CN115286382B - 一种锆酸镧纳米隔热纤维膜及其制备方法、应用 - Google Patents

一种锆酸镧纳米隔热纤维膜及其制备方法、应用 Download PDF

Info

Publication number
CN115286382B
CN115286382B CN202210899303.6A CN202210899303A CN115286382B CN 115286382 B CN115286382 B CN 115286382B CN 202210899303 A CN202210899303 A CN 202210899303A CN 115286382 B CN115286382 B CN 115286382B
Authority
CN
China
Prior art keywords
temperature
fiber
lanthanum
spinning
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210899303.6A
Other languages
English (en)
Other versions
CN115286382A (zh
Inventor
王应德
徐娜娜
王兵
张晓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210899303.6A priority Critical patent/CN115286382B/zh
Publication of CN115286382A publication Critical patent/CN115286382A/zh
Application granted granted Critical
Publication of CN115286382B publication Critical patent/CN115286382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开一种锆酸镧纳米隔热纤维膜及其制备方法、应用,该制备方法以镧源、锆源为原料,加入硅酸镁铝。然后通过静电纺丝控制先驱体复合纤维膜中纤维的直径;再在甲醇或乙醇蒸汽气氛下进行无机化。最后在空气气氛中进行高温裂解,空气气氛是给纤维中的有机物及有机基团提供廉价安全的氧化性气氛,使纤维脱去有机基团无机化,控制升温速率、温度则是为了调控纤维无机化‑陶瓷化的转变速率及烧结反应的进行程度。本发明提供的制备方法工艺简单,效率高,便于实现扩大化生产,且制备得到的纤维膜高温力学强度高、且其纤维直径细。

Description

一种锆酸镧纳米隔热纤维膜及其制备方法、应用
技术领域
本发明涉及隔热纤维膜技术领域,尤其是一种锆酸镧纳米隔热纤维膜及其制备方法、应用。
背景技术
热障涂层(Thermal Barrier Coatings,简称TBC)是一款陶瓷涂层,它沉积在耐高温金属或超合金的基体材料表面起到隔热、降低基体温度的作用,使其制成的零部件(如发动机涡轮叶片)能在高温下运行,并可以提高油料的燃烧效率,极大地延长发动机的寿命,在航空、航天、海面船舶、大型火力发电和汽车动力等方面具有重要的应用价值,是现代国防尖端技术领域中的重要技术。服役在发动机涡轮叶片等热端部件的热障涂层,长时间处于近马赫数、2000K燃气的冲击,1万~5万转/分旋转离心力,疲劳、蠕变、CMAS腐蚀、颗粒冲蚀、氧化等并伴随化学反应的极端环境下,极端恶劣环境致使涂层以多种复杂的机制剥落失效。其中,稀土氧化物纳米纤维增强对的双陶瓷层是未来发展使用温度超过1523K热障涂层的最佳途径之一。稀土氧化物纳米纤维增强热障涂层不仅能进一步提升热障涂层的隔热效率,还能起到增强增韧的效果,在力学性能和隔热性能上全方位优化提升。
锆酸镧具有复杂的晶体结构、高熔点、高化学稳定性、高热稳定性和低热导率等特点,极具应用潜力用于制备隔热性能更优、长期使用温度更高的微纳陶瓷隔热纤维。目前,国内已有少量制备锆酸镧陶瓷纤维的技术。但现有的制备技术得到的纤维膜,其纤维直径较粗,且高温力学强度不足。
发明内容
本发明提供一种锆酸镧纳米隔热纤维膜及其制备方法、应用,用于克服现有技术中纤维膜高温力学强度不足、且其纤维直径较粗等缺陷。
为实现上述目的,本发明提出一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
S1:按质量比(1:2:0.005:0.05)~(1:3:0.015:0.25)称取镧源、锆源、硅酸镁铝和助纺剂,将硅酸镁铝加入到有机溶剂中,球磨,得到硅酸镁铝分散液;
将镧源、锆源和助纺剂加入到所述硅酸镁铝分散液中,搅拌均匀,得到纺丝溶液;
S2:对所述纺丝溶液进行静电纺丝,得到先驱体复合纤维膜;
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体复合纤维膜进行无机化,具体为:以1~10
Figure BDA0003770299600000021
·min-1升温速率升温至180~320
Figure BDA0003770299600000022
,并在0.8~10MPa压力下保温6~24h,得到无机化纤维膜;
S4:在空气气氛中对所述无机化纤维膜进行高温裂解,具体为:以1~20
Figure BDA0003770299600000023
·min-1升温速率升温至800~1300
Figure BDA0003770299600000024
,并在800~1300
Figure BDA0003770299600000025
下保温0.1~20h,得到锆酸镧纳米隔热纤维膜。
为实现上述目的,本发明还提出一种锆酸镧纳米隔热纤维膜,由上述所述制备方法制备得到;所述纤维膜由La、Zr、O、Mg、Al和Si六种元素组成,包括烧绿石型La2Zr2O7相和非晶相。
为实现上述目的,本发明还提出一种锆酸镧纳米隔热纤维膜的应用,将上述所述制备方法制备得到的纤维膜或者上述所述的纤维膜应用于耐高温催化剂载体、高温超导缓冲层和防隔热一体化材料中。
与现有技术相比,本发明的有益效果有:
1、本发明提供的锆酸镧纳米隔热纤维膜的制备方法,以镧源、锆源为原料,加入硅酸镁铝,①在混合溶胶体系中,硅酸铝镁水溶胶具有独特的小分子三维空间链式结构,因而有不同寻常的流变性、触变性以及吸附性能;②在蒸汽热压的状态下,硅酸铝镁的层间结构可给有机助剂热解释放的CO2和H2O蒸汽提供逸出通道,达到缺陷愈合的效果;③在高温热处理过程中,硅酸镁铝在快速升温的条件下能迅速转化为高硅氧玻璃,而Mg2+能够进一步增加铝硅玻璃的结构复杂性,增强玻璃网络形成体之间的连接,从而促进纤维结构致密化。然后通过静电纺丝控制先驱体复合纤维膜中纤维的直径;再在甲醇或乙醇蒸汽气氛下进行无机化,甲醇、乙醇蒸汽均能提升环境中羟基的浓度,以降低纤维与环境中的羟基扩散浓度梯度,从而达到抑制纤维中水分剧烈挥发的效果。控制升温速率、温度及压力则是调控高分子有机助剂和纤维中的水分挥发或分解的驱动力,以达到控制缺陷形成的目的。最后在空气气氛中进行高温裂解,空气气氛是给纤维中的有机物及有机基团提供廉价安全的氧化性气氛,使纤维脱去有机基团无机化,控制升温速率、温度则是为了调控纤维无机化-陶瓷化的转变速率及烧结反应的进行程度。
本发明提供的制备方法工艺简单,效率高,便于实现扩大化生产,且制备得到的纤维膜高温力学强度高、且其纤维直径细。
2、本发明提供的锆酸镧纳米隔热纤维膜由La、Zr、O、Mg、Al和Si六种元素组成,包括烧绿石型La2Zr2O7(锆酸镧)相和非晶相。锆酸镧具有很好的高温稳定性,2000℃依然保持结构稳定。97%的La2Zr2O7热导率为1.5~1.6W·m-1·K-1,密度60.5g/cm3,熔点为2300℃,且具有良好的抗烧结能力和良好的高温性能。非晶相是一种高能态,能有效抑制晶体的表面原子扩散,从而达到抑制锆酸镧晶体高温生长的目的。高温晶粒生长往往是纤维的缺陷起源,进一步引起高温力学性能失效。因此非晶相能够抑制锆酸镧晶体的高温生长,达到提升耐高温性能的目的。此外,该纤维膜中纤维直径为550~780nm。本发明的纤维膜具有鸡蛋膜型的仿生结构,兼具良好的力学性能和高温隔热性能,在耐高温催化剂载体、高温超导缓冲层以及防隔热一体化材料等领域具有广阔的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为实施例1中锆酸镧纳米隔热纤维膜光学照片;
图2为实施例1中锆酸镧纳米隔热纤维膜表面SEM图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
无特殊说明,所使用的药品/试剂均为市售。
本发明提出一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
S1:按质量比(1:2:0.005:0.05)~(1:3:0.015:0.25)称取镧源、锆源、硅酸镁铝和助纺剂,将硅酸镁铝加入到有机溶剂中,球磨,得到硅酸镁铝分散液;
将镧源、锆源和助纺剂加入到所述硅酸镁铝分散液中,搅拌均匀,得到纺丝溶液。
S2:对所述纺丝溶液进行静电纺丝,得到先驱体复合纤维膜。
通过控制先驱体溶胶的粘度,以及静电纺丝过程中的环境参数(如湿度、温度)和工艺参数(电压、纺丝距离)来调控纤维的含水量,实现纤维的二维搭接,形成高强度纤维膜。
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体复合纤维膜进行无机化,具体为:以1~10
Figure BDA0003770299600000051
·min-1升温速率升温至180~320
Figure BDA0003770299600000052
,并在0.8~10MPa压力下保温6~24h,得到无机化纤维膜。
S4:在空气气氛中对所述无机化纤维膜进行高温裂解,具体为:以1~20
Figure BDA0003770299600000053
·min-1升温速率升温至800~1300
Figure BDA0003770299600000054
,并在800~1300
Figure BDA0003770299600000055
下保温0.1~20h,得到锆酸镧纳米隔热纤维膜。
本发明提供的制备方法通过控制先驱体溶胶的粘度,以及静电纺丝过程中的环境参数(如湿度、温度)和工艺参数(电压、纺丝距离)来调控纤维的直径,实现纤维直径细化。耐高温性则是通过原材料的化学组成及无机化过程的调控来实现,通过以上技术,可实现纤维析晶细化和低缺陷无机化,最终形成致密的微晶非晶复合结构,达到提升耐高温性能的目的。
优选地,在步骤S1中,所述硅酸镁铝分散液中硅酸镁铝的浓度为0.5wt%,1.0wt%或1.5wt%。控制硅酸镁铝的浓度,以调整硅酸镁铝在纤维中的固含量,调整最终陶瓷化纤维中非晶与晶相的比例。
优选地,在步骤S1中,所述硅酸镁铝的化学成分:SiO2 50.0~52.5wt%,Al2O3 4~8wt%,MgO 23.5~25.0wt%,Na2O 2.7~3.4wt%;1000℃烧失量为10.5~12.0wt%。一般1000℃以后,硅酸镁铝中不存在挥发性物质或基团了,因此,1000℃烧失量通常用来表征硅酸镁铝的水饱和度和纯度。硅酸镁铝的水饱和度是影响纤维粘度的重要指标,粘度越大,纤维二维搭接越紧密,纤维膜越致密,反之,则越蓬松。
优选地,在步骤S1中,所述镧源为无水三氟甲基磺酸镧、异丙醇镧、碳酸镧和硫酸镧中的至少一种;所述锆源为锆酸四丁酯、乙酰丙酮锆、正丙醇锆和异丙醇锆中的至少一种。
优选地,在步骤S1中,所述助纺剂为聚乙烯吡咯烷酮(PVP,[C6H9ON]n)、聚氧化乙烯(PEO,H-[C2H4O]n-OH)和聚乙烯醇(PVA,[C2H4O]n)中的至少一种;所述助纺剂的分子量为50000~2000000;
所述有机溶剂为二甲基甲酰胺、三乙胺和异丙醇中的至少一种。
优选地,在步骤S2中,静电纺丝工艺参数包括:采用内径为0.5~1.5mm的针头、纺丝电压10~30kV、收丝距离10~30cm、推液速率0.2~2mL·h-1、纺丝温度为20~40
Figure BDA0003770299600000071
、空气相对湿度为30~50RH%。通过控制静电纺丝工艺参数以调节纤维的粗细和溶剂的挥发程度。
优选地,静电纺丝工艺参数包括:采用内径为0.5~1.5mm的针头、纺丝电压15~20kV、收丝距离10~20cm、推液速率0.5~1.5mL·h-1、纺丝温度为20~40
Figure BDA0003770299600000072
、空气相对湿度为35~45RH%。
优选地,在步骤S3中,所述无机化具体为:
以1~3
Figure BDA0003770299600000073
·min-1升温速率升温至200~300
Figure BDA0003770299600000074
,并在2~5MPa压力下保温8~12h。
优选地,在步骤S4中,所述高温裂解,具体为:
以5~10
Figure BDA0003770299600000075
·min-1升温速率升温至1000~1200
Figure BDA0003770299600000076
,并在1000~1200
Figure BDA0003770299600000077
下保温1~3h。
本发明还提出一种锆酸镧纳米隔热纤维膜,由上述所述制备方法制备得到;所述纤维膜由La、Zr、O、Mg、Al和Si六种元素组成,包括烧绿石型La2Zr2O7相和非晶相。
本发明还提出一种锆酸镧纳米隔热纤维膜的应用,将上述所述制备方法制备得到的纤维膜或者上述所述的纤维膜应用于耐高温催化剂载体、高温超导缓冲层和防隔热一体化材料中。
实施例1
本实施例提供一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
(1)配制纺丝溶液:将0.2g硅酸镁铝加入6g二甲基甲酰胺中,以2500r·min-1转速高能球磨8h使硅酸镁铝充分溶解分散。随后将1g无水三氟甲基磺酸镧、2g锆酸四丁酯和0.1g PVP加入上述溶液中,继续搅拌4h得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40
Figure BDA0003770299600000081
,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维膜;
(3)蒸汽热压:将先驱体纤维膜置于高压釜中,在甲醇蒸汽气氛下,以1
Figure BDA0003770299600000082
·min-1升温速率,升温至300
Figure BDA0003770299600000083
,在5MPa压力下保温8h进行纤维膜无机化;
(4)高温裂解:将无机化后的纤维膜置于管式炉中,在空气气氛下,以5
Figure BDA0003770299600000084
·min-1升温速率,升温至1400
Figure BDA0003770299600000085
,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维膜。
本实施例所得锆酸镧纳米陶瓷纤维膜中纤维直径约为780nm,纤维表面光滑,无明显缺陷,具有较高的力学强度和较好的柔性,如图1和2所示。对其进行热导率测试,其室温热导率为0.051W m-1·K-1,1000
Figure BDA0003770299600000086
热导率为0.138W m-1·K-1,1400℃热处理后纤维膜常温抗拉强度为0.12MPa。
实施例2
本实施例提供一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
(1)配制纺丝溶液:将0.2g硅酸镁铝加入6g二甲基甲酰胺中,以3000r·min-1转速高能球磨8h使硅酸镁铝充分溶解分散。随后将1g无水三氟甲基磺酸镧、3g锆酸四丁酯和0.2g PVP加入上述溶液中,继续搅拌24h得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)10cm和供料速率1ml·h-1,纺丝温度为40
Figure BDA0003770299600000091
,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)蒸汽热压:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1
Figure BDA0003770299600000092
·min-1升温速率,升温至300
Figure BDA0003770299600000093
,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5
Figure BDA0003770299600000094
·min-1升温速率,升温至1000
Figure BDA0003770299600000095
,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维膜中纤维直径约为650nm,纤维表面光滑,无明显缺陷,具有较高的力学强度和较好的柔性;对其进行热导率测试,其室温热导率为0.043Wm-1·K-1,1000
Figure BDA0003770299600000096
热导率为0.115W m-1·K-1,1000℃热处理后纤维膜常温抗拉强度为0.45MPa。
实施例3
本实施例提供一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
(1)配制纺丝溶液:将0.2g硅酸镁铝加入6g二甲基甲酰胺中,以2500r·min-1转速高能球磨10h使硅酸镁铝充分溶解分散。随后将1g无水三氟甲基磺酸镧、3g锆酸四丁酯和0.15g PVP加入上述溶液中,继续搅拌4h得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压20kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40
Figure BDA0003770299600000097
,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)蒸汽热压:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1
Figure BDA0003770299600000101
·min-1升温速率,升温至200
Figure BDA0003770299600000102
,在2MPa压力下保温6h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5
Figure BDA0003770299600000103
·min-1升温速率,升温至1200
Figure BDA0003770299600000104
,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维膜中纤维直径约为550nm,纤维表面光滑,无明显缺陷,具有较高的力学强度和较好的柔性;对其进行热导率测试,其室温热导率为0.039Wm-1·K-1,1000
Figure BDA0003770299600000105
热导率为0.109W m-1·K-1,1200℃热处理后纤维膜常温抗拉强度为0.37MPa。
实施例4
本实施例提供一种锆酸镧纳米隔热纤维膜的制备方法,包括以下步骤:
(1)配制纺丝溶液:将0.2g硅酸镁铝加入6g二甲基甲酰胺中,以2500r·min-1转速高能球磨10h使硅酸镁铝充分溶解分散。随后将1g无水三氟甲基磺酸镧、2g锆酸四丁酯和0.15g PVP加入上述溶液中,继续搅拌4h得到纺丝溶液。
(2)静电纺丝:采用内径为0.5mm的针头,选择电压15kV、收丝距离(针头到接收板之间的距离)15cm和供料速率1ml·h-1,纺丝温度为40
Figure BDA0003770299600000106
,空气相对湿度为50RH%,采用铝箔收丝板对纺丝溶液进行静电纺丝,得到先驱体纤维;
(3)蒸汽热压:将先驱体纤维置于高压釜中,在甲醇蒸汽气氛下,以1
Figure BDA0003770299600000111
·min-1升温速率,升温至200
Figure BDA0003770299600000112
,在5MPa压力下保温8h进行纤维无机化;
(4)高温裂解:将无机化后的纤维置于管式炉中,在空气气氛下,以5
Figure BDA0003770299600000113
·min-1升温速率,升温至1200
Figure BDA0003770299600000114
,保温1h,冷却至室温即得到锆酸镧纳米陶瓷纤维。
本实施例所得锆酸镧纳米陶瓷纤维膜中纤维直径约为690nm,纤维表面光滑,无明显缺陷,具有较高的力学强度和较好的柔性;对其进行热导率测试,其室温热导率为0.049Wm-1·K-1,1000
Figure BDA0003770299600000115
热导率为0.125W m-1·K-1,1400℃热处理后纤维膜常温抗拉强度为0.34MPa。
本发明的技术方案所制备的锆酸镧纳米纤维膜为非晶纳米晶杂化结构,其单纤维直径约为550~780nm,纤维膜经1400℃高温热考核后仍具力学强度,在高温应用场景极具前景。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (8)

1.一种锆酸镧纳米隔热纤维膜的制备方法,其特征在于,包括以下步骤:
S1:按质量比(1:2:0.005:0.05) ~(1:3:0.015:0.25)称取镧源、锆源、硅酸镁铝和助纺剂,将硅酸镁铝加入到有机溶剂中,球磨,得到硅酸镁铝分散液;所述镧源为无水三氟甲基磺酸镧、异丙醇镧、碳酸镧和硫酸镧中的至少一种;所述锆源为锆酸四丁酯、乙酰丙酮锆、正丙醇锆和异丙醇锆中的至少一种;
将镧源、锆源和助纺剂加入到所述硅酸镁铝分散液中,搅拌均匀,得到纺丝溶液;
S2:对所述纺丝溶液进行静电纺丝,得到先驱体复合纤维膜;
S3:在甲醇或乙醇蒸汽气氛下对所述先驱体复合纤维膜进行无机化,具体为:以1~10℃·min-1升温速率升温至180~320 ℃,并在0.8~10 MPa压力下保温6~24 h,得到无机化纤维膜;
S4:在空气气氛中对所述无机化纤维膜进行高温裂解,具体为:以1~20 ℃·min-1升温速率升温至800~1300 ℃,并在800~1300 ℃下保温0.1~20 h,得到锆酸镧纳米隔热纤维膜。
2.如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述硅酸镁铝分散液中硅酸镁铝的浓度为0.5 wt%,1.0 wt%或1.5 wt%。
3.如权利要求1所述的制备方法,其特征在于,在步骤S1中,所述助纺剂为聚乙烯吡咯烷酮、聚氧化乙烯和聚乙烯醇中的至少一种;所述助纺剂的分子量为50000~2000000;
所述有机溶剂为二甲基甲酰胺、三乙胺和异丙醇中的至少一种。
4.如权利要求1所述的制备方法,其特征在于,在步骤S2中,静电纺丝工艺参数包括:采用内径为0.5~1.5 mm的针头、纺丝电压10~30 kV、收丝距离10~30 cm、推液速率0.2~2 mL·h-1、纺丝温度为20~40 ℃、空气相对湿度为30~50 RH%。
5.如权利要求1所述的制备方法,其特征在于,在步骤S3中,所述无机化具体为:
以1~3℃·min-1升温速率升温至200~300 ℃,并在2~5MPa压力下保温8~12 h。
6.如权利要求1所述的制备方法,其特征在于,在步骤S4中,所述高温裂解,具体为:
以5~10 ℃·min-1升温速率升温至1000~1200 ℃,并在1000~1200 ℃下保温1~3 h。
7.一种锆酸镧纳米隔热纤维膜,其特征在于,由权利要求1~6任一项所述制备方法制备得到;所述纤维膜由La、Zr、O、Mg、Al和Si六种元素组成,包括烧绿石型La2Zr2O7相和非晶相。
8.一种锆酸镧纳米隔热纤维膜的应用,其特征在于,将权利要求1~6任一项所述制备方法制备得到的纤维膜或者权利要求7所述的纤维膜应用于耐高温催化剂载体、高温超导缓冲层和防隔热一体化材料中。
CN202210899303.6A 2022-07-28 2022-07-28 一种锆酸镧纳米隔热纤维膜及其制备方法、应用 Active CN115286382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210899303.6A CN115286382B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米隔热纤维膜及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210899303.6A CN115286382B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米隔热纤维膜及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN115286382A CN115286382A (zh) 2022-11-04
CN115286382B true CN115286382B (zh) 2023-01-31

Family

ID=83823885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210899303.6A Active CN115286382B (zh) 2022-07-28 2022-07-28 一种锆酸镧纳米隔热纤维膜及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN115286382B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178846A (zh) * 2014-07-28 2014-12-03 中国人民解放军国防科学技术大学 一种Si-M-O-C超细纤维的制备方法
US20150014591A1 (en) * 2013-07-11 2015-01-15 Sabic Global Technologies B.V. Method of making pyrochlores
CN108840656A (zh) * 2018-04-26 2018-11-20 东华大学 一种基于静电纺SiO2纳米纤维气凝胶隔热材料及其制备和应用
CN113089132A (zh) * 2021-04-08 2021-07-09 齐鲁工业大学 一类锆酸盐纤维及其制备方法
CN113087729A (zh) * 2021-04-01 2021-07-09 山东大学 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN114616220A (zh) * 2019-12-26 2022-06-10 阿塞尔桑电子工业及贸易股份公司 通过热喷涂制造多层陶瓷结构的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014591A1 (en) * 2013-07-11 2015-01-15 Sabic Global Technologies B.V. Method of making pyrochlores
CN104178846A (zh) * 2014-07-28 2014-12-03 中国人民解放军国防科学技术大学 一种Si-M-O-C超细纤维的制备方法
CN108840656A (zh) * 2018-04-26 2018-11-20 东华大学 一种基于静电纺SiO2纳米纤维气凝胶隔热材料及其制备和应用
CN114616220A (zh) * 2019-12-26 2022-06-10 阿塞尔桑电子工业及贸易股份公司 通过热喷涂制造多层陶瓷结构的方法
CN113087729A (zh) * 2021-04-01 2021-07-09 山东大学 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN113089132A (zh) * 2021-04-08 2021-07-09 齐鲁工业大学 一类锆酸盐纤维及其制备方法

Also Published As

Publication number Publication date
CN115286382A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
CN106904952B (zh) 一种耐高温高强氧化铝纤维增强复合材料及其制备方法
Ishikawa Advances in inorganic fibers
CN102503581B (zh) 一种炭/炭复合材料长时间高温抗氧化多元复合陶瓷涂层及制备和应用方法
CN109053207B (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN106966742B (zh) 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
US20210047722A1 (en) Method for coating thermal/environmental barrier coating
CN113957567B (zh) 一种TiO2-SiO2前驱体溶胶纺丝液及钛硅复合氧化物纳米纤维的制备方法
CN112374917B (zh) 一种高温陶瓷涂层及其制备方法
CN106192078B (zh) 一种采用空气不熔化进行低氧含量连续SiC纤维制备的方法
CN111205097B (zh) 一种具有双透波陶瓷涂层的纤维预制体及其制备方法
CN115073151A (zh) 陶瓷纤维气凝胶及其制备方法
CN115286382B (zh) 一种锆酸镧纳米隔热纤维膜及其制备方法、应用
CN114988906A (zh) 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法
US6139916A (en) Process for coating oxidic fibrous materials with metal aluminates for the production of failure-tolerant, high-temperature resistant, oxidation-resistant composite materials
Wang et al. Effect of high‐pressure vapor pretreatment on the microstructure evolution and tensile strength of zirconia fibers
CN114478015A (zh) 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法
CN117024164A (zh) 一种陶瓷改性碳碳复合材料鼻锥及其制备方法
CN110407597B (zh) 一种稀土氧化物改性碳化硅陶瓷基复合材料及其制备方法
CN115572164A (zh) 一种高韧性复合纳米陶瓷材料及其制备方法
CN115110067A (zh) 一种三元复合新型阻氢/氘/氚渗透涂层及其制备方法
CN106083209B (zh) 一种微结构构造中间层界面Mullite/硅酸钇复合涂层的制备方法
CN115094544B (zh) 一种锆酸镧纳米陶瓷纤维及其制备方法
CN114804894A (zh) 一种多元复相微纳陶瓷纤维及其制备方法、应用
CN103396125A (zh) 一种硼碳氮多孔陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant