WO2022011721A1 - 一种大规格复杂刀具用粉末冶金高速钢及其制备方法 - Google Patents
一种大规格复杂刀具用粉末冶金高速钢及其制备方法 Download PDFInfo
- Publication number
- WO2022011721A1 WO2022011721A1 PCT/CN2020/102866 CN2020102866W WO2022011721A1 WO 2022011721 A1 WO2022011721 A1 WO 2022011721A1 CN 2020102866 W CN2020102866 W CN 2020102866W WO 2022011721 A1 WO2022011721 A1 WO 2022011721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed steel
- powder
- powder metallurgy
- cutting tools
- metallurgy high
- Prior art date
Links
- 229910000997 High-speed steel Inorganic materials 0.000 title claims abstract description 58
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 238000005245 sintering Methods 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 238000005242 forging Methods 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000000465 moulding Methods 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000227 grinding Methods 0.000 claims abstract description 18
- 239000011261 inert gas Substances 0.000 claims abstract description 11
- 238000003825 pressing Methods 0.000 claims abstract description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 238000007873 sieving Methods 0.000 claims abstract description 5
- 238000005520 cutting process Methods 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 11
- 229910003178 Mo2C Inorganic materials 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 229910003470 tongbaite Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000009694 cold isostatic pressing Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 6
- 238000003723 Smelting Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 2
- 238000000641 cold extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
Definitions
- the invention relates to a preparation method, in particular to a powder metallurgy high-speed steel for large-scale complex cutting tools and a preparation method thereof, belonging to the technical field of powder metallurgy high-speed steel.
- High-speed steel has good process performance, good strength and toughness, so it is mainly used to manufacture complex thin-edged and impact-resistant metal cutting tools, as well as high-temperature bearings and cold extrusion dies.
- powder metallurgy high-speed steel appeared. Its advantage is to avoid the reduction of mechanical properties and heat treatment deformation caused by carbide segregation caused by smelting production.
- High-speed steel is usually produced by electric furnace, and powder metallurgy method was used. In the production of high-speed steel, the carbides are evenly distributed on the substrate in the form of extremely fine particles, which improves the service life.
- the purpose of the present invention is to provide a powder metallurgy high-speed steel for large-sized complex cutting tools and a preparation method thereof in order to solve the above problems.
- a powder metallurgy high-speed steel for large-scale complex cutting tools comprising the following chemical components, in % by weight, containing: WC: 1.8-1.9, TaC: 1-1.1, NbC : 4-4.2, Mo2C: 3-3.5, VC: 3-4.9, TaC: 11-12, TiC: 0.6-0.8, Cr3C2: 0.1-0.8, the balance is iron and impurities, and the above substances are all untreated particles shape.
- a method for preparing powder metallurgy high-speed steel for large-scale complex cutting tools includes the following steps:
- Step 1 Preparation of powder mixture: the components and proportions of raw materials, weigh the raw materials according to the above components and proportions, mix 85% to 90% of the metal powder and 15% to 10% of the corresponding additives and put in In the plane grinder, the running speed is divided into three grinding stages, and the mixed grinding is carried out for 75-85 hours to prepare a powder mixture;
- Step 2 sieving: the powder prepared in step 1 is mixed and sieved, and the powder mixture that meets the specifications is screened out;
- Step 3 cold pressing into a blank: put the above-mentioned powder mixture that meets the specification requirements into a special mold by cold isostatic pressing to form a powder mixture molding block by molding equipment, and apply a certain pressure by cold pressing;
- Step 4 the above-mentioned powder mixed molding block is sintered in a high-temperature sintering forging furnace, and at the same time, the corresponding stable gas is filled. During sintering, the compact is heated to 1200-1250 ° C and kept for 45-85 minutes, and the sintering pressure is 10-40Mpa, the high-speed steel blank is obtained after cooling;
- Step 5 Hot forging: Forging the above-mentioned high-speed steel blank on a forging press, the heating temperature of the high-speed steel blank is 1050-1150°C, the heating and holding time is 20-40 minutes, the blanking pressure is 145-165MPa, and the pressure is 40- 50MPa;
- Step 6 Heat treatment: (1) Quenching: heat the high-speed steel blank in a salt bath furnace to a quenching temperature of 1150-1240°C, and then oil-cool it to room temperature; (2) Tempering: after quenching, place the high-speed steel blank at a temperature of 550°C. Tempering in a muffle furnace at -600°C;
- Step 7 Hardness test: The obtained powder metallurgy high-speed steel is tested for hardness by means of testing equipment.
- the speeds of the three stages of operation of the plane grinder are respectively 20-25 rpm, 30-35 rpm and 40-50 rpm.
- the duration of the stages is one-half, one-sixth, and two-thirds of the total time, respectively.
- the speeds of the three grinding stages are gradually accelerated, and at the same time, the plane grinder is provided with a material turning mechanism, which can perform a material turning operation.
- the pressure applied by the molding equipment is 160-350 MPa, and the pressure-holding time is 6-8 minutes.
- the powder mixture forming block in the mold is demolded by a demoulding machine, and the mold is moved to a cleaning area for processing and will be used later.
- the stable gas used in the fourth step is an inert gas, and the amount of the inert gas used is consistent with the amount of the powder mixture molding block.
- the high-temperature sintering and forging furnace is in a sealed and high-pressure state, and at the same time, the high-temperature sintering and forging furnace is heated by means of electromagnetic heating.
- the weight percentage of carbonyl iron powder used in the first step is 60%, 65% or 70%
- the weight percentage of metal carbide is 19%, 20% and 24%
- the weight percentage of cobalt powder is The percentage content can be 8% or 10%
- the weight percentage content of TiN can be 1%, 2% or 3%.
- the metal carbide is one or more of WC, TaC, NbC, Mo2C, VC, TaC, TiC and Cr3C2. kind.
- the present invention adopts the method of combining grinding technology, cold pressing forming and electromagnetic heating high temperature sintering technology to prepare high-performance powder metallurgy high-speed steel, saves the process of smelting metal raw materials, improves processing efficiency, and saves costs , by filling the electromagnetic heating high-temperature sintering equipment with inert gas and carrying out the carbon-oxygen reaction between the free carbon in the metal carbide and the oxygen at the interface of iron powder and cobalt powder particles, the interface between metal carbide and iron powder and cobalt powder particles is purified. Forging and corresponding heat treatment can improve the strength and toughness of powder high-speed steel.
- Fig. 1 is the flow chart of the preparation method of the present invention.
- a powder metallurgy high-speed steel for large-sized complex cutting tools comprising the following chemical components, in weight %, containing: WC: 1.8-1.9, TaC: 1-1.1, NbC: 4-4.2, Mo2C: 3-3.5, VC: 3-4.9, TaC: 11-12, TiC: 0.6-0.8, Cr3C2: 0.1-0.8, the balance is iron and impurities, and the above substances are all in untreated granular form.
- a preparation method of powder metallurgy high-speed steel for large-scale complex cutting tools comprises the following steps:
- Step 1 Prepare the powder mixture: the components and proportions of the raw materials, weigh the raw materials according to the above-mentioned components and proportions, mix 85% of the metal powder and 15% of the corresponding additives into the plane grinder, run The speed is divided into three grinding stages, and the mixed grinding is carried out for 75 hours to prepare a powder mixture;
- Step 2 sieving: the powder prepared in step 1 is mixed and sieved, and the powder mixture that meets the specifications is screened out;
- Step 3 cold pressing into a blank: put the above-mentioned powder mixture that meets the specification requirements into a special mold by cold isostatic pressing to form a powder mixture molding block by molding equipment, and apply a certain pressure by cold pressing;
- Step 4 the above-mentioned powder mixed molding block is sintered in a high-temperature sintering forging furnace, and at the same time, the corresponding stable gas is filled. During sintering, the compact is heated to 1200-1250 ° C and kept for 45-85 minutes, and the sintering pressure is 10Mpa, the high-speed steel blank is obtained after cooling;
- Step 5 hot forging: forging the above-mentioned high-speed steel blank on a forging press, the heating temperature of the high-speed steel blank is 1050 ° C, the heating and holding time is 20 minutes, the blanking pressure is 145 MPa, and the pressure is 40 MPa;
- Step 6 Heat treatment: (1) Quenching: heat the high-speed steel blank in a salt bath furnace to a quenching temperature of 1150°C, and then oil-cool it to room temperature; (2) Tempering: after quenching, place the high-speed steel blank at a temperature of 550°C. Tempering in a muffle furnace;
- Step 7 Hardness test: The obtained powder metallurgy high-speed steel is tested for hardness by means of testing equipment.
- the speeds of the three stages of operation of the plane grinder are respectively 20 rpm, 30 rpm and 40 rpm, and the time of each grinding stage accounts for the total One-half, one-sixth, and two-thirds of the time.
- the speed of the three grinding stages is gradually accelerated, and at the same time, the plane grinder is provided with a material turning mechanism, which can perform a material turning operation.
- the pressure applied by the molding equipment is 160 MPa, and the pressure holding time is 6 minutes.
- the powder mixture forming block in the mold is demolded by a demoulding machine, and the mold is moved to a cleaning area for processing, which is to be used later.
- the stable gas used in the fourth step is an inert gas, and the amount of the inert gas used is consistent with the amount of the powder mixture molding block.
- the high-temperature sintering and forging furnace is in a sealed high-pressure state, and at the same time, the high-temperature sintering and forging furnace is heated by means of electromagnetic heating.
- the weight percentage of carbonyl iron powder used in the step 1 is 60%, 65% or 70%
- the weight percentage of metal carbide is 19%, 20% and 24%
- the weight of cobalt powder is 60%, 65% or 70%.
- the percentage content can be 8% or 10%
- the weight percentage content of TiN can be 1%, 2% or 3%.
- the metal carbide is preferably one of WC, TaC, NbC, Mo2C, VC, TaC, TiC, Cr3C2.
- the above preparation method adopts the method of combining grinding technology, cold pressing forming and electromagnetic heating high temperature sintering technology to prepare high-performance powder metallurgy high-speed steel, eliminating the process of smelting metal raw materials, improving processing efficiency and saving costs.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- a powder metallurgy high-speed steel for large-sized complex cutting tools comprising the following chemical components, in weight %, containing: WC: 1.8-1.9, TaC: 1-1.1, NbC: 4-4.2, Mo2C: 3-3.5, VC: 3-4.9, TaC: 11-12, TiC: 0.6-0.8, Cr3C2: 0.1-0.8, the balance is iron and impurities, and the above substances are all in untreated granular form.
- a preparation method of powder metallurgy high-speed steel for large-scale complex cutting tools comprises the following steps:
- Step 1 Preparation of powder mixture: the components and proportions of raw materials, weigh the raw materials according to the above components and proportions, mix 90% of the metal powder and 10% of the corresponding additives into the plane grinder, and run The speed is divided into three grinding stages, and the mixed grinding is carried out for 85 hours to prepare a powder mixture;
- Step 2 sieving: the powder prepared in step 1 is mixed and sieved, and the powder mixture that meets the specifications is screened out;
- Step 3 cold pressing into a blank: put the above-mentioned powder mixture that meets the specification requirements into a special mold by cold isostatic pressing to form a powder mixture molding block by molding equipment, and apply a certain pressure by cold pressing;
- Step 4 the above-mentioned powder mixed molding block is sintered in a high-temperature sintering forging furnace, and at the same time, the corresponding stable gas is filled. During sintering, the compact is heated to 1250 ° C and kept for 85 minutes, and the sintering pressure is 40 Mpa. After cooling That is, the high-speed steel blank is obtained;
- Step 5 hot forging: the above-mentioned high-speed steel blank is forged on a forging press, the heating temperature of the high-speed steel blank is 1150 ° C, the heating and holding time is 40 minutes, the blanking pressure is 165 MPa, and the pressure is 50 MPa;
- Step 6 Heat treatment: (1) Quenching: heat the high-speed steel blank in a salt bath furnace to a quenching temperature of 1150-1240°C, and then oil-cool it to room temperature; (2) Tempering: after quenching, place the high-speed steel blank at a temperature of 550°C. Tempering in a muffle furnace at -600°C;
- Step 7 Hardness test: The obtained powder metallurgy high-speed steel is tested for hardness by means of testing equipment.
- the speeds of the three stages of operation of the plane grinder are respectively a speed of 25 rev/min, a speed of 35 rev/min and a speed of 50 rev/min, and the time of each grinding stage accounts for the total One-half, one-sixth, and two-thirds of the time.
- the speed of the three grinding stages is gradually accelerated, and at the same time, the plane grinder is provided with a material turning mechanism, which can perform a material turning operation.
- the pressure applied by the molding equipment is 350 MPa, and the pressure holding time is 8 minutes.
- the powder mixture forming block in the mold is demolded by a demoulding machine, and the mold is moved to a cleaning area for processing, which is to be used later.
- the stable gas used in the fourth step is an inert gas, and the amount of the inert gas used is consistent with the amount of the powder mixture molding block.
- the high-temperature sintering and forging furnace is in a sealed high-pressure state, and at the same time, the high-temperature sintering and forging furnace is heated by means of electromagnetic heating.
- the weight percentage of carbonyl iron powder used in the step 1 is 60%, 65% or 70%
- the weight percentage of metal carbide is 19%, 20% and 24%
- the weight of cobalt powder is 60%, 65% or 70%.
- the percentage content can be 8% or 10%
- the weight percentage content of TiN can be 1%, 2% or 3%.
- the metal carbides are the carbides of metals of Group 4, Group 5 and Group 6 of the periodic table, preferably WC, TaC, NbC, Mo2C, VC, TaC, TiC, Cr3C2.
- the above preparation method purifies the interface between the metal carbide and the iron powder and the cobalt powder by filling the inert gas into the electromagnetic heating high-temperature sintering equipment and performing the carbon-oxygen reaction between the free carbon in the metal carbide and the oxygen at the interface of the iron powder and the cobalt powder particle.
- forging and corresponding heat treatment can improve the strength and toughness of powder high-speed steel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种大规格复杂刀具用粉末冶金高速钢及其制备方法,制备方法包括如下步骤:制备粉末混合物;分筛;冷压成坯;烧结;热锻;热处理;硬度测试。该方法的有益效果是:采用研磨工艺、冷压成型和电磁加热高温烧结技术相结合的方法来制备高性能的粉末冶金高速钢,省去熔炼金属原料的工序,提高加工效率,节省成本,通过向电磁加热高温烧结设备中充入惰性气体且通过金属碳化物中游离碳与铁粉、钴粉颗粒界面的氧进行碳氧反应净化了金属碳化物与铁粉、钴粉颗粒界面,同时进行锻造及相应的热处理,能够提高粉末高速钢的强度和韧性。
Description
本发明涉及一种制备方法,具体为一种大规格复杂刀具用粉末冶金高速钢及其制备方法,属于粉末冶金高速钢技术领域。
高速钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等,除用熔炼方法生产的高速钢外,20世纪60年代以后又出现了粉末冶金高速钢,它的优点是避免了熔炼法生产所造成的碳化物偏析而引起机械性能降低和热处理变形,高速钢通常采用电炉生产,曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。
粉末冶金高速钢的原料需要传统熔炼方式处理成金属液倒入相应模具中再进行后续的处理,且工序相对繁琐,成本较高,同时粉末冶金高速钢由部分工艺欠缺,以至于粉末冶金高速钢强度不够高。因此,针对上述问题提出一种大规格复杂刀具用粉末冶金高速钢及其制备方法。
发明内容
本发明的目的就在于为了解决上述问题而提供一种大规格复杂刀具用粉末冶金高速钢及其制备方法。
本发明通过以下技术方案来实现上述目的,一种大规格复杂刀具用粉末冶金高速钢,包括下列的化学组分,以重量%计,含有:WC:1.8-1.9,TaC:1-1.1,NbC:4-4.2,Mo2C:3-3.5,VC:3-4.9,TaC:11-12,TiC:0.6-0.8,Cr3C2:0.1-0.8,余量为铁和杂质,且上述物质均为未处理颗粒状。
优选的,一种大规格复杂刀具用粉末冶金高速钢制备方法,所述制备方法包括如下步骤:
步骤一、制备粉末混合物:原料的组份及配比,按照上述组份及配比称 取原料,将占85%至90%的金属粉末与占15%至10%的相应添加剂混合在一起投入平面研磨机中,运行速度分三个研磨阶段,进行75-85小时的混合研磨,制备得到粉末混合物;
步骤二、分筛:步骤一中制备的粉末混合进行筛滤,将符合规格的粉末混合物筛选出来;
步骤三、冷压成坯:通过冷等静压成型将上述符合规格要求的粉末混合物放入专用模具中经模压设备制成粉末混合物成型块,采用冷压方式,施加一定的压力;
步骤四、烧结:将上述成型的粉末混合成型块经高温烧结锻造炉进行烧结,同时充入相应稳定性气体,烧结时将压坯加热至1200-1250℃并保温45-85分钟,烧结压力为10-40Mpa,冷却后即获得高速钢坯体;
步骤五、热锻:在锻压机上对上述高速钢坯体进行锻打,高速钢坯体加热温度在1050-1150℃,加热保温时间为20-40分钟,开坯压力为145-165MPa,压力为40-50MPa;
步骤六、热处理:(1)淬火:将高速钢坯体在盐浴炉中加热至淬火温度1150-1240℃,然后油冷至室温;(2)回火:淬火后将高速钢坯体放置在温度550-600℃的马弗炉中进行回火处理;
步骤七、硬度测试:将得到的粉末冶金高速钢利用检测备进行硬度检测。
优选的,所述步骤一中平面研磨机的运行三个阶段的速度分别为20-25转/分钟的速度、30-35转/分钟的速度和40-50转/分钟的速度,每个研磨阶段的时间分别占总时间的二分之一、六分之一和三分之二。
优选的,所述步骤二中三个研磨阶段速度逐步加速,同时平面研磨机中带有翻料机构,能够进行翻料操作。
优选的,所述步骤三中模压设备施加压力为160-350MPa,且保压时间为6-8分钟。
优选的,所述步骤三中模具中的粉末混合物成型块通过脱模机实现脱模,将模具移至清理区域进行处理,待后续使用。
优选的,所述步骤四中所用的稳定性气体为惰性气体,且惰性气体的使用量与粉末混合物成型块的量相一致。
优选的,所述步骤四中高温烧结锻造炉处于密封高压状态,同时高温烧结锻造炉采用电磁加热的方式进行加热。
优选的,所述步骤一中所用中羰基铁粉的重量百分含量为60%、65%或70%,金属碳化物的重量百分含量为19%、20%和24%,钴粉的重量百分含量可以是8%或10%,TiN的重量百分含量可以是1%、2%或3%。
优选的,所述金属碳化物为元素周期表第4族、第5组和第6族金属的碳化物优选为WC、TaC、NbC、Mo2C、VC、TaC、TiC、Cr3C2中的一种或几种。
本发明的有益效果是:本发明采用研磨工艺、冷压成型和电磁加热高温烧结技术相结合的方法来制备高性能的粉末冶金高速钢,省去熔炼金属原料的工序,提高加工效率,节省成本,通过向电磁加热高温烧结设备中充入惰性气体且通过金属碳化物中游离碳与铁粉、钴粉颗粒界面的氧进行碳氧反应净化了金属碳化物与铁粉、钴粉颗粒界面,同时进行锻造及相应的热处理,能够提高粉末高速钢的强度和韧性。
图1为本发明的制备方法流程图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
一种大规格复杂刀具用粉末冶金高速钢,包括下列的化学组分,以重量%计,含有:WC:1.8-1.9,TaC:1-1.1,NbC:4-4.2,Mo2C:3-3.5,VC:3-4.9,TaC:11-12,TiC:0.6-0.8,Cr3C2:0.1-0.8,余量为铁和杂质,且上述物质均为未处理颗粒状。
进一步的,一种大规格复杂刀具用粉末冶金高速钢制备方法,所述制备方法包括如下步骤:
步骤一、制备粉末混合物:原料的组份及配比,按照上述组份及配比称取原料,将占85%的金属粉末与占15%的相应添加剂混合在一起投入平面研磨机中,运行速度分三个研磨阶段,进行75小时的混合研磨,制备得到粉末混合物;
步骤二、分筛:步骤一中制备的粉末混合进行筛滤,将符合规格的粉末混合物筛选出来;
步骤三、冷压成坯:通过冷等静压成型将上述符合规格要求的粉末混合物放入专用模具中经模压设备制成粉末混合物成型块,采用冷压方式,施加一定的压力;
步骤四、烧结:将上述成型的粉末混合成型块经高温烧结锻造炉进行烧结,同时充入相应稳定性气体,烧结时将压坯加热至1200-1250℃并保温45-85分钟,烧结压力为10Mpa,冷却后即获得高速钢坯体;
步骤五、热锻:在锻压机上对上述高速钢坯体进行锻打,高速钢坯体加热温度在1050℃,加热保温时间为20分钟,开坯压力为145MPa,压力为40MPa;
步骤六、热处理:(1)淬火:将高速钢坯体在盐浴炉中加热至淬火温度1150℃,然后油冷至室温;(2)回火:淬火后将高速钢坯体放置在温度550℃的马弗炉中进行回火处理;
步骤七、硬度测试:将得到的粉末冶金高速钢利用检测备进行硬度检测。
进一步的,所述步骤一中平面研磨机的运行三个阶段的速度分别为20转 /分钟的速度、30转/分钟的速度和40转/分钟的速度,每个研磨阶段的时间分别占总时间的二分之一、六分之一和三分之二。
进一步的,所述步骤二中三个研磨阶段速度逐步加速,同时平面研磨机中带有翻料机构,能够进行翻料操作。
进一步的,所述步骤三中模压设备施加压力为160MPa,且保压时间为6分钟。
进一步的,所述步骤三中模具中的粉末混合物成型块通过脱模机实现脱模,将模具移至清理区域进行处理,待后续使用。
进一步的,所述步骤四中所用的稳定性气体为惰性气体,且惰性气体的使用量与粉末混合物成型块的量相一致。
进一步的,所述步骤四中高温烧结锻造炉处于密封高压状态,同时高温烧结锻造炉采用电磁加热的方式进行加热。
进一步的,所述步骤一中所用中羰基铁粉的重量百分含量为60%、65%或70%,金属碳化物的重量百分含量为19%、20%和24%,钴粉的重量百分含量可以是8%或10%,TiN的重量百分含量可以是1%、2%或3%。
进一步的,所述金属碳化物为元素周期表第4族、第5组和第6族金属的碳化物优选为WC、TaC、NbC、Mo2C、VC、TaC、TiC、Cr3C2中的一种。
上述制备方法采用研磨工艺、冷压成型和电磁加热高温烧结技术相结合的方法来制备高性能的粉末冶金高速钢,省去熔炼金属原料的工序,提高加工效率,节省成本。
实施例二:
一种大规格复杂刀具用粉末冶金高速钢,包括下列的化学组分,以重量%计,含有:WC:1.8-1.9,TaC:1-1.1,NbC:4-4.2,Mo2C:3-3.5,VC:3-4.9,TaC:11-12,TiC:0.6-0.8,Cr3C2:0.1-0.8,余量为铁和杂质,且上述物质均为未处理颗粒状。
进一步的,一种大规格复杂刀具用粉末冶金高速钢制备方法,所述制备方法包括如下步骤:
步骤一、制备粉末混合物:原料的组份及配比,按照上述组份及配比称取原料,将占90%的金属粉末与占10%的相应添加剂混合在一起投入平面研磨机中,运行速度分三个研磨阶段,进行85小时的混合研磨,制备得到粉末混合物;
步骤二、分筛:步骤一中制备的粉末混合进行筛滤,将符合规格的粉末混合物筛选出来;
步骤三、冷压成坯:通过冷等静压成型将上述符合规格要求的粉末混合物放入专用模具中经模压设备制成粉末混合物成型块,采用冷压方式,施加一定的压力;
步骤四、烧结:将上述成型的粉末混合成型块经高温烧结锻造炉进行烧结,同时充入相应稳定性气体,烧结时将压坯加热至1250℃并保温85分钟,烧结压力为40Mpa,冷却后即获得高速钢坯体;
步骤五、热锻:在锻压机上对上述高速钢坯体进行锻打,高速钢坯体加热温度在1150℃,加热保温时间为40分钟,开坯压力为165MPa,压力为50MPa;
步骤六、热处理:(1)淬火:将高速钢坯体在盐浴炉中加热至淬火温度1150-1240℃,然后油冷至室温;(2)回火:淬火后将高速钢坯体放置在温度550-600℃的马弗炉中进行回火处理;
步骤七、硬度测试:将得到的粉末冶金高速钢利用检测备进行硬度检测。
进一步的,所述步骤一中平面研磨机的运行三个阶段的速度分别为25转/分钟的速度、35转/分钟的速度和50转/分钟的速度,每个研磨阶段的时间分别占总时间的二分之一、六分之一和三分之二。
进一步的,所述步骤二中三个研磨阶段速度逐步加速,同时平面研磨机中带有翻料机构,能够进行翻料操作。
进一步的,所述步骤三中模压设备施加压力为350MPa,且保压时间为8分钟。
进一步的,所述步骤三中模具中的粉末混合物成型块通过脱模机实现脱模,将模具移至清理区域进行处理,待后续使用。
进一步的,所述步骤四中所用的稳定性气体为惰性气体,且惰性气体的使用量与粉末混合物成型块的量相一致。
进一步的,所述步骤四中高温烧结锻造炉处于密封高压状态,同时高温烧结锻造炉采用电磁加热的方式进行加热。
进一步的,所述步骤一中所用中羰基铁粉的重量百分含量为60%、65%或70%,金属碳化物的重量百分含量为19%、20%和24%,钴粉的重量百分含量可以是8%或10%,TiN的重量百分含量可以是1%、2%或3%。
进一步的,所述金属碳化物为元素周期表第4族、第5组和第6族金属的碳化物优选为WC、TaC、NbC、Mo2C、VC、TaC、TiC、Cr3C2中的几种。
上述制备方法通过向电磁加热高温烧结设备中充入惰性气体且通过金属碳化物中游离碳与铁粉、钴粉颗粒界面的氧进行碳氧反应净化了金属碳化物与铁粉、钴粉颗粒界面,同时进行锻造及相应的热处理,能够提高粉末高速钢的强度和韧性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起 见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
- 一种大规格复杂刀具用粉末冶金高速钢,其特征在于:包括下列的化学组分,以重量%计,含有:WC:1.8-1.9,TaC:1-1.1,NbC:4-4.2,Mo2C:3-3.5,VC:3-4.9,TaC:11-12,TiC:0.6-0.8,Cr3C2:0.1-0.8,余量为铁和杂质,且上述物质均为未处理颗粒状。
- 根据权利要求1所述的一种大规格复杂刀具用粉末冶金高速钢得出一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述制备方法包括如下步骤:步骤一、制备粉末混合物:原料的组份及配比,按照上述组份及配比称取原料,将占85%至90%的金属粉末与占15%至10%的相应添加剂混合在一起投入平面研磨机中,运行速度分三个研磨阶段,进行75-85小时的混合研磨,制备得到粉末混合物;步骤二、分筛:步骤一中制备的粉末混合进行筛滤,将符合规格的粉末混合物筛选出来;步骤三、冷压成坯:通过冷等静压成型将上述符合规格要求的粉末混合物放入专用模具中经模压设备制成粉末混合物成型块,采用冷压方式,施加一定的压力;步骤四、烧结:将上述成型的粉末混合成型块经高温烧结锻造炉进行烧结,同时充入相应稳定性气体,烧结时将压坯加热至1200-1250℃并保温45-85分钟,烧结压力为10-40Mpa,冷却后即获得高速钢坯体;步骤五、热锻:在锻压机上对上述高速钢坯体进行锻打,高速钢坯体加热温度在1050-1150℃,加热保温时间为20-40分钟,开坯压力为145-165MPa,压力为40-50MPa;步骤六、热处理:(1)淬火:将高速钢坯体在盐浴炉中加热至淬火温度1150-1240℃,然后油冷至室温;(2)回火:淬火后将高速钢坯体放置在温度550-600℃的马弗炉中进行回火处理;步骤七、硬度测试:将得到的粉末冶金高速钢利用检测备进行硬度检测。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤一中平面研磨机的运行三个阶段的速度分别为20-25转/分钟的速度、30-35转/分钟的速度和40-50转/分钟的速度,每个研磨阶段的时间分别占总时间的二分之一、六分之一和三分之二。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤二中三个研磨阶段速度逐步加速,同时平面研磨机中带有翻料机构,能够进行翻料操作。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤三中模压设备施加压力为160-350MPa,且保压时间为6-8分钟。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤三中模具中的粉末混合物成型块通过脱模机实现脱模,将模具移至清理区域进行处理,待后续使用。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤四中所用的稳定性气体为惰性气体,且惰性气体的使用量与粉末混合物成型块的量相一致。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤四中高温烧结锻造炉处于密封高压状态,同时高温烧结锻造炉采用电磁加热的方式进行加热。
- 根据权利要求2所述的一种大规格复杂刀具用粉末冶金高速钢制备方法,其特征在于:所述步骤一中所用中羰基铁粉的重量百分含量为60%、65%或70%,金属碳化物的重量百分含量为19%、20%和24%,钴粉的重量百分含量可以是8%或10%,TiN的重量百分含量可以是1%、2%或3%。
- 根据权利要求1所述的一种大规格复杂刀具用粉末冶金高速钢,其特 征在于:所述金属碳化物为元素周期表第4族、第5组和第6族金属的碳化物优选为WC、TaC、NbC、Mo2C、VC、TaC、TiC、Cr3C2中的一种或几种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/102866 WO2022011721A1 (zh) | 2020-07-17 | 2020-07-17 | 一种大规格复杂刀具用粉末冶金高速钢及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/102866 WO2022011721A1 (zh) | 2020-07-17 | 2020-07-17 | 一种大规格复杂刀具用粉末冶金高速钢及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022011721A1 true WO2022011721A1 (zh) | 2022-01-20 |
Family
ID=79556103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/102866 WO2022011721A1 (zh) | 2020-07-17 | 2020-07-17 | 一种大规格复杂刀具用粉末冶金高速钢及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022011721A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686782A (zh) * | 2022-03-16 | 2022-07-01 | 长沙市萨普新材料有限公司 | 一种高强度高弹性模量高速钢及其制备方法 |
CN114951663A (zh) * | 2022-06-02 | 2022-08-30 | 江苏应用元素科技有限公司 | 高速钢丝材的制备方法 |
CN115263849A (zh) * | 2022-07-19 | 2022-11-01 | 张家港海运金属冷挤压有限公司 | 一种液压马达阀盘及其制备方法 |
CN118028685A (zh) * | 2024-04-11 | 2024-05-14 | 西安欧中材料科技股份有限公司 | 一种高端特钢钨基或钴基粉末高速钢的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194910A (en) * | 1978-06-23 | 1980-03-25 | Chromalloy American Corporation | Sintered P/M products containing pre-alloyed titanium carbide additives |
CN102383022A (zh) * | 2011-11-14 | 2012-03-21 | 王华彬 | 高TiC含量铁基金属陶瓷材料的燃烧合成制备方法 |
CN103667873A (zh) * | 2013-12-30 | 2014-03-26 | 长沙市萨普新材料有限公司 | 粉末冶金高速钢及其制备方法 |
CN106591679A (zh) * | 2017-02-09 | 2017-04-26 | 江苏汇诚机械制造有限公司 | 一种高强韧改性高锰钢基TiC/TiN钢结硬质合金的制备方法 |
-
2020
- 2020-07-17 WO PCT/CN2020/102866 patent/WO2022011721A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194910A (en) * | 1978-06-23 | 1980-03-25 | Chromalloy American Corporation | Sintered P/M products containing pre-alloyed titanium carbide additives |
CN102383022A (zh) * | 2011-11-14 | 2012-03-21 | 王华彬 | 高TiC含量铁基金属陶瓷材料的燃烧合成制备方法 |
CN103667873A (zh) * | 2013-12-30 | 2014-03-26 | 长沙市萨普新材料有限公司 | 粉末冶金高速钢及其制备方法 |
CN106591679A (zh) * | 2017-02-09 | 2017-04-26 | 江苏汇诚机械制造有限公司 | 一种高强韧改性高锰钢基TiC/TiN钢结硬质合金的制备方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686782A (zh) * | 2022-03-16 | 2022-07-01 | 长沙市萨普新材料有限公司 | 一种高强度高弹性模量高速钢及其制备方法 |
CN114686782B (zh) * | 2022-03-16 | 2022-11-08 | 长沙市萨普新材料有限公司 | 一种高强度高弹性模量高速钢及其制备方法 |
CN114951663A (zh) * | 2022-06-02 | 2022-08-30 | 江苏应用元素科技有限公司 | 高速钢丝材的制备方法 |
CN115263849A (zh) * | 2022-07-19 | 2022-11-01 | 张家港海运金属冷挤压有限公司 | 一种液压马达阀盘及其制备方法 |
CN118028685A (zh) * | 2024-04-11 | 2024-05-14 | 西安欧中材料科技股份有限公司 | 一种高端特钢钨基或钴基粉末高速钢的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022011721A1 (zh) | 一种大规格复杂刀具用粉末冶金高速钢及其制备方法 | |
CN103667873B (zh) | 粉末冶金高速钢及其制备方法 | |
CN104384501B (zh) | 一种铁基粉末冶金摩擦材料及其制备方法 | |
CN108642402A (zh) | 新型氮化铝弥散强化粉末冶金铝高速钢及其制备方法 | |
CN111761051B (zh) | 一种粉末冶金用含铜铁粉及其制备方法 | |
CN114635069A (zh) | 一种高强韧性中熵合金粘结相Ti(C,N)基金属陶瓷及其制备方法 | |
CN112195389A (zh) | 3D打印三元硼化物Mo2FeB2合金粉及其生产工艺 | |
CN112792308A (zh) | 一种连续感应式快淬炉用辊轮及其制造方法 | |
CN106756168B (zh) | 一种基于碳热还原三氧化钼制备Ti(C,N)基金属陶瓷的方法 | |
CN103789595A (zh) | 一种具有超高抗弯强度的WC-12Co硬质合金的工业化制备方法 | |
CN110229989B (zh) | 一种多元硬质合金及其制备方法 | |
CN110983152A (zh) | 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法 | |
CN110434324A (zh) | 一种高性能粉末锻造合金材料及其制备方法 | |
CN118989325A (zh) | 一种粉末高速钢板材及其制备方法和应用 | |
CN114561600A (zh) | 一种通过金属间化合物和碳化物复合强硬化的高速钢及其制备方法 | |
CN114058971A (zh) | 一种超高钒高速钢及其制备方法 | |
CN105710380A (zh) | 含铝金属打印粉末及其制备方法 | |
CN102756123B (zh) | 一种基于粉末冶金技术烧结铜铝钢的汽车离合器齿轮及其制作方法 | |
CN116790953B (zh) | 高性能纳米硬质合金制品及其制备方法 | |
CN106048276A (zh) | 一种高耐磨wc基硬质合金复合材料的制备方法 | |
CN117845121A (zh) | 一种新型振荡烧结Al2O3/Ti3SiC2复合增强Cu基复合材料 | |
CN101349293B (zh) | 液压马达阀盘及其制备方法 | |
CN110819875B (zh) | 一种Fe2B块体耐磨材料及其韧化方法 | |
CN114457291A (zh) | 一种复合成分粉末高速钢 | |
CN107686938A (zh) | 一种铁基粉末冶金摩擦材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945129 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20945129 Country of ref document: EP Kind code of ref document: A1 |