净化晶界、生成低熔点产物以及自身软化变形等。
发明内容
(一)解决的技术问题
针对ZrB2陶瓷存在的烧结致密性差、塑韧性较低、易高温氧化的不足,本发明提供一种应用于高温环境下的陶瓷复合材料的制备工艺。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:
一种应用于高温环境下的陶瓷复合材料的制备工艺,包括以下步骤:
步骤S1,在微米粒径的二硼化锆ZrB2粒子上生成纳米粒径的铬铜复合团簇粒子,将其在真空下煅烧并在煅烧过程中采用氢气还原,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体;
步骤S2,以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,采用放电等离子体烧结的方法,制备可以应用于高温环境下的二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料。
优选的,所述步骤S1,二硼化锆ZrB2粒子的粒径≥1um且≤15um;铬铜复合团簇粒子的粒径≥10nm且≤50nm。
优选的,所述步骤S1,在微米粒径的二硼化锆ZrB2粒子上生成纳米粒径的铬铜复合团簇粒子,其在350-380℃下真空煅烧1-2h,在620-680℃下采用氢气还原1-3h,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体。
优选的,所述步骤S2,放电等离子烧结工艺参数为:初始压强为8-15MPa,在真空下增加压力到18-20MPa,在1680-1750℃、18-20MPa的真空条件下保温7-15min。
(三)有益的技术效果
与现有技术相比,本发明具备以下有益的技术效果:
在粒径≥1um且≤15um的二硼化锆ZrB2粒子上生成粒径≥10nm且≤50nm的铬铜复合团簇粒子,将其在真空下煅烧并采用氢气还原,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体,其以二硼化锆ZrB2粒子为内核、以铬铜团簇粒子为外壳;
以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,采用放电等离子体烧结的方法,制备可以应用于高温环境下的二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料,其断裂韧性达到了5.84-6.27MPa·m1/2
在二硼化锆ZrB2-铬铜团簇粒子核壳包覆型陶瓷复合材料中,铬-铜复合团簇粒子(铬熔点1907℃、铜1083℃)在常温下,既有较优的塑韧性,又能保持较高的强度,在高于铜的熔化温度1083℃的高温下,铜熔化成液态,能够显现出塑韧性,可以进入二硼化锆ZrB2粒子的空洞中帮助传质,起到降低二硼化锆ZrB2粒子烧结温度、促进致密化的作用;
并且当氧扩散至材料表面时,可以形成了Cr2O3钝化物保护膜,阻挡氧离子向二硼化锆ZrB2粒子扩散,对二硼化锆ZrB2粒子起到保护作用,使其具备优异的抗高温氧化性。
具体实施方式
实施例1:
二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体的制备:
将3.2gCrCl3分散于由100mL蒸馏水中,搅拌下由恒压漏斗以30滴/min的速率滴入100mL溶解有4.5g硼氢化钠的蒸馏水溶液,向上述溶液中加入1gCuSO4、10g酒石酸钾钠、10g乙二胺四乙酸和5mg2,2-联吡啶,调节pH至10,升温至60℃后恒温水浴加热,在搅拌下向该溶液中加入5g平均粒径1-2um的二硼化锆ZrB2粒子和5mgPdCl2,在60℃下回流6h,在平均粒径1-2um的二硼化锆ZrB2粒子上生成粒径≥10nm且≤50nm的铬-铜复合团簇粒子,在整个过程中一直通入氮气,经过滤、洗涤,真空烘干之后在360℃下真空煅烧1h,在650℃下采用氢气还原2h,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体;
以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,采用放电等离子体烧结的方法,以三高石墨为放电等离子烧结模具,烧结出直径为2cm、长度为7cm的圆柱形二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料,放电等离子烧结工艺参数为:初始压强为10MPa,在真空下增加压力到20MPa,先以80℃/min的速率升高到1600℃,再以50℃/min的速率升高到1720℃,之后在1720℃、20MPa的真空条件下保温10min,之后降温。
实施例2:
二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体的制备:
将2.5gCrCl3分散于由100mL蒸馏水中,搅拌下由恒压漏斗以30滴/min的速率滴入100mL溶解有3g硼氢化钠的蒸馏水溶液,向上述溶液中加入0.8gCuSO4、8g酒石酸钾钠、8g乙二胺四乙酸和5mg2,2-联吡啶,调节pH至10,升温至50℃后恒温水浴加热,在搅拌下向该溶液中加入5g平均粒径3-5um的二硼化锆ZrB2粒子和5mgPdCl2,在50℃下回流8h,在平均粒径3-5um的二硼化锆ZrB2粒子上生成粒径≥10nm且≤50nm的铬-铜复合团簇粒子,在整个过程中一直通入氮气,经过滤、洗涤,真空烘干,之后在350℃下真空煅烧1h,在620℃下采用氢气还原1h,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体;
以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,压制成型后,采用放电等离子体烧结的方法,以三高石墨为放电等离子烧结模具,烧结出直径为2cm、长度为7cm的圆柱形二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料,放电等离子烧结工艺参数为:初始压强为8MPa,在真空下增加压力到20MPa,先以80℃/min的速率升高到1560℃,再以50℃/min的速率升高到1680℃,之后在1680℃、20MPa的真空条件下保温15min,之后降温。
实施例3:
二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体的制备:
将4gCrCl3分散于由100mL蒸馏水中,搅拌下由恒压漏斗以30滴/min的速率滴入100mL溶解有8g硼氢化钠的蒸馏水溶液,向上述溶液中加入1.5gCuSO4、15g酒石酸钾钠、15g乙二胺四乙酸和10mg2,2-联吡啶,调节pH至10,升温至80℃后恒温水浴加热,在搅拌下向该溶液中加入5g平均粒径15um的二硼化锆ZrB2粒子和10mgPdCl2,在80℃下回流4h,在平均粒径15um的二硼化锆ZrB2粒子上生成粒径≥10nm且≤50nm的铬-铜复合团簇粒子,在整个过程中一直通入氮气,经过滤、洗涤,真空烘干之后在380℃下真空煅烧2h,在680℃下采用氢气还原3h,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体;
以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,压制成型后,采用放电等离子体烧结的方法,以三高石墨为放电等离子烧结模具,烧结出直径为2cm、长度为7cm的圆柱形二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料,放电等离子烧结工艺参数为:初始压强为15MPa,在真空下增加压力到18MPa,先以80℃/min的速率升高到1650℃,再以50℃/min的速率升高到1750℃,之后在1750℃、18MPa的真空条件下保温7min,之后降温。
对比例1:
以平均粒径1-2um的二硼化锆ZrB2粒子为原料,压制成型后,采用放电等离子体烧结的方法,以三高石墨为放电等离子烧结模具,烧结出直径为2cm、长度为7cm的圆柱形二硼化锆ZrB2陶瓷材料,放电等离子烧结工艺参数为:初始压强为10MPa,在真空下增加压力到20MPa,先以80℃/min的速率升高到1600℃,再以50℃/min的速率升高到1720℃,之后在1720℃、20MPa的真空条件下保温10min,之后降温。
性能测试:
一、根据GB/T6569-2006,在WDW-5型微机控制电子万能试验机上采用三点弯曲法测定弯曲强度;
二、根据GB/T23806-2009,在电子万能试验机上进行断裂韧性测试;
三、利用432SVD型显微硬度计测试维氏硬度;
上述测试结果见下表1;
表1
Figure BDA0003711764410000071
Figure BDA0003711764410000081

Claims (4)

1.一种应用于高温环境下的陶瓷复合材料的制备工艺,其特征在于,包括以下步骤:
步骤S1,在微米粒径的二硼化锆ZrB2粒子上生成纳米粒径的铬铜复合团簇粒子,将其在真空下煅烧并在煅烧过程中采用氢气还原,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体;
步骤S2,以二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体为原料,采用放电等离子体烧结的方法,制备可以应用于高温环境下的二硼化锆ZrB2-铬铜团簇粒子包覆型陶瓷复合材料。
2.根据权利要求1所述的一种应用于高温环境下的陶瓷复合材料的制备工艺,其特征在于,所述步骤S1,二硼化锆ZrB2粒子的粒径≥1um且≤15um;铬铜复合团簇粒子的粒径≥10nm且≤50nm。
3.根据权利要求1所述的一种应用于高温环境下的陶瓷复合材料的制备工艺,其特征在于,所述步骤S1,在微米粒径的二硼化锆ZrB2粒子上生成纳米粒径的铬铜复合团簇粒子,其在350-380℃下真空煅烧1-2h,在620-680℃下采用氢气还原1-3h,得到二硼化锆ZrB2-铬铜团簇粒子包覆型复合粉体。
4.根据权利要求1所述的一种应用于高温环境下的陶瓷复合材料的制备工艺,其特征在于,所述步骤S2,放电等离子烧结工艺参数为:初始压强为8-15MPa,在真空下增加压力到18-20MPa,在1680-1750℃、18-20MPa的真空条件下保温7-15min。
CN202210728537.4A 2022-06-24 2022-06-24 一种应用于高温环境下的陶瓷复合材料的制备工艺 Active CN115124350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210728537.4A CN115124350B (zh) 2022-06-24 2022-06-24 一种应用于高温环境下的陶瓷复合材料的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210728537.4A CN115124350B (zh) 2022-06-24 2022-06-24 一种应用于高温环境下的陶瓷复合材料的制备工艺

Publications (2)

Publication Number Publication Date
CN115124350A true CN115124350A (zh) 2022-09-30
CN115124350B CN115124350B (zh) 2024-03-08

Family

ID=83379276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210728537.4A Active CN115124350B (zh) 2022-06-24 2022-06-24 一种应用于高温环境下的陶瓷复合材料的制备工艺

Country Status (1)

Country Link
CN (1) CN115124350B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100164A (ja) * 1995-10-03 1997-04-15 Mitsubishi Materials Corp 硼化物セラミックス複合材料及びその製造方法
CN1837044A (zh) * 2006-04-13 2006-09-27 武汉理工大学 一种放电等离子烧结高致密二硼化锆块体材料的方法
CN102548932A (zh) * 2009-08-04 2012-07-04 阿洛梅特公司 固结在韧性基质材料中的韧性经涂布硬质颗粒
CN104651815A (zh) * 2014-12-11 2015-05-27 裴洁 一种制备ZrB2-Cu复合粉末的方法
CN107492651A (zh) * 2017-09-05 2017-12-19 中国科学院物理研究所 一种双层包覆的纳米硅负极材料及其制备方法和应用
CN108206285A (zh) * 2017-12-12 2018-06-26 中国科学院物理研究所 一种复合包覆的纳米锡负极材料及其制备方法和应用
CN109967736A (zh) * 2019-03-21 2019-07-05 武汉科技大学 一种具有核壳结构的Fe2O3@Ni复合粉体及其制备方法
US20210269364A1 (en) * 2020-02-28 2021-09-02 Korea Institute Of Science And Technology Boron carbide composite and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100164A (ja) * 1995-10-03 1997-04-15 Mitsubishi Materials Corp 硼化物セラミックス複合材料及びその製造方法
CN1837044A (zh) * 2006-04-13 2006-09-27 武汉理工大学 一种放电等离子烧结高致密二硼化锆块体材料的方法
CN102548932A (zh) * 2009-08-04 2012-07-04 阿洛梅特公司 固结在韧性基质材料中的韧性经涂布硬质颗粒
CN104651815A (zh) * 2014-12-11 2015-05-27 裴洁 一种制备ZrB2-Cu复合粉末的方法
CN107492651A (zh) * 2017-09-05 2017-12-19 中国科学院物理研究所 一种双层包覆的纳米硅负极材料及其制备方法和应用
CN108206285A (zh) * 2017-12-12 2018-06-26 中国科学院物理研究所 一种复合包覆的纳米锡负极材料及其制备方法和应用
CN109967736A (zh) * 2019-03-21 2019-07-05 武汉科技大学 一种具有核壳结构的Fe2O3@Ni复合粉体及其制备方法
US20210269364A1 (en) * 2020-02-28 2021-09-02 Korea Institute Of Science And Technology Boron carbide composite and production method therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D BANNYKH: "The peculiarities in oxidation behavior of the ZrB2-SiC ceramics with chromium additive", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》 *
D BANNYKH: "The peculiarities in oxidation behavior of the ZrB2-SiC ceramics with chromium additive", 《INTERNATIONAL JOURNAL OF REFRACTORY METALS AND HARD MATERIALS》, vol. 84, 16 July 2019 (2019-07-16), pages 1 - 8, XP085769704, DOI: 10.1016/j.ijrmhm.2019.105023 *
T VENKATESWARAN: "Densification and properties of transition metal borides-based cermets via spark plasma sintering", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
T VENKATESWARAN: "Densification and properties of transition metal borides-based cermets via spark plasma sintering", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 26, no. 13, 2 August 2005 (2005-08-02), pages 2431 - 2440, XP024960396, DOI: 10.1016/j.jeurceramsoc.2005.05.011 *

Also Published As

Publication number Publication date
CN115124350B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP7164906B2 (ja) 金属材料又は金属複合材料の調製方法
CN110527857B (zh) 一种烧结钛合金及其制备方法
CN112647009A (zh) 一种高强度高耐磨性中熵合金及其制备方法
CN109550941B (zh) 一种碳纳米管包覆钛球形复合粉体及其制备方法
CN111118325B (zh) 一种细晶铌钛合金的制备方法
CN111485207A (zh) 一种细晶粒均相高钪含量的铝钪合金烧结靶材及其制备方法和应用
CN113185295A (zh) 一种制备max相高熵陶瓷材料的方法
CN111545742B (zh) 一种制备高性能粉末冶金Ti6Al4V合金的方法
CN109576546A (zh) 一种高强韧性无磁Ti(C,N)基金属陶瓷的制备方法
CN109865833B (zh) 钛或钛合金制品的粉末冶金制备方法、钛或钛合金制品
CN110408830B (zh) 一种Ti(C,N)基金属陶瓷材料及其碳平衡的控制方法
CN101525716B (zh) 铁铝金属间化合物-二硼化钛复合材料及制备方法
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN109778018B (zh) 铝碳化硅材料的制备方法及制备得到的铝碳化硅材料
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN108165791B (zh) 一种无粘结相超细碳化钨硬质合金的制备方法
WO2022011721A1 (zh) 一种大规格复杂刀具用粉末冶金高速钢及其制备方法
CN115124350A (zh) 一种应用于高温环境下的陶瓷复合材料的制备工艺
CN111763843A (zh) 一种多元掺杂高比重钨铜镍合金的制备方法及制备的高比重钨铜镍合金
CN103710576B (zh) 一种钪、钽增强的高强度镍铌合金材料
CN109848405B (zh) 粉末表面处理剂、钛或钛合金粉表面处理方法及复合粉末
CN110643857A (zh) 一种无原始颗粒边界的镍基合金粉末及其制备方法
CN117024147B (zh) 一种(Ta,Nb,Hfx)2C中熵合金化碳化物陶瓷及其制备方法
CN114100612B (zh) 合成宝石级金刚石用梯度成分结构的合成柱及制备方法
CN108330413A (zh) 一种高抗压锆基非晶合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant