CN115089731B - 一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用 - Google Patents

一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用 Download PDF

Info

Publication number
CN115089731B
CN115089731B CN202210787124.3A CN202210787124A CN115089731B CN 115089731 B CN115089731 B CN 115089731B CN 202210787124 A CN202210787124 A CN 202210787124A CN 115089731 B CN115089731 B CN 115089731B
Authority
CN
China
Prior art keywords
swcnts
cooh
peg
nano
icg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210787124.3A
Other languages
English (en)
Other versions
CN115089731A (zh
Inventor
杨硕晔
刘家信
李思琪
吕明真
蒙迪
雎林
张璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202210787124.3A priority Critical patent/CN115089731B/zh
Publication of CN115089731A publication Critical patent/CN115089731A/zh
Application granted granted Critical
Publication of CN115089731B publication Critical patent/CN115089731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种协同化疗与光热治疗的纳米药物递送系统及其制备方法,包括以下具体:(1)将单壁纳米管和光热转换剂通过二硫键连接,得到敏感型纳米载体;(2)采用HA‑DMPE对所述敏感型纳米载体进行修饰后负载药物,即得一种协同化疗与光热治疗的纳米药物递送系统。本发明制备方法简单,所得的HA‑DMPE/SWCNTs‑PEG‑SS‑ICG样品粒径分布均匀、理化性质稳定,载体对ICG与DOX的包封率、装载量高,并能实现在模拟肿瘤微环境中的响应性释药,同时具有良好的光热转换性能,可增加MCF‑7细胞对ICG与DOX的摄取,实现化疗与PTT有效协同抗肿瘤。

Description

一种协同化疗与光热治疗的纳米药物递送系统及其制备方法 与应用
技术领域
本发明属于药物制剂技术领域,具体涉及一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用。
背景技术
恶性肿瘤发生的原因十分复杂,到目前为止还不能完全治愈。传统的癌症治疗方法包括化疗、放疗和外科手术等,这些方法都有明显的缺点和不足,新的治疗方法包括免疫治疗、基因治疗、光热治疗(photothermal therapy,PTT)和光动力治疗(photodynamictherapy,PDT)等,PTT具有侵入性小、时间和空间可控性高、副作用少、适用范围广等优势,因此引起了广泛关注。
肿瘤细胞在46℃下变得脆弱,易被热破坏,这个过程被称为热消融,能引发肿瘤坏死。PTT是利用光热转换剂(photothermal conversion agent,PTAs),将光能转化为热量,使肿瘤组织周围的温度提高,进而引发肿瘤细胞坏死;吲哚菁绿(ICG)是一种新型PTAs,其易于功能化修饰,具有独特的光热转换性能,被广泛应用于PTT,ICG具有光不稳定性强且不易瘤内聚集等缺点,可将其负载在纳米载体中以克服这些缺陷。
以纳米材料为基础的纳米递送系统在肿瘤化疗中已有广泛深入的研究,且该类系统可与PTT法结合,发挥化疗和热疗的协同作用,但是,目前纳米递送系统存在载药量不高、生物相容性低和不敏感等问题。
因此,能够提供一种载药量高、生物相容性好和敏感型的协同化疗与光热治疗药物递送系统及其制备方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种协同化疗与光热治疗的纳米药物递送系统及其制备方法,本发明以NH2-PEG-SS-COOH和HA作为修饰剂对SWCNTs进行功能化修饰,用作ICG与DOX的递送载体;该制备方法简单,所得的HA-DMPE/SWCNTs-PEG-SS-ICG样品粒径分布均匀、理化性质稳定,载体对ICG与DOX的包封率、装载量高,并能实现在模拟肿瘤微环境中的响应性释药,同时具有良好的光热转换性能,可增加MCF-7细胞对ICG与DOX的摄取,实现化疗与PTT有效协同抗肿瘤。
为了实现上述目的,本发明采用如下技术方案:
一种协同化疗与光热治疗的纳米药物递送系统的制备方法,包括以下具体:
(1)将单壁纳米管和光热转换剂通过二硫键连接,得到敏感型纳米载体;
(2)采用HA-DMPE对所述敏感型纳米载体进行修饰后负载药物,即得一种协同化疗与光热治疗的纳米药物递送系统。
单壁碳纳米管(SWCNTs)具有较强的光热稳定性、高载药量、易功能化修饰和优异的体内外光热转换能力,可用作化疗药物与PTAs的递送载体,化疗药物可通过π-π相互作用负载到SWCNTs的空腔和表面,以SWCNTs作为载体,可将药物与PTAs准确地递送到肿瘤组织,减少二者的过早泄露,实现精准释放,更好地发挥协同抗肿瘤作用;同时在治疗过程中,随着肿瘤部位温度的升高,促进药物从载体中释放,提高了肿瘤细胞对载药系统的摄取效率,因此,利用SWCNTs优异的光热转换与载药性能进行协同治疗和靶向治疗会具有更好的效果。
透明质酸(HA)是唯一一种富含滑液和细胞外基质(ECM)的非硫酸化糖胺多糖(GAG),且不同来源的HA具有相同的一级结构,这是其优异的天然生物相容性的分子基础;HA可与高表达决定簇CD44或淋巴管内皮透明质酸受体-1(即CD44蛋白或LYVE-1蛋白)的肿瘤细胞特异性结合,因此作为药物载体的修饰剂可有效提高其肿瘤靶向性,更好地实现化疗药物和PTAs的精准递送;HA具有相对活泼的官能团,易功能化修饰,修饰后还可进一步提高纳米载体的生物相容性和分散性。
对pH敏感的腙键、对酶敏感的肽键和对氧化还原环境敏感的二硫键常常用于连接聚合物和药物;人体内起稳固蛋白质结构作用的二硫键十分重要,可被还原型谷胱甘肽(GSH)和DTT还原为巯基;将纳米载体通过二硫键连接光热转换剂,在载体到达肿瘤部位时,由于肿瘤微环境中较高的GSH含量,二硫键断裂被还原为巯基,因此成为氧化还原敏感型递送载体;光热转换剂释放的同时在外部施加NIR光照将光能转化为高温热能,同时SWCNTs结构发生变化,化疗药物从载体中释放,实现PTT与化疗的高效协同,有效杀灭肿瘤细胞。
首先,本发明将HA与DMPE共价连接,利用DMPE中磷脂酰链与SWCNTs表面强相互作用,将HA连接在SWCNTs的表面,提供更为牢固的结合力,进而将纳米载体稳定靶向肿瘤组织,且HA-DMPE的包覆可有效阻止DOX的泄露;其次,本发明在SWCNTs和吲哚菁绿(ICG)之间引入二硫键,可以将ICG稳定连接在纳米载体上,还可以使ICG在肿瘤相关还原条件下发生裂解,肿瘤细胞内GSH浓度较高,SWCNTs和ICG通过二硫键连接,形成肿瘤微环境敏感的药物递送载体,可以避免ICG的光解及过早释放,在肿瘤部位发挥最大的光热效应。且SWCNTs-PEG-SS-COOH对ICG的负载效率高达87.71%,说明该方法合成的纳米载体对ICG的连接效率较高。
优选的,所述光热转换剂为表面具有活性基团氨基的光热转换剂。
优选的,所述光热转换剂为吲哚菁绿、IR780、IR780,IR825和PDI中的任意一种。
优选的,所述二硫键的供体为二硫代二丙酸。
优选的,所述连接的具体步骤为:
(1)将单壁纳米管通过硝酸氧化法制备得到SWCNTs-COOH,备用;
(2)将DTDPA溶于三乙胺,与氨基吡啶、TEA和NH2-PEG-OH反应完成后,加入冰乙醚,得到白色沉淀即为NH2-PEG-SS-COOH;
(3)将所述NH2-PEG-SS-COOH和氨基吡啶加入活化后的所述SWCNTs-COOH中反应,得到SWCNTs-PEG-SS-COOH;
(4)将所述SWCNTs-PEG-SS-COOH活化后与二甲氨基吡啶和光热转换剂反应后即得一种敏感型纳米载体。
优选的,步骤(3)所述SWCNTs-COOH和所述NH2-PEG-SS-COOH的质量比为1-1.5:1;
步骤(4)中所述SWCNTs-PEG-SS-COOH和所述二甲氨基吡啶的质量比0.5-1:1,所述SWCNTs-PEG-SS-COOH和所述光热转换剂的质量比为10-20:1.
优选的,步骤(2)中所述HA-DMPE和所述敏感型纳米载体的质量比为1:2;修饰后的所述敏感型纳米载体和所述药物的质量比为3:1。
优选的,所述光热转换剂为ICG,所述药物为疏水性药物或多肽、蛋白质、核酸类生物、大分子多醣或单糖、维生素、谷胱甘肽和二十八醇中的任意一种。
优选的,所述药物为阿霉素、紫杉醇、自由基清除剂和低聚糖中的任意一种。
阿霉素(DOX)是一种经临床证实的可治疗乳腺癌的药物,它被包裹在纳米复合材料中的载药量较高。将化疗药物(如DOX)与纳米载体结合,具有显著的优势:如避免网状内皮系统的吞噬;延长DOX的体内循环时间;促进其在肿瘤部位积聚,减少非靶向分布从而降低其毒副作用;NIR照射引起SWCNTs的升温,触发DOX释放,增加DOX在肿瘤细胞中的蓄积。
上述所述制备方法得到的一种协同化疗与光热治疗的纳米药物递送系统。
本发明使用硝酸氧化法制备SWCNTs-COOH,合成了一种氧化还原敏感型纳米载体;利用透明质酸、聚乙二醇等对SWCNTs进行功能化修饰,提高其分散性的同时,将HA修饰在SWCNTs的表面增加其肿瘤靶向性;作为二硫键的供体,二硫代二丙酸(DTDP)的两个羧基端较为活泼,无法发生单端反应,将其脱水合成DTDPA后,该酸酐可被羟基开环,最终合成一段含氨基、另一端含羧基的NH2-PEG-SS-COOH,达到连接SWCNTs-COOH和ICG-NH2的目的;以DTDP作为二硫键供体,将SWCNTs和ICG相连,制备了氧化还原响应型载体材料,实现ICG在肿瘤微环境的智能释放,提高其稳定性并延长体内循环;以DOX作为模型药物,将其包裹在纳米复合材料中,可促进其在肿瘤部位积聚,有效降低毒副作用。
优选的,所述纳米药物递送系统的粒径为300-350nm。
上述所述制备方法得到的一种协同化疗与光热治疗的纳米药物递送系统或者上述所述一种协同化疗与光热治疗的纳米药物递送系统在制备抗肿瘤药物中的应用。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用的SWCNTs具有中空结构和可调的化学成分,药物可通过共价键或带电表面活性剂的π-π相互作用和吸附的络合作用被负载到其表面,或直接被装载在管腔内部,载药量高;
(2)本发明采用HA的修饰使SWCNTs具有良好的生物相容性,且对CD44蛋白过表达的肿瘤细胞具有靶向性,可在增强载体靶向递送性能的同时降低潜在毒性;
(3)本发明采用HA-DMPE的包覆可防止药物和ICG的过早泄露,增强载运效果,实现在肿瘤部位发挥化疗与光热疗的协同作用;
(4)本发明SWCNTs与ICG通过二硫键(-SS-)连接,-SS-具有良好的氧化还原响应性,能在肿瘤细胞内高浓度GSH的环境中发生断裂,实现在肿瘤微环境中响应性释放ICG,这种“智能”定位型释放使递药系统能够更好地介导光热疗,提高与化疗的协同效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例1各纳米样品的透射电镜图,
其中,A:SWCNTs,B:SWCNTs-COOH,C:SWCNTs-PEG-SS-COOH,D:HA-DMPE/SWCNTs-PEG-SS-COOH;
图2为本发明实施例1各纳米样品的红外吸收光谱图,
其中,载体合成分析-a:DTDP,b:DTDPA,c:NH2-PEG-OH,d:NH2-PEG-SS-COOH,e:SWCNTs-COOH,f:SWCNTs-PEG-SS-COOH;
图3为本发明实施例1各纳米样品红外吸收光谱图,
其中,载体修饰分析-a:SWCNTs-PEG-SS-COOH,b:HA,c:HA-DMPE/SWCNTs-PEG-SS-COOH,d:ICG,e:HA-DMPE/SWCNTs-PEG-SS-ICG,f:DOX,g:HA-DMPE/SWCNTs-PEG-SS-COOH@DOX;
图4为本发明实施例1各纳米样品的紫外吸收光谱图,
其中,A:ICG连接证明-a:ICG,b:SWCNTs-PEG-SS-ICG,c:SWCNTs-PEG-SS-COOH;
B:ICG连接和DOX负载证明-a:DOX,b:ICG,c:HA-DMPE/SWCNTs-PEG-SS-COOH,d:HA-DMPE/SWCNTs-PEG-SS-COOH@DOX,e:HA-DMPE/SWCNTs-PEG-SS-ICG@DOX;
图5:本发明实施例1不同纳米样品的DSC曲线图,
其中,a:SWCNTs,b:SWCNTs-COOH,c:SWCNTs-PEG-SS-COOH,d:HA-DMPE/SWCNTs-PEG-SS-COOH;
图6:本发明实施例1不同纳米样品的XRD曲线图,
其中,a:SWCNTs,b:SWCNTs-COOH,c:SWCNTs-PEG-SS-COOH,d:HA-DMPE/SWCNTs-PEG-SS-COOH;
图7:本发明实施例1不同纳米样品的拉曼光谱图,
其中,a:SWCNTs,b:SWCNTs-COOH,c:SWCNTs-PEG-SS-COOH,d:HA-DMPE/SWCNTs-PEG-SS-COOH;
图8:本发明实施例1各纳米样品GSH响应性释放曲线图,
其中,a:10mM DTT,b:5mM DTT,c:2mM DTT,d:无DTT;
图9:本发明实施例1模拟光热和肿瘤环境中HA-DMPE/SWCNTs-PEG-SS-ICG@DOX的体外释放曲线图,
其中,a:45℃+pH 5.0,b:25℃+pH 5.0,c:45℃+pH 7.4,d:25℃+pH 7.4;
图10:本发明实施例1模拟光热和肿瘤环境中SWCNTs-SS-COOH@DOX的体外释放曲线图,
其中,a:45℃+pH 5.0,b:25℃+pH 5.0,c:45℃+pH 7.4,d:25℃+pH 7.4;
图11:本发明实施例1HA-DMPE/SWCNTs-SS-ICG@DOX纳米制剂在不同DTT浓度下的体外释放曲线图,
其中,a:无DTT+Ph 5.0,b:2Mm DTT+Ph 5.0,c:5Mm DTT+Ph 5.0,d:10Mm DTT+Ph5.0;
图12:本发明实施例1各纳米制剂的体外释放曲线图,
其中,a:HA-DMPE/SWCNTs-SS-ICG@DOX+pH5.0,b:SWCNTs-SS-COOH@DOX+pH5.0,c:SWCNTs-COOH@DOX+pH5.0,d:SWCNTs@DOX+pH 5.0;
图13:本发明实施例1各纳米材料MTT测定结果图;
图14:本发明实施例1各纳米材料光热验证图,
其中,a:HA-DMPE/SWCNTs-PEG-SS-COOH,b:HA-DMPE/SWCNTs-PEG-SS-ICG,c:HA-DMPE/SWCNTs-PEG-SS-ICG@DOX,d:PBS;
图15:本发明实施例ICG光热转换效果验证图;
图16:本发明实施例1各纳米样品的细胞摄取图;
图17:本发明实施例1化疗与PTT疗法及二者协同后的细胞内活性氧(ROS)测定定性图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种协同化疗与光热治疗的纳米药物递送系统,主要步骤包括:
(1)SWCNTs-COOH制备:
称取100mg的SWCNTs,放入250mL圆底烧瓶中,加入200mL浓硝酸,放入磁子并安装回流装置,95℃冷凝回流24h,向其中加入纯水,抽滤至中性,收集沉淀,即得SWCNTs-COOH;
(2)DTDPA的制备:
取5g二硫代二丙酸和25ml乙酰氯于烧瓶中,65℃反应4h后,50℃旋蒸并用冰乙醚洗涤,真空干燥,即得DTDPA;
(3)NH2-PEG-SS-COOH的制备:
将40mg上述DTDPA溶于1.2ml三乙胺,取20mg氨基吡啶、5mg TEA、200mgNH2-PEG-OH加入圆底烧瓶中,惰性气体保护,37℃反应24h后,加入100ml冰乙醚,800rpm离心8min,收集白色沉淀,即得NH2-PEG-SS-COOH;
(4)SWCNTs-PEG-SS-COOH的制备:
向圆底烧瓶中加入15mg SWCNTs-COOH,用DMSO分散后加入120mg碳二亚胺和220mgNHS反应12h以活化羧基,将15mg NH2-PEG-SS-COOH加入已经活化的溶液中,再加入75mg氨基吡啶,室温反应24h,反应结束后,将混合溶液装入透析袋,透析24h并冷冻干燥,即得SWCNTs-PEG-SS-COOH;
(5)SWCNTs-PEG-SS-ICG的制备:
将40mg SWCNTs-PEG-SS-COOH的羧基活化后,取50mg二甲氨基吡啶和2mg ICG-NH2加入反应体系,避光反应24h,取反应体系在10000rpm离心后,取上清测ICG的负载效率,将沉淀冷冻干燥后得SWCNTs-PEG-SS-ICG;
(6)HA-DMPE的制备:
取60mg HA和30mg EDAC于圆底烧瓶中,加水溶解,用1mM HCl调节pH到4.0,室温反应2h,再用1mM磷酸盐调节pH至7.0,加入DMPE 100mg,室温反应12h后,透析并干燥得HA-DMPE;
(7)HA-DMPE/SWCNTs-PEG-SS-ICG的制备:
取20mgHA-DMPE和40mgSWCNTs-PEG-SS-ICG至圆底烧瓶中,加入20ml PBS溶解,室温搅拌4h后,在10000rpm条件下离心,收集沉淀并冷冻干燥,即得HA-DMPE/SWCNTs-PEG-SS-ICG;
(8)负载DOX:
取30mg HA-DMPE/SWCNTs-PEG-SS-ICG于烧瓶中,加入30ml PBS溶液,超声分散后,加入10mg DOX,室温搅拌4h,在12000rpm条件下离心20min,取上清测定游离DOX的量,收集沉淀并冷冻干燥,即得HA-DMPE/SWCNTs-PEG-SS-ICG@DOX。
将上述制得的各载体SWCNTs、SWCNTs-COOH、SWCNTs-PEG-SS-COOH、SWCNTs-PEG-SS-ICG、HA-DMPE/SWCNTs-PEG-SS-ICG和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX,以去离子水为分散介质,用激光粒度分析仪测定样品的粒径、多分散系数(PDI)和Zeta电位,结果见表1;
表1实施例1不同纳米样品的粒径、Zeta电位测定结果
由表1结果可知:原始SWCNTs粒径为180-190nm,分散性良好,Zeta电势为-22mV左右;经浓硝酸反应后的纳米管粒径和电势略微减小;经NH2-PEG-SS-COOH修饰后,粒径有所减小,说明NH2-PEG-SS-COOH的加入提高了SWCNTs的分散性;经ICG修饰后,粒径和电势有所增加,分散性降低,同时中和一部分负电荷;加入HA后,纳米管的粒径有一定程度的增大,约为350nm,该样品的粒径(长度)较小,具有被细胞摄取的可能,而其Zeta电势有所下降;负载DOX后,对纳米管的粒径和Zeta电势影响不大;
如图1是各纳米样品的透射电镜图,如图所示,氧化后的SWCNTs与原始SWCNTs相比,长度变短,分散性显著改善,呈中空管状结构,使负载DOX成为可能;NH2-PEG-SS-COOH修饰后的SWCNTs结构无明显变化;对于经HA修饰的样品,能明显看到在外层粘附的颗粒,SWCNTs表面的HA可使纳米载体有效靶向至肿瘤细胞,并提高其分散性。
将实施例1中DTDP、DTDPA、NH2-PEG-OH、NH2-PEG-SS-COOH、SWCNTs-COOH和SWCNTs-PEG-SS-COOH等,分别进行红外光谱分析、差示扫描量热(DSC)、X射线衍射(XRD)、拉曼光谱等表征,
其中,图2是各纳米样品的红外吸收光谱图,扫描波数范围为500-4000cm-1,X轴表示透光率(%),Y轴表示波数,单位为cm-1,由图可知,DTDP在3400cm-1和1600-1700cm-1处有明显的伸缩振动峰,DTDPA仅在1600-1700cm-1有明显振动,3400cm-1和1600-1700cm-1分别是羧基中C=O和-OH的特征峰;对于SWCNTs-COOH的红外光谱特征锋,在3400cm-1和1600-1700cm-1处有明显的伸缩振动;NH2-PEG-OH和NH2-PEG-SS-COOH两者在3400cm-1的峰有所区别;在NH2-PEG-SS-COOH负载在SWCNTs-COOH后,可明显看到位于2800-3000cm-1的亚甲基的振动出现,羧基中C=O和-OH的特征峰有所增强;
图3是各纳米样品进行修饰分析的红外吸收光谱图,由图可知,SWCNTs-PEG-SS-COOH在3400cm-1和1600-1700cm-1处存在明显振动峰,在1241cm-1、1088cm-1和638cm-1等处存在亚甲基的振动峰;HA-DMPE/SWCNTs-PEG-SS-COOH中属HA-DMPE在1740cm-1、1615cm-1和1049cm-1的振动峰明显增强;HA-DMPE/SWCNTs-PEG-SS-ICG@DOX能检测到DOX的特征峰,证明HA-DMPE/SWCNTs-PEG-SS-ICG可负载DOX分子;
图4是各样品进行合成分析的紫外吸收光谱图,由A图可知,ICG的最大紫外吸收峰在780nm左右,ICG和SWCNTs-PEG-SS-ICG均存在ICG的紫外特征峰,而SWCNTs-PEG-SS-COOH不存在;由B图可知,DOX的最大紫外吸收峰在480nm左右,DOX、HA-DMPE/SWCNTs-PEG-SS-COOH@DOX和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX均存在DOX的紫外特征峰,另外HA-DMPE/SWCNTs-PEG-SS-ICG@DOX在780nm处也存在ICG的紫外特征峰,证明纳米载体可负载ICG和DOX分子;
图5是各纳米样品的DSC曲线图,由图可知,SWCNTs和SWCNTs-COOH转变为结晶态的峰分别在252.56-264.09℃和107.87-161.91℃;SWCNTs-PEG-SS-COOH在40.09-49.75℃时发生羧基的氧化分解,SWCNTs-PEG-SS-COOH与SWCNTs-COOH相比相变温度有所降低,可能对应修饰剂的氧化分解,HA-DMPE/SWCNTs-PEG-SS-COOH的相变温度比SWCNTs-PEG-SS-COOH稍有升高,证明经过功能化修饰后的SWCNTs热稳定性有极大的提升;
图6是各纳米样品的XRD曲线图,由图可知,各样品在26°和44°均存在相同的衍射峰,是SWCNTs的特征峰,SWCNTs、SWCNTs-COOH、SWCNTs-PEG-SS-COOH和HA-DMPE/SWCNTs-PEG-SS-COOH均存在这两处特征峰,说明功能化修饰并没有破坏碳纳米管结构;酸化后的SWCNTs在26°的峰变大变尖,说明处理后的SWCNTs结晶度有所增加,SWCNTs-PEG-SS-COOH和HA-DMPE/SWCNTs-PEG-SS-COOH的大包峰消失,说明修饰后的SWCNTs向有序结构转变,稳定性有一定提升;
图7是各纳米样品的拉曼光谱图,由图可知,样品在1340cm-1和1575cm-1处存在两个特征峰,分别对应SWCNTs无序结构引起的D带和有序结构引起的G带,ID/IG可用来代表SWCNTs表面缺陷程度,酸化后SWCNTs的ID/IG值增大,说明酸处理使SWCNTs表面缺陷和功能化程度有所增加,NH2-PEG-SS-COOH修饰后,由于分散性增加,G峰有所增强,HA的修饰使ID/IG值大幅度减小,说明SWCNTs的石墨化程度大大降低;
综合以上各项表征结果可知,本发明成功制备了氧化还原敏感型纳米载体,并且修饰上NH2-PEG-SS-COOH和HA等功能化成分,最终制成的纳米系统具有良好的物理稳定性,分散性好,具有作为抗肿瘤药物优良递送载体的可能。
对实施例1中提供的负载ICG的纳米样品-SWCNTs-PEG-S-S-ICG等,测定其负载效率,方法为:
取各纳米制剂,离心后量取上清液体积,HPLC法进样测定,以峰面积代入标准曲线求出上清液中ICG含量,HPLC法测定ICG的色谱条件为:色谱柱:Agilent column(C18,5μm,4.6×250mm),流动相:50%乙腈:KH2PO4(pH 3-4)=87:13,进样量:10μL,流速:1.0mL/min,柱温:25±5℃。建立定量测定ICG的方法,为体外释放实验中ICG含量的测定、负载率的计算做准备;
根据公式计算各载体对ICG的负载效率,计算公式为:
总ICG为1.11mg,测得上清中ICG的峰面积为281851.04,根据修正后的标准曲线方程可计算出游离ICG为0.1364mg,SWCNTs-PEG-SS-COOH对ICG的负载效率达87.71%,较高的负载效率证明载体对ICG的负载效果良好;
取实施例1各纳米制剂,采用相同的方法进行DOX负载,离心后量取上清液的体积,UV法进样测定,以吸光度A代入标准曲线求出上清液中DOX含量;
UV法测定DOX:选择480nm作为DOX的检测波长测定其含量,建立定量测定DOX的方法,为体外释放实验中DOX含量的测定、包封率和载药量的计算做准备;
根据公式计算DOX的包封率和载药量,计算公式为:
各纳米样品的载药率和包封率结果见表2,
表2不同纳米制剂的载药量与包封率测定结果
由表2数据可知,SWCNTs、SWCNTs-COOH、SWCNTs-SS-COOH、SWCNTs-SS-ICG和HA-DMPE/SWCNTs-SS-ICG的载药量(μg/mg)分别为165.05、140.97、89.53、90.24和55.82,包封率分别为98.95%、82.33%、53.10%、53.92%和47.28%。
应用例1
对纳米样品的GSH响应性释放ICG进行验证实验,由于ICG不溶于PBS,释放介质利用无水乙醇:PBS为1:4的溶液,称取HA-DMPE/SWCNTs-SS-ICG样品分为四组,分别为加入2mMDTT组、5mM DTT组、10mM DTT组和未加DTT组,160r/min震荡,分别于0、1、2、4、6、8、10、12、24和36等时间点后,利用HPLC法测得不同时间点ICG的释放量。由图8可知,未加DTT组、2mMDTT组和5mM DTT组样品在前6h内,释放ICG的量基本相同,大部分为吸附于SWCNTs表面的ICG释放;6h后,DTT不断接触SWCNTs中的二硫键,促使二硫键断裂并释放ICG;在136h时,未加DTT组释放度为36%,2mM DTT组释放度为53%,5mM DTT组释放度为57%,而加10mM DTT组释放度达74%,因此,验证了该纳米载体的氧化还原敏感性。
对各纳米样品进行模拟体内环境及光热作用下DOX的释放实验步骤包括:释放介质选择100ml pH5.0和7.4的PBS溶液,光热条件设置为45℃,并利用25℃进行对照;称取50mg最终载药产物分为4份溶解在10ml相应pH的PBS中,160r/min震荡,分别于0、1、2、4、6、8、10、12、24和36等时间点后,利用UV法测得不同时间点DOX的释放量。结果见图9,由图可知,HA-DMPE/SWCNTs-PEG-SS-ICG@DOX在45℃、pH 5.0条件下,释放速率最快,在36h释放度达92.1%,之后释放速率变慢,逐渐趋于稳定;在25℃,pH 7.4条件下,释放速率最慢,在12h趋于稳定,120h释放度仅为29.4%;表明光热作用和肿瘤微环境(低pH)可促进药物释放;
如图10为SWCNTs-SS-COOH@DOX的体外不同温度释放曲线图,释放介质选择100mlpH5.0和7.4的PBS溶液,光热条件设置为45℃,并利用25℃进行对照;称取50mg SWCNTs-SS-COOH@DOX分为4份溶解在10ml相应pH的PBS中,160r/min震荡,分别于0、1、2、4、6、8、10、12、24和36等时间点后,利用UV法测得不同时间点DOX的释放量;根据图可知在25℃、pH 5.0条件下,120h内DOX的释放度为56.37%,而45℃、pH 5.0条件下,DOX释放度达77.35%,初步表明光热作用时,DOX的释放能力被大大增强;在25℃,pH 7.4条件下,120h内DOX的释放度为29.94%,而25℃、pH5.0条件下,DOX释放度达48.21%,初步表明载体到达肿瘤微环境可促进DOX的释放,同时增加光热作用可大大促进DOX的释放;
如图11是各纳米制剂在不同DTT浓度下的体外释放曲线图,释放介质选择使用100ml pH 5.0的PBS溶液,样品分为四组,分别为加入2mM DTT组、5mM DTT组、10mM DTT组和未加DTT组,称取50mg各纳米制剂分为4份溶解在10ml相应pH的PBS中,160r/min震荡,分别于0、1、2、4、6、8、10、12、24和36等时间点后,利用UV法测得不同时间点DOX的释放量;根据图可知可知无DTT组,120h内DOX的释放度为56.27%,而2mM DTT、5mM和10mM组,DOX释放度分别为24.01%、21.36%和22.45%,表明DTT的存在抑制了DOX的释放;
如图12是各纳米制剂的体外释放曲线图,释放介质选择使用100ml pH5.0的PBS溶液,样品分为四组,称取50mg四种纳米制剂溶解在10ml相应pH的PBS中,160r/min震荡,分别于0、1、2、4、6、8、10、12、24和36等时间点后,利用UV法测得不同时间点DOX的释放量;根据图可知可知SWCNTs@DOX组,120h内DOX的释放度为12.64%,而SWCNTs-COOH@DOX组,DOX释放度达24.53%;SWCNTs-SS-COOH@DOX组与HA-DMPE/SWCNTs-SS-ICG@DOX组,120h内DOX的释放度则分别为43.60%、56.27%,表明随着载体修饰程度的提高,相同时间内DOX的释放能力逐步增强。
应用例2
细胞毒性验证
以MTT法分别考察各纳米载体(材料)的细胞毒性,称取各纳米载体2mg溶于超纯水中配制成200μg/mL的水溶液,利用细胞培养液配制成100、50、20、10和5μg/mL的浓度,并加入细胞培养皿中,24h后加入0.5mg/ml的MTT溶液,4h后吸取含有MTT的培养液,加入DMSO,用酶标仪在490nm波长处测各孔吸光值。其中,图13是纯材料的细胞存活率图;以材料的浓度为横坐标,细胞存活率为纵坐标,做MTT图,由图可以看出,SWCNTs、SWCNTs-COOH和ICG在0-50μg/mL时是较为安全的,细胞存活率在80%以上;随着NH2-PEG-SS-COOH和HA的修饰,SWCNTs的细胞毒性有所降低,生物安全性有一定的提高(100μg/mL时的细胞存活率仍大于80%)。
如图14为验证载体光热效应的结果图,根据上述确定的浓度,配制50μg/mL的HA-DMPE/SWCNTs-PEG-SS-COOH、HA-DMPE/SWCNTs-PEG-SS-ICG和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX的水溶液,分别吸取2ml于培养皿中,在5W/cm2的NIR照射条件下,每30s记录温度变化,以5min作为截止点,以时间为横坐标、温度为纵坐标,做载体的温度变化曲线;从图中可以看出,PBS在5min内最高温度稳定在25℃左右,HA-DMPE/SWCNTs-PEG-SS-COOH的温度随光照时间延长呈梯度上升,5min内升高至35℃,HA-DMPE/SWCNTs-PEG-SS-ICG和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX的光热转换性能较好,均在前2min内达到40℃以上,并逐渐稳定;结果表明负载ICG可显著增强SWCNTs载体的光热效应。
如图15为验证ICG光热效应的结果图,用超纯水将ICG配制成1μg/mL、2μg/mL、8μg/mL和10μg/mL的水溶液,分别吸取2ml于培养皿中,在5W/cm2的NIR照射条件下,每30s用红外摄像机拍摄;结果表明,随着ICG浓度的增加,升温速度逐渐上升,最终温度也明显增加,证实ICG具有良好的光热转换性能。
HA-DMPE图16是药物细胞摄取荧光图,采用荧光定位分析MCF-7细胞对各纳米制剂的摄取,步骤为:利用细胞培养液分别配置50μg/mL的SWCNTs-COOH@DOX、SWCNTs-PEG-SS-COOH@DOX、SWCNTs-PEG-SS-ICG@DOX和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX,并将此浓度下载体负载ICG和DOX的含量配置为相应浓度,将其作用于MCF-7细胞,作用24h后,弃去该培养液,加入0.25ml Hoechst33342和0.25ml培养液,30min后弃去该染色液并用PBS洗两次,在荧光显微镜下观察细胞摄取。结果表明,随着药物负载及修饰成分的增加,属于DOX的红色荧光和ICG的绿色荧光强度增加,表明纳米载体可显著提高化疗药物及光敏剂的细胞摄取率,具有优良的递送性能;
如图17为化疗与PTT疗法及二者协同后的细胞内ROS定性图,采用荧光定位分析MCF-7细胞协同治疗后ROS的变化,步骤为:利用细胞培养液分别配置50μg/mL的纳米制剂,分为六个处理组,分别为DOX、HA-DMPE/SWCNTs-PEG-SS-COOH@DOX、ICG、HA-DMPE/SWCNTs-PEG-SS-ICG、HA-DMPE/SWCNTs-PEG-SS-ICG+NIR和HA-DMPE/SWCNTs-PEG-SS-ICG@DOX+NIR,将其作用于MCF-7细胞,最后两组在5W/cm2的FT-IR照射5min,作用24h后,弃去该培养液,加入0.25ml浓度为50μmol/ml的DCFH-DA,30min后弃去该染色液并用PBS洗两次,在荧光显微镜下观察细胞摄取。结果如图所示,载体负载DOX后,在增加DOX摄取的同时,也引起了细胞内ROS水平的上升,PTT作用(施以红外光即NIR照射)后,细胞内ROS水平也有一定程度的上升,尤其是化疗与PTT共同作用时,DOX摄取量和ROS水平都明显提高,这一结果表明HA-DMPE/SWCNTs-PEG-SS-ICG载体可有效介导化疗与PTT实现协同。
综上,本发明构建了一种氧化还原敏感型纳米载体,以NH2-PEG-SS-COOH和HA作为修饰剂对SWCNTs进行功能化修饰,用作ICG与DOX的递送载体。该制备方法简单,所得的HA-DMPE/SWCNTs-PEG-SS-ICG样品粒径分布均匀、理化性质稳定。载体对ICG与DOX的包封率、装载量高,并能实现在模拟肿瘤微环境中的响应性释药,同时具有良好的光热转换性能,可增加MCF-7细胞对ICG与DOX的摄取,实现化疗与PTT有效协同抗肿瘤。因此,HA-DMPE/SWCNTs-PEG-SS-ICG是一种高效的药物递送系统。
各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种协同化疗与光热治疗的纳米药物递送系统的制备方法,其特征在于,包括以下具体:
(1)将单壁纳米管和光热转换剂通过二硫键连接,得到敏感型纳米载体;
(2)采用HA-DMPE对所述敏感型纳米载体进行修饰后负载药物,即得一种协同化疗与光热治疗的纳米药物递送系统;
所述光热转换剂为表面具有活性基团氨基的光热转换剂;
所述连接的具体步骤为:
1)将单壁纳米管通过硝酸氧化法制备得到SWCNTs-COOH,备用;
2)将DTDPA溶于三乙胺,与氨基吡啶、TEA和NH2-PEG-OH反应完成后,加入冰乙醚,得到白色沉淀即为NH2-PEG-SS-COOH;
3)将所述NH2-PEG-SS-COOH和氨基吡啶加入活化后的所述SWCNTs-COOH中反应,得到SWCNTs-PEG-SS-COOH;
4)将所述SWCNTs-PEG-SS-COOH活化后与二甲氨基吡啶和光热转换剂反应后即得一种敏感型纳米载体;
所述药物为阿霉素。
2.根据权利要求1所述的一种协同化疗与光热治疗的纳米药物递送系统的制备方法,其特征在于,步骤3)所述SWCNTs-COOH和所述NH2-PEG-SS-COOH的质量比为1-1.5:1;
步骤4)中所述SWCNTs-PEG-SS-COOH和所述二甲氨基吡啶的质量比0.5-1:1,所述SWCNTs-PEG-SS-COOH和所述光热转换剂的质量比为10-20:1。
3.根据权利要求1所述的一种协同化疗与光热治疗的纳米药物递送系统的制备方法,其特征在于,步骤(2)中所述HA-DMPE和所述敏感型纳米载体的质量比为1:2;修饰后的所述敏感型纳米载体和所述药物的质量比为3:1。
4.如权利要求1-3任一项所述制备方法得到的一种协同化疗与光热治疗的纳米药物递送系统。
5.根据权利要求4所述的一种协同化疗与光热治疗的纳米药物递送系统,其特征在于,所述纳米药物递送系统的粒径为300-350nm。
6.如权利要求1-3任一项所述制备方法得到的一种协同化疗与光热治疗的纳米药物递送系统或者如权利要求4或5所述一种协同化疗与光热治疗的纳米药物递送系统在制备抗肿瘤药物中的应用。
CN202210787124.3A 2022-07-04 2022-07-04 一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用 Active CN115089731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210787124.3A CN115089731B (zh) 2022-07-04 2022-07-04 一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210787124.3A CN115089731B (zh) 2022-07-04 2022-07-04 一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115089731A CN115089731A (zh) 2022-09-23
CN115089731B true CN115089731B (zh) 2024-04-05

Family

ID=83296412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210787124.3A Active CN115089731B (zh) 2022-07-04 2022-07-04 一种协同化疗与光热治疗的纳米药物递送系统及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115089731B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104940959A (zh) * 2015-07-21 2015-09-30 郑州大学 透明质酸修饰单壁碳纳米管制备诊断治疗的还原敏感性药物纳米剂的方法及应用
CN108354901A (zh) * 2018-05-21 2018-08-03 中国医学科学院生物医学工程研究所 用于肿瘤化疗与光热联合治疗的pH/还原双重敏感多功能纳米胶束及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104940959A (zh) * 2015-07-21 2015-09-30 郑州大学 透明质酸修饰单壁碳纳米管制备诊断治疗的还原敏感性药物纳米剂的方法及应用
CN108354901A (zh) * 2018-05-21 2018-08-03 中国医学科学院生物医学工程研究所 用于肿瘤化疗与光热联合治疗的pH/还原双重敏感多功能纳米胶束及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hong Juan Yao,et al..Monodistearoylphosphatidylethanolamine-hyaluronic acid functionalization of single-walled carbon nanotubes for targeting intracellular drug delivery to overcome multidrug resistance of cancer cells.Carbon.2015,第96卷362-376. *
Megha A. Deshmukh,et al..Carbon nanotubes: An effective platform for biomedical electronics.Biosensors andBioelectronics.2019,第150卷111919. *
Tang, L.,et al..NIR Light-Triggered Chemo-Phototherapy by ICG Functionalized MWNTs for Synergistic Tumor-Targeted Delivery.Pharmaceutics.2021,第13卷2145. *

Also Published As

Publication number Publication date
CN115089731A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Xu et al. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer
Hu et al. Perfluorocarbon‐loaded and redox‐activatable photosensitizing agent with oxygen supply for enhancement of fluorescence/photoacoustic imaging guided tumor photodynamic therapy
Li Volsi et al. Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma
Gao et al. Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release
Zhou et al. Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy
Cui et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy
Li et al. Self-quenchable biofunctional nanoparticles of heparin–folate-photosensitizer conjugates for photodynamic therapy
Pei et al. Design of Janus-like PMMA-PEG-FA grafted fluorescent carbon dots and their nanoassemblies for leakage-free tumor theranostic application
Zhu et al. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
Tong et al. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy
CN104368003B (zh) 一种透明质酸修饰的Au掺杂二氧化钛纳米管的制备方法及其应用
Yuan et al. Sharp pH-responsive mannose prodrug polypeptide nanoparticles encapsulating a photosensitizer for enhanced near infrared imaging-guided photodynamic therapy
Wei et al. Reductive response and RGD targeting nano-graphene oxide drug delivery system
CN110063933A (zh) 一种葡聚糖基纳米凝胶及其制备方法和应用
CN112439065A (zh) 一种兼具分子靶向/声动力治疗的携氧载药自组装纳米药物及其制备方法
Chen et al. Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy
Bose et al. Cyclodextrin nanoparticles in targeted cancer theranostics
Guo et al. Novel ROS-responsive marine biomaterial fucoidan nanocarriers with AIE effect and chemodynamic therapy
Li et al. Targeted pH/redox dual-responsive nanoparticles for cancer chemotherapy combined with photodynamic/photothermal therapy
Wu et al. Endogenous NO-release multi-responsive hollow mesoporous silica nanoparticles for drug encapsulation and delivery
CN114470231A (zh) 一种叶酸-羟烷基淀粉大分子稳定共载光敏剂和小分子前药的纳米载药系统、其制备和应用
Zhao et al. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor
Fu et al. Targeted poly (ethylene glycol) nanoparticles for photodynamic therapy
Kong et al. Cancer therapy based on smart drug delivery with advanced nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant