CN115094544A - 一种锆酸镧纳米陶瓷纤维及其制备方法 - Google Patents

一种锆酸镧纳米陶瓷纤维及其制备方法 Download PDF

Info

Publication number
CN115094544A
CN115094544A CN202210912489.4A CN202210912489A CN115094544A CN 115094544 A CN115094544 A CN 115094544A CN 202210912489 A CN202210912489 A CN 202210912489A CN 115094544 A CN115094544 A CN 115094544A
Authority
CN
China
Prior art keywords
temperature
fiber
lanthanum
ceramic fiber
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210912489.4A
Other languages
English (en)
Other versions
CN115094544B (zh
Inventor
王应德
徐娜娜
王兵
张晓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210912489.4A priority Critical patent/CN115094544B/zh
Publication of CN115094544A publication Critical patent/CN115094544A/zh
Application granted granted Critical
Publication of CN115094544B publication Critical patent/CN115094544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种锆酸镧纳米陶瓷纤维及其制备方法,该制备方法首先利用价格相对低廉且来源广泛的原料制备得到纺丝溶液,再利用静电纺丝以获得细直径的先驱体纤维;然后在甲醇或乙醇蒸汽气氛下进行纤维无机化,乙醇和甲醇蒸汽都是含有大量的饱和羟基,外界的高饱和羟基浓度,通过控制逆向浓度梯度,有助于降低纤维无机化过程中羟基分解并逸出的速率。最后在空气气氛中进行高温裂解,空气气氛是为了使有机助剂分解成有机气体,促使纤维无机化。本发明提供的制备方法工艺简单,效率高,便于实现扩大化生产,且制备得到的陶瓷纤维兼顾细纤维直径和高耐温性能。

Description

一种锆酸镧纳米陶瓷纤维及其制备方法
技术领域
本发明涉及陶瓷纤维技术领域,尤其是一种锆酸镧纳米陶瓷纤维及其制备方法。
背景技术
与传统的飞行器相比,高速飞行器具有飞行速度更快(>5马赫),在大气层中飞行时间更长(>2500s)等特点,其迎风面和机翼前缘等部位累计气动加热严重,表面温度高达1300℃以上,而飞行器内部仪器设备所允许的工作温度一般不高于80℃。严酷的气动加热和设计尺寸的缩减,使传统的飞行器大面积热防护材料已无法满足设计和使用要求。因此,亟需开发耐温1300℃以上的低导热高性能隔热材料。
氧化物微纳陶瓷纤维是广泛应用的高性能隔热材料,可直接作为异形构件的隔热填充体或制备成纤维隔热瓦单独使用,也可作为气凝胶材料的支撑体与其复合使用。锆酸镧具有复杂的晶体结构、高熔点、高化学稳定性、高热稳定性和低热导率等特点,极具应用潜力用于制备隔热性能更优、长期使用温度更高的微纳陶瓷隔热纤维。
目前,国内已有少量制备锆酸镧陶瓷纤维的技术。但存在纤维直径较粗(1~7μm),使用温度低于1400℃等缺陷。
发明内容
本发明提供一种锆酸镧纳米陶瓷纤维及其制备方法、应用,用于克服现有技术中不能兼顾细纤维直径和高耐温性能等缺陷。
为实现上述目的,本发明提出一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
S1:按质量比(1:2:0.02:0.05)~(1:3:0.06:0.25)称取镧源、锆源、添加剂和助纺剂,加入到有机溶剂中,搅拌均匀,得到纺丝溶液;
S2:对所述纺丝溶液进行静电纺丝,得到先驱体纤维;
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体纤维进行纤维无机化,具体为:以1~10℃·min-1升温速率升温至180~320℃,并在0.8~10MPa压力下保温6~24h,得到无机化纤维;
S4:在空气气氛中对所述无机化纤维进行高温裂解,具体为:以1~20℃·min-1升温速率升温至800~1300℃,并在800~1300℃下保温0.1~20h,得到锆酸镧纳米陶瓷纤维。
为实现上述目的,本发明还提出一种锆酸镧纳米陶瓷纤维,由上述所述制备方法制备得到;所述陶瓷纤维由La、Zr、O和Al四种元素组成,包括烧绿石型La2Zr2O7相和石榴石型LaAlO3相;
或者,所述陶瓷纤维由La、Zr、O和Ca四种元素组成,包括烧绿石型La2Zr2O7相和钙钛矿型CaZrO4相。
为实现上述目的,本发明还提出一种锆酸镧纳米陶瓷纤维的应用,将上述所述制备方法制备得到的陶瓷纤维或者上述所述的陶瓷纤维应用于高速飞行器的大面积热防护系统和骨细胞培养中。
与现有技术相比,本发明的有益效果有:
1、本发明提供的锆酸镧纳米陶瓷纤维的制备方法首先利用价格相对低廉且来源广泛的原料制备得到纺丝溶液,再利用静电纺丝以获得细直径的先驱体纤维;然后在甲醇或乙醇蒸汽气氛下进行纤维无机化,乙醇和甲醇蒸汽都是含有大量的饱和羟基,外界的高饱和羟基浓度,通过控制逆向浓度梯度,有助于降低纤维无机化过程中羟基分解并逸出的速率。换而言之,能降低原纤维无机化的速度,对减少纤维缺陷的形成很有帮助。控制升温速率、温度和压力均有助于减少有机助剂分解时形成的缺陷,以形成致密的陶瓷微结构。最后在空气气氛中进行高温裂解,空气气氛是为了使有机助剂分解成有机气体,促使纤维无机化。控制升温速率和温度是为了使有机气体逸出的过程尽可能缓和,避免产生缺陷或裂纹,降低纤维的强度。在空气中热处理到1000~1200℃的过程中,通过固相烧结反应完成陶瓷化,形成所需的烧绿石型La2Zr2O7相和石榴石型LaAlO3相或者烧绿石型La2Zr2O7相和钙钛矿型CaZrO4相。由于烧绿石型的锆酸镧具有超低热膨胀系数(8.9×10-6/K),在高温烧成阶段热膨胀驱动力较小,因此可以维持较细的直径;同时,前期通过压力无机化过程,促使锆酸镧提前析晶,形成致密细小的晶核,细密的晶界导致锆酸镧在高温烧成阶段晶粒不易烧结,维持稳定的耐高温性能。本发明提供的制备方法工艺简单,效率高,便于实现扩大化生产,且制备得到的陶瓷纤维兼顾细纤维直径和高耐温性能。
2、本发明制备得到的锆酸镧纳米陶瓷纤维,由上述所述制备方法制备得到;所述陶瓷纤维由La、Zr、O和Al四种元素组成,包括烧绿石型La2Zr2O7相和石榴石型LaAlO3相;或者,所述陶瓷纤维由La、Zr、O和Ca四种元素组成,包括烧绿石型La2Zr2O7相和钙钛矿型CaZrO4相。主晶相La2Zr2O7具有在2300℃熔点前无相变的特征,相变通常伴随有体积膨胀或收缩,容易在微结构中形成缺陷,而无相变可以从根源上杜绝这个问题。而次晶相LaAlO3和CaZrO4膨胀系数均大于锆酸镧,有助于抑制烧结造成的体积收缩,保持高温体积稳定性。同时,该陶瓷纤维直径为690~890nm。本发明制备的锆酸镧纳米陶瓷纤维直径细,且耐高温性能优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为实施例1中锆酸镧纳米陶瓷纤维柔性展示光学照片;
图2为实施例1中锆酸镧纳米陶瓷纤维表面SEM图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
无特殊说明,所使用的药品/试剂均为市售。
本发明提出一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
S1:按质量比(1:2:0.02:0.05)~(1:3:0.06:0.25)称取镧源、锆源、添加剂和助纺剂,加入到有机溶剂中,搅拌均匀,得到纺丝溶液.
S2:对所述纺丝溶液进行静电纺丝,得到先驱体纤维。
在有机高分子助纺剂作用下,先驱体溶胶可以通过电场力的牵伸,形成纳米级别的纤维,并收集在负极处。与纳米颗粒不同,纳米纤维可以用于构筑超低固含量的三维空间结构,将固体比较面积最大化提升,增加生物载体负载率;并有助于提升纤维的红外反射率,优化隔热性能。
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体纤维进行纤维无机化,具体为:以1~10℃·min-1升温速率升温至180~320℃,并在0.8~10MPa压力下保温6~24h,得到无机化纤维。
S4:在空气气氛中对所述无机化纤维进行高温裂解,具体为:以1~20℃·min-1升温速率升温至800~1300℃,并在800~1300℃下保温0.1~20h,得到锆酸镧纳米陶瓷纤维。
优选地,在步骤S1中,所述镧源、锆源、添加剂和助纺剂的质量比为(1:2:0.03:0.1)~(1:3:0.05:0.2)。调控La/Zr质量比是有助于形成正化学计量比或富镧或富锆的锆酸镧纤维,以形成不同固溶元素的固溶体结构,而不同固溶含量和不同固溶元素种类最终形成的高温结构不同,以适应不同的使用温度和服役时间。
优选地,在步骤S1中,所述镧源为无水溴化镧、乙酰丙酮镧、草酸镧和高氯酸镧中的至少一种。
优选地,在步骤S1中,所述锆源为碱式碳酸锆、四乙氧基锆、丙烯酸锆和羧乙基丙烯酸锆中的至少一种。
优选地,在步骤S1中,所述添加剂为异丙醇锆钙或者异丙氧基镧铝;以形成第二相LaAlO3和CaZrO4,这两种晶相膨胀系数均大于锆酸镧,有助于抑制烧结造成的体积收缩,保持纤维高温体积稳定性。
所述助纺剂为聚乙烯吡咯烷酮(PVP,[C6H9ON]n)、聚氧化乙烯(PEO,H-[C2H4O]n-OH)和聚乙烯醇(PVA,[C2H4O]n)中的至少一种;所述助纺剂的分子量为50000~2000000;
所述有机溶剂为乙醇、吡啶和异丙醇中的至少一种。
优选地,在步骤S2中,静电纺丝工艺参数包括:采用内径为0.5~1.5mm的针头、纺丝电压10~30kV、收丝距离10~30cm、推液速率0.2~2mL·h-1、纺丝温度为20~40℃、空气相对湿度为30~50RH%。通过控制静电纺丝工艺参数来调控原纤维的直径和堆积密度。
优选地,在步骤S2中,静电纺丝工艺参数包括:采用内径为0.5~1.5mm的针头、纺丝电压15~20kV、收丝距离10~20cm、推液速率0.5~1.5mL·h-1、纺丝温度为20~40℃、空气相对湿度为35~45RH%。
优选地,在步骤S3中,所述纤维无机化具体为:
以1~3℃·min-1升温速率升温至200~300℃,并在2~5MPa压力下保温8~12h。
优选地,在步骤S4中,所述高温裂解,具体为:
以5~10℃·min-1升温速率升温至1000~1200℃,并在1000~1200℃下保温1~3h。
本发明还提出一种锆酸镧纳米陶瓷纤维,由上述所述制备方法制备得到;所述陶瓷纤维由La、Zr、O和Al四种元素组成,包括烧绿石型La2Zr2O7相和石榴石型LaAlO3相;
或者,所述陶瓷纤维由La、Zr、O和Ca四种元素组成,包括烧绿石型La2Zr2O7相和钙钛矿型CaZrO4相。
本发明还提出一种锆酸镧纳米陶瓷纤维的应用,将上述所述制备方法制备得到的陶瓷纤维或者上述所述的陶瓷纤维应用于高速飞行器的大面积热防护系统和骨细胞培养中。
本发明的锆酸镧纳米陶瓷纤维耐高温性强,导热系数低,可作为高效隔热材料,用于高速飞行器的大面积热防护系统;生物相容性好,也可以用于骨细胞培养,作为人工软骨的载体。
实施例1
本实施例提供一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
(1)配制纺丝溶液:将1g无水溴化镧、2g碱式碳酸锆、0.1g异丙醇锆钙和0.1g PVP加入6g乙醇中,以400r·min-1转速磁力搅拌8h使其充分溶解,得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40℃,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)热压无机化:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1℃·min-1升温速率,升温至300℃,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5℃·min-1升温速率,升温至1200℃,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维如图1和2所示,直径约为780nm,纤维表面光滑,无明显缺陷,具有较好的柔性;对其进行热导率测试,其室温热导率为0.051W m-1·K-1,1000℃热导率为0.138Wm-1·K-1,1400℃热处理后纤维常温抗拉强度为0.42MPa
实施例2
本实施例提供一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
(1)配制纺丝溶液:将1g乙酰丙酮镧、2g四乙氧基锆、0.03g异丙氧基镧铝和0.15gPVA加入6g吡啶中,以600r·min-1转速磁力搅拌10h使其充分溶解,得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40℃,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)热压无机化:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1℃·min-1升温速率,升温至300℃,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5℃·min-1升温速率,升温至1100℃,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维直径约为850nm,纤维表面光滑,无明显缺陷,具有较好的柔性;对其进行热导率测试,其室温热导率为0.055W m-1·K-1,1000℃热导率为0.155W m-1·K-1,1400℃热处理后纤维常温抗拉强度为0.35MPa。
实施例3
本实施例提供一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
(1)配制纺丝溶液:将1g草酸镧、3g丙烯酸锆、0.03g异丙醇锆钙和0.2g PEO加入6g异丙醇中,以800r·min-1转速磁力搅拌10h使其充分溶解,得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40℃,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)热压无机化:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1℃·min-1升温速率,升温至300℃,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5℃·min-1升温速率,升温至1000℃,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维直径约为690nm,纤维表面光滑,无明显缺陷,具有较好的柔性;对其进行热导率测试,其室温热导率为0.049W m-1·K-1,1000℃热导率为0.122W m-1·K-1,1400℃热处理后纤维常温抗拉强度为0.47MPa。
实施例4
本实施例提供一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
(1)配制纺丝溶液:将1g高氯酸镧、3g羧乙基丙烯酸锆、0.03g异丙氧基镧铝和0.15g PVA加入6g乙醇中,以400r·min-1转速磁力搅拌10h使其充分溶解,得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40℃,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)热压无机化:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1℃·min-1升温速率,升温至300℃,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5℃·min-1升温速率,升温至1100℃,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维直径约为750nm,纤维表面光滑,无明显缺陷,具有较好的柔性;对其进行热导率测试,其室温热导率为0.050W m-1·K-1,1000℃热导率为0.135W m-1·K-1,1400℃热处理后纤维常温抗拉强度为0.39MPa。
实施例5
本实施例提供一种锆酸镧纳米陶瓷纤维的制备方法,包括以下步骤:
(1)配制纺丝溶液:将1g无水溴化镧、3g碱式碳酸锆、0.04g异丙醇锆钙和0.1g PVP加入6g乙醇中,以600r·min-1转速磁力搅拌8h使其充分溶解,得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40℃,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)热压无机化:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1℃·min-1升温速率,升温至200℃,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5℃·min-1升温速率,升温至1200℃,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维直径约为890nm,纤维表面光滑,无明显缺陷,具有较好的柔性;对其进行热导率测试,其室温热导率为0.056W m-1·K-1,1000℃热导率为0.147W m-1·K-1,1400℃热处理后纤维常温抗拉强度为0.55MPa。
本发明实施例所得锆酸镧纳米陶瓷纤维的性能调整方法和步骤均相对简易,通过高压无机化可以有效控制纤维中有机物裂解所形成的缺陷及裂纹,并达到细化析晶尺寸的目的,所制备的陶瓷纤维耐高温性能均可达到1400℃以上。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

1.一种锆酸镧纳米陶瓷纤维的制备方法,其特征在于,包括以下步骤:
S1:按质量比(1:2:0.02:0.05)~(1:3:0.06:0.25)称取镧源、锆源、添加剂和助纺剂,加入到有机溶剂中,搅拌均匀,得到纺丝溶液;
S2:对所述纺丝溶液进行静电纺丝,得到先驱体纤维;
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体纤维进行纤维无机化,具体为:以1~10℃·min-1升温速率升温至180~320℃,并在0.8~10MPa压力下保温6~24h,得到无机化纤维;
S4:在空气气氛中对所述无机化纤维进行高温裂解,具体为:以1~20℃·min-1升温速率升温至800~1300℃,并在800~1300℃下保温0.1~20h,得到锆酸镧纳米陶瓷纤维。
2.如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述镧源、锆源、添加剂和助纺剂的质量比为(1:2:0.03:0.1)~(1:3:0.05:0.2)。
3.如权利要求1或2所述的制备方法,其特征在于,在步骤S1中,所述镧源为无水溴化镧、乙酰丙酮镧、草酸镧和高氯酸镧中的至少一种。
4.如权利要求1或2所述的制备方法,其特征在于,在步骤S1中,所述锆源为碱式碳酸锆、四乙氧基锆、丙烯酸锆和羧乙基丙烯酸锆中的至少一种。
5.如权利要求1或2所述的制备方法,其特征在于,在步骤S1中,所述添加剂为异丙醇锆钙或者异丙氧基镧铝;
所述助纺剂为聚乙烯吡咯烷酮、聚氧化乙烯和聚乙烯醇中的至少一种;所述助纺剂的分子量为50000~2000000;
所述有机溶剂为乙醇、吡啶和异丙醇中的至少一种。
6.如权利要求1所述的制备方法,其特征在于,在步骤S2中,静电纺丝工艺参数包括:采用内径为0.5~1.5mm的针头、纺丝电压10~30kV、收丝距离10~30cm、推液速率0.2~2mL·h-1、纺丝温度为20~40℃、空气相对湿度为30~50RH%。
7.如权利要求1所述的制备方法,其特征在于,在步骤S3中,所述纤维无机化具体为:
以1~3℃·min-1升温速率升温至200~300℃,并在2~5MPa压力下保温8~12h。
8.如权利要求1所述的制备方法,其特征在于,在步骤S4中,所述高温裂解,具体为:
以5~10℃·min-1升温速率升温至1000~1200℃,并在1000~1200℃下保温1~3h。
9.一种锆酸镧纳米陶瓷纤维,其特征在于,由权利要求1~8任一项所述制备方法制备得到;所述陶瓷纤维由La、Zr、O和Al四种元素组成,包括烧绿石型La2Zr2O7相和石榴石型LaAlO3相;
或者,所述陶瓷纤维由La、Zr、O和Ca四种元素组成,包括烧绿石型La2Zr2O7相和钙钛矿型CaZrO4相。
10.一种锆酸镧纳米陶瓷纤维的应用,其特征在于,将权利要求1~8任一项所述制备方法制备得到的陶瓷纤维或者权利要求9所述的陶瓷纤维应用于高速飞行器的大面积热防护系统和骨细胞培养中。
CN202210912489.4A 2022-07-28 2022-07-28 一种锆酸镧纳米陶瓷纤维及其制备方法 Active CN115094544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210912489.4A CN115094544B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米陶瓷纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210912489.4A CN115094544B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米陶瓷纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN115094544A true CN115094544A (zh) 2022-09-23
CN115094544B CN115094544B (zh) 2023-03-14

Family

ID=83301636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210912489.4A Active CN115094544B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米陶瓷纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN115094544B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363425A (zh) * 2001-12-19 2002-08-14 天津大学 Al2O3气凝胶负载型催化剂的制备及其催化甲烷裂解制备纳米碳管的方法
CN103553596A (zh) * 2013-10-29 2014-02-05 山东大学 锆酸镧陶瓷纤维的制备方法
CN109825900A (zh) * 2019-01-23 2019-05-31 中国人民解放军国防科技大学 一种bcn纳米陶瓷纤维的制备方法
CN111099907A (zh) * 2019-12-30 2020-05-05 浙江大学 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CA3145224A1 (en) * 2019-08-06 2021-02-11 Reka Toth Method of preparation of a garnet-type inorganic material
CN112813537A (zh) * 2021-04-08 2021-05-18 齐鲁工业大学 一种稀土锆酸盐无机纤维及其制备方法
CN113087729A (zh) * 2021-04-01 2021-07-09 山东大学 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN113370549A (zh) * 2021-06-08 2021-09-10 山东大学 锆酸镧纤维增强的气凝胶复合材料、连续化生产方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363425A (zh) * 2001-12-19 2002-08-14 天津大学 Al2O3气凝胶负载型催化剂的制备及其催化甲烷裂解制备纳米碳管的方法
CN103553596A (zh) * 2013-10-29 2014-02-05 山东大学 锆酸镧陶瓷纤维的制备方法
CN109825900A (zh) * 2019-01-23 2019-05-31 中国人民解放军国防科技大学 一种bcn纳米陶瓷纤维的制备方法
CA3145224A1 (en) * 2019-08-06 2021-02-11 Reka Toth Method of preparation of a garnet-type inorganic material
CN111099907A (zh) * 2019-12-30 2020-05-05 浙江大学 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN113087729A (zh) * 2021-04-01 2021-07-09 山东大学 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN112813537A (zh) * 2021-04-08 2021-05-18 齐鲁工业大学 一种稀土锆酸盐无机纤维及其制备方法
CN113370549A (zh) * 2021-06-08 2021-09-10 山东大学 锆酸镧纤维增强的气凝胶复合材料、连续化生产方法及装置

Also Published As

Publication number Publication date
CN115094544B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
Jia et al. Flexible ceramic fibers: Recent development in preparation and application
CN102167567A (zh) 一种柔性氧化铝陶瓷纤维及其制备方法
Yang et al. A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation
CN113087729B (zh) 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN111187424A (zh) 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用
CN113668139A (zh) 一种柔性耐高温SiO2陶瓷纳米纤维膜的制备方法
CN114455846A (zh) 一种具有垂直取向结构的多孔莫来石纳米纤维基絮片材料及其制备方法
CN113800935B (zh) 一种原位自生SiC(nw,np)-ZrB2-ZrC改性碳/碳复合材料的制备方法
Yang et al. Process and mechanical properties of in situ silicon carbide‐nanowire‐reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite
Li et al. Characterization of novel high-entropy (La0. 2Nd0. 2Sm0. 2Dy0. 2Yb0. 2) 2Zr2O7 electrospun ceramic nanofibers
Liu et al. Research progress on electrospun high-strength micro/nano ceramic fibers
Zhang et al. Fabrication and applications of ceramic-based nanofiber materials service in high-temperature harsh conditions—A review
CN113896536B (zh) 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用
CN114230341A (zh) 一种柔性高熵陶瓷纳米纤维及其无聚合物模板制备方法
CN109750388B (zh) 一种缺陷型萤石相锆酸钆纤维的制备方法
CN115094544B (zh) 一种锆酸镧纳米陶瓷纤维及其制备方法
CN113135740B (zh) 一种陶瓷基复合材料及其制备方法和应用
Chen et al. Preparation and fine thermal insulation performance of Gd2Zr2O7/ZrO2 composite fibers
CN110670171B (zh) 一种致密硅酸钇陶瓷纤维的制备方法
CN109868526B (zh) 一种锆-钇聚合物前驱体制备锆酸钇纳米纤维的方法
KR101179652B1 (ko) 전기영동과 초음파 처리를 병행한 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
Xu et al. Characterization of flexible aluminosilicate bulk fibers and fibrous mats fabricated by facile electrospinning
JP2015094055A (ja) ジルコニア連続繊維とその製造方法
Li et al. Chemical modification of electrospun yttrium silicate fiber with self-healing properties
CN115286382B (zh) 一种锆酸镧纳米隔热纤维膜及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant