CN115084254A - 半导体装置及半导体装置的制造方法 - Google Patents

半导体装置及半导体装置的制造方法 Download PDF

Info

Publication number
CN115084254A
CN115084254A CN202210237812.2A CN202210237812A CN115084254A CN 115084254 A CN115084254 A CN 115084254A CN 202210237812 A CN202210237812 A CN 202210237812A CN 115084254 A CN115084254 A CN 115084254A
Authority
CN
China
Prior art keywords
trench
electrode
layer
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210237812.2A
Other languages
English (en)
Inventor
西康一
曾根田真也
古川彰彦
中村胜光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN115084254A publication Critical patent/CN115084254A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及半导体装置及半导体装置的制造方法。针对在栅极沟槽电极的下方具有填埋电极的构造的半导体装置,减小栅极泄漏的滞后。半导体装置(100)具有形成于与发射极层(13)、基极层(15)及载流子积蓄层(2)接触而到达漂移层(1)的沟槽内的有源沟槽栅极(11)。有源沟槽栅极(11)具有:栅极沟槽绝缘膜(11b),其形成于沟槽的内壁;以及栅极沟槽电极(11a)及填埋电极(11c),它们在沟槽内形成于栅极沟槽绝缘膜(11b)之上,彼此绝缘,该填埋电极(11c)配置于栅极沟槽电极(11a)的下方。填埋电极(11c)的磷浓度比栅极沟槽电极(11a)的磷浓度低。

Description

半导体装置及半导体装置的制造方法
技术领域
本发明涉及半导体装置及其制造方法。
背景技术
从节能的观点出发,在通用逆变器和AC伺服等领域,对进行3相电动机的可变速控制的功率模块使用IGBT(Insulated Gate Bipolar Transistor)、二极管。为了降低逆变器的损耗,要求这样的功率模块的IGBT、二极管的通断损耗及接通电压低。
具有在沟槽内形成的栅极电极(栅极沟槽电极)的沟槽栅型IGBT是通断损耗低的器件,特别地,作为栅极电容低的器件而知晓在栅极沟槽电极的下方设置有填埋电极的构造的IGBT(例如下述的专利文献1)。就具有栅极沟槽电极及填埋电极的IGBT而言,栅极沟槽电极与栅极电位连接,填埋电极与发射极电位连接。由此,栅极沟槽电极被填埋电极屏蔽,实现低的栅极电容。
专利文献1:日本特开2020-077727号公报
就具有栅极沟槽电极及填埋电极的IGBT而言,作为栅极沟槽电极及填埋电极的材料而通常使用添加了磷的掺杂多晶硅。但是,如果在栅极沟槽电极及填埋电极与设置于它们的表面的绝缘膜(栅极沟槽绝缘膜)之间的界面处磷发生偏析,则产生IGBT的栅极泄漏的滞后变大这一问题。
例如,在对栅极施加了正偏置时,电子容易被在填埋电极与栅极沟槽绝缘膜之间的界面处形成的磷的偏析部捕获,这成为使栅极泄漏(正侧栅极泄漏)的滞后变大的原因。另外,在对栅极施加了负偏置时,电子容易被在栅极沟槽电极与栅极沟槽绝缘膜之间的界面处形成的磷的偏析部捕获,这成为栅极泄漏(负侧栅极泄漏)的滞后变大的原因。
作为在填埋电极与栅极沟槽绝缘膜之间的界面处磷发生偏析的原因之一,想到在IGBT的制造工序中,由于在形成了填埋电极之后形成栅极沟槽绝缘膜,因而对填埋电极施加了大量的热处理。
发明内容
本发明就是为了解决以上这样的课题而提出的,其目的在于针对在栅极沟槽电极的下方具有填埋电极的构造的半导体装置,减小栅极泄漏的滞后。
本发明涉及的半导体装置具有:半导体衬底,其具有第1主面、第2主面及第1导电型的漂移层;所述第1导电型的载流子积蓄层,其在所述半导体衬底形成于比所述漂移层更靠所述第1主面侧处,与所述漂移层相比杂质的峰值浓度高;第2导电型的基极层,其在所述半导体衬底形成于比所述载流子积蓄层更靠所述第1主面侧处;所述第1导电型的发射极层及所述第2导电型的接触层,它们是在所述半导体衬底处与所述第1主面接触地形成的;以及有源沟槽栅极,其形成于与所述发射极层、所述基极层及所述载流子积蓄层接触而到达所述漂移层的沟槽内,所述有源沟槽栅极具有:栅极沟槽绝缘膜,其形成于所述沟槽的内壁;以及栅极沟槽电极及填埋电极,它们在所述沟槽内形成于所述栅极沟槽绝缘膜之上,彼此绝缘,该填埋电极配置于比所述栅极沟槽电极更靠所述第2主面侧处,所述填埋电极的磷浓度比所述栅极沟槽电极的磷浓度低。
发明的效果
根据本发明,针对在栅极沟槽电极的下方具有填埋电极的构造的半导体装置,能够减小栅极泄漏的滞后。
附图说明
图1是实施方式1涉及的半导体装置的俯视图。
图2是实施方式1涉及的半导体装置的剖视图。
图3是实施方式3涉及的半导体装置的剖视图。
图4是实施方式5涉及的半导体装置的剖视图。
图5是表示实施方式1~5涉及的半导体装置的制造方法的流程图。
具体实施方式
<实施方式1>
图1是实施方式1涉及的半导体装置100的俯视图。图2是该半导体装置100的剖视图,图2示出沿图1的A-A线的剖面。在本实施方式中,示出IGBT作为半导体装置100的元件构造。但是,本发明涉及的技术的应用不限于IGBT,能够广泛应用于MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、RC-IGBT(Reverse-Conducting IGBT)等功率器件。
另外,半导体装置100的耐压等级、半导体衬底10所使用的半导体衬底的种类(例如,FZ(Floating Zone)衬底、MCZ(Magnetic field applied Czochralski)衬底、外延衬底等)没有特别限制。作为半导体衬底10的材料,除了硅(Si)以外,还可以使用碳化硅(SiC)、氮化镓(GaN)类材料、金刚石等宽带隙半导体。能够通过使用宽带隙半导体而实现高耐电压、低损耗及高耐热。
以下,关于半导体的导电型,将第1导电型设为n型、将第2导电型设为p型而进行说明,但也可以将第1导电型设为p型、将第2导电型设为n型。
半导体装置100是使用具有第1导电型(n型)的漂移层1的半导体衬底10而形成的。这里,将图1中的半导体衬底10的上表面定义为“第1主面”,将下表面定义为“第2主面”。
在半导体衬底10,在比漂移层1更靠第1主面侧处形成有与漂移层1相比杂质的峰值浓度高的第1导电型的载流子积蓄层2。另外,在比载流子积蓄层2更靠第1主面侧处形成有第2导电型(p型)的基极层15。并且,在比基极层15更靠第1主面侧处,第1导电型的发射极层13和与基极层15相比杂质的峰值浓度高的第2导电型的接触层14形成为各自与第1主面接触。
另外,在半导体衬底10的第1主面形成有贯通发射极层13、基极层15及载流子积蓄层2而到达漂移层1的沟槽。由此,沟槽与发射极层13、基极层15及载流子积蓄层2接触,其底部位于比漂移层1与载流子积蓄层2之间的边界更靠第2主面侧处。在各沟槽内形成有有源沟槽栅极11或哑沟槽栅极12。
有源沟槽栅极11具有在沟槽的内壁形成的栅极沟槽绝缘膜11b和在栅极沟槽绝缘膜11b之上形成的栅极沟槽电极11a及填埋电极11c。填埋电极11c配置于比栅极沟槽电极11a更靠第2主面侧处,在栅极沟槽电极11a与填埋电极11c之间存在栅极沟槽绝缘膜11b。即,栅极沟槽电极11a与填埋电极11c彼此绝缘。此外,栅极沟槽电极11a的底部位于比基极层15与载流子积蓄层2之间的边界更靠第2主面侧处。
哑沟槽栅极12由在沟槽的内壁形成的哑沟槽绝缘膜12b和在哑沟槽绝缘膜12b之上形成的哑沟槽电极12a构成。即,哑沟槽栅极12不具有填埋电极。此外,半导体装置100只要具有有源沟槽栅极11及哑沟槽栅极12中的至少有源沟槽栅极11即可,也可以省略哑沟槽栅极12。
在半导体衬底10的第1主面之上形成有将栅极沟槽电极11a及哑沟槽电极12a覆盖的层间绝缘膜4,在层间绝缘膜4之上形成有发射极(emitter)电极(electrode)6。发射极电极6通过在层间绝缘膜4形成的接触孔而与发射极层13及接触层14连接。另外,有源沟槽栅极11的填埋电极11c在未图示的区域与发射极电极6连接。由此,发射极电极6与有源沟槽栅极11电连接。
在本实施方式中,发射极电极6在其下表面设置有阻挡金属5。发射极电极6例如能够由Al或AlSi等金属构成。阻挡金属5例如能够由Ti或TiN、TiSi等构成。另外,发射极电极6也可以包含在接触孔内由W等构成的插塞。
另一方面,在半导体衬底10,在比漂移层1更靠第2主面侧处形成有与漂移层1相比杂质的峰值浓度高的缓冲层3。另外,在比缓冲层3更靠第2主面侧处,第2导电型的集电极层16形成为与第2主面接触。另外,在半导体衬底10的第2主面之上形成有与集电极层16连接的集电极(collector)电极(electrode)7。
这里,在实施方式1中,栅极沟槽电极11a及填埋电极11c由添加了磷的掺杂多晶硅形成。但是,填埋电极11c所包含的磷的浓度被设定为比栅极沟槽电极11a所包含的磷的浓度低。这样,通过降低填埋电极11c的磷浓度,从而能够使在填埋电极11c与栅极沟槽绝缘膜11b之间偏析的磷变少,能够减小正侧栅极泄漏的滞后。此外,哑沟槽电极12a的磷浓度也可以与填埋电极11c相同。
<实施方式2>
实施方式2涉及的半导体装置100的结构基本上与图1及图2相同。但是,在实施方式2中,对填埋电极11c使用不包含磷的材料。作为这样的填埋电极11c的材料,例如举出无掺杂多晶硅、金属、添加了氮的掺杂多晶硅等。与使用添加了磷的掺杂多晶硅作为填埋电极11c的材料的实施方式1相比,在使用无掺杂多晶硅的情况下,填埋电极11c的电阻变高,但在使用金属或添加了氮的掺杂多晶硅的情况下,能够降低填埋电极11c的电阻。
根据实施方式2,由于填埋电极11c不包含磷,因此,能够防止在填埋电极11c与栅极沟槽绝缘膜11b之间的界面处磷发生偏析,能够减小正侧栅极泄漏的滞后。此外,哑沟槽电极12a也可以由与填埋电极11c相同的材料构成。
<实施方式3>
图3是实施方式3涉及的半导体装置100的剖视图,与图2同样地,示出沿图1的A-A线的剖面。
在实施方式3中,填埋电极11c的表层部即与栅极沟槽绝缘膜11b接触的部分由无掺杂多晶硅形成,其内侧的部分由添加了磷的掺杂多晶硅形成。即,如图3所示,填埋电极11c由位于填埋电极11c的中心部且添加了磷的掺杂多晶硅层11c1、和位于掺杂多晶硅层11c1的外侧的无掺杂多晶硅层11c2构成。
根据实施方式3,由于填埋电极11c在表层部具有无掺杂多晶硅层11c2,因此,能够防止在填埋电极11c与栅极沟槽绝缘膜11b之间的界面处磷发生偏析,能够减小正侧栅极泄漏的滞后。另外,由于填埋电极11c的内部是掺杂多晶硅层11c1,因此防止了填埋电极11c的电阻变高。
此外,哑沟槽电极12a的结构也可以是与填埋电极11c相同的结构,即如下结构:与栅极沟槽绝缘膜11b接触的部分由无掺杂多晶硅形成,其内侧的部分由添加了磷的掺杂多晶硅形成。即,也可以如图3所示,哑沟槽电极12a由位于哑沟槽电极12a的中心部且添加了磷的掺杂多晶硅层12a1、和位于掺杂多晶硅层12a1的外侧的无掺杂多晶硅层12a2构成。
<实施方式4>
实施方式4涉及的半导体装置100的结构基本上与图1及图2相同。但是,在实施方式4中,对栅极沟槽电极11a使用不包含磷的材料(当然,与实施方式1不同,填埋电极11c所包含的磷的浓度也可以比栅极沟槽电极11a所包含的磷的浓度高)。作为这样的栅极沟槽电极11a的材料,例如举出无掺杂多晶硅、金属、添加了氮的掺杂多晶硅等。与使用添加了磷的掺杂多晶硅作为栅极沟槽电极11a的材料的实施方式1相比,在使用无掺杂多晶硅的情况下,栅极沟槽电极11a的电阻变高,但在使用金属或添加了氮的掺杂多晶硅的情况下,能够降低栅极沟槽电极11a的电阻。
根据实施方式4,由于栅极沟槽电极11a不包含磷,因此,能够防止在栅极沟槽电极11a与栅极沟槽绝缘膜11b之间的界面处磷发生偏析,能够减小负侧栅极泄漏的滞后。
<实施方式5>
图4是实施方式5涉及的半导体装置100的剖视图,与图2同样地,示出沿图1的A-A线的剖面。
在实施方式5中,栅极沟槽电极11a的表层部即与栅极沟槽绝缘膜11b接触的部分由无掺杂多晶硅形成,其内侧的部分由添加了磷的掺杂多晶硅形成。即,如图4所示,栅极沟槽电极11a由位于栅极沟槽电极11a的中心部且添加了磷的掺杂多晶硅层11a1、和位于掺杂多晶硅层11a1的外侧的无掺杂多晶硅层11a2构成。
根据实施方式5,由于栅极沟槽电极11a在表层部具有无掺杂多晶硅层11a2,因此,能够防止在栅极沟槽电极11a与栅极沟槽绝缘膜11b之间的界面处磷发生偏析,能够减小负侧栅极泄漏的滞后。另外,由于栅极沟槽电极11a的内部是掺杂多晶硅层11a1,防止了栅极沟槽电极11a的电阻变高。
<实施方式6>
在实施方式6中,对实施方式1~5涉及的半导体装置100的制造方法进行说明。图5是表示该制造方法的流程图。
首先,准备第1导电型的半导体衬底10(步骤S101),在IGBT等的元件形成区域的外侧的末端区域形成用于保持耐压的末端构造(例如,保护环、FLR(Field Limiting Ring)等)(步骤S102)。
接下来,通过在半导体衬底10的第1主面之上反复进行使用光刻技术而形成掩模的处理(掩模处理)和使用了该掩模的选择性离子注入,从而在半导体衬底10形成载流子积蓄层2及基极层15(步骤S103)。此时,在载流子积蓄层2之下残存的第1导电型的区域成为漂移层1。
接下来,通过对半导体衬底10的第1主面选择性地进行蚀刻,从而形成用于有源沟槽栅极11的沟槽(步骤S104)。然后,在该沟槽的内表面成膜出成为栅极沟槽绝缘膜11b的一部分的第1绝缘膜(步骤S105),在该沟槽内的第1绝缘膜之上形成填埋电极11c(步骤S106)。
接下来,通过以填埋电极11c为掩模的蚀刻,从而将沟槽内的第1绝缘膜中的在基极层15的侧壁形成的部分去除(步骤S107)。然后,通过氧化法或CVD(Chemical VaporDeposition:化学气相沉积)法或者它们的组合而在沟槽内的填埋电极11c之上及基极层15的侧壁成膜出成为栅极沟槽绝缘膜11b的一部分的第2绝缘膜(步骤S108)。然后,在沟槽内的第2绝缘膜之上形成栅极沟槽电极11a(步骤S109),由此,完成有源沟槽栅极11。
例如,在填埋电极11c是多晶硅的情况下,如果仅通过氧化法进行第2绝缘膜的形成,则在填埋电极11c之上形成的第2绝缘膜的厚度容易变得不均匀。另外,在填埋电极11c是金属的情况下,如果仅通过氧化法进行第2绝缘膜的形成,则无法在填埋电极11c之上形成氧化膜。因此,特别地,在填埋电极11c是多晶硅或金属的情况下,通过包含CVD法在内的方法而进行第2绝缘膜的形成,由此能够提高填埋电极11c与栅极沟槽电极11a之间的绝缘性。
此外,当在通过步骤S104形成的一部分的沟槽形成哑沟槽栅极12的情况下,能够在成膜出第1绝缘膜的步骤S105或成膜出第2绝缘膜的步骤S108中形成哑沟槽绝缘膜12b,在形成填埋电极11c的步骤S106或形成栅极沟槽电极11a的步骤S109中形成哑沟槽电极12a。由此,不增加制造工序数就能够导入哑沟槽栅极12。
在完成有源沟槽栅极11之后,通过反复进行掩模处理及离子注入而形成发射极层13及接触层14(步骤S110)。
然后,在半导体衬底10的第1主面之上形成层间绝缘膜4(步骤S111)。然后,当在层间绝缘膜4形成接触孔之后(步骤S112),在层间绝缘膜4之上形成发射极电极6(步骤S113)。
最后,在半导体衬底10的第2主面侧形成包含缓冲层3、集电极层16及集电极电极7在内的背面构造(步骤S114),由此完成半导体装置100。
用于将被离子注入的杂质激活的热处理可以在各自的离子注入工序之后进行,也可以在进行了多个离子注入工序之后集中进行。另外,各工序的顺序也可以适当调换。
此外,能够对各实施方式自由地进行组合,或对各实施方式适当地进行变形、省略。
标号的说明
100半导体装置,1漂移层,2载流子积蓄层,3缓冲层,4层间绝缘膜,5阻挡金属,6发射极电极,7集电极电极,10半导体衬底,11有源沟槽栅极,11a栅极沟槽电极,11b栅极沟槽绝缘膜,11c填埋电极,12哑沟槽栅极,12a哑沟槽电极,12b哑沟槽绝缘膜,13发射极层,14接触层,15基极层,16集电极层,11a1、11c1、12a1掺杂多晶硅层,11a2、11c2、12a2无掺杂多晶硅层。

Claims (14)

1.一种半导体装置,其具有:
半导体衬底,其具有第1主面、第2主面及第1导电型的漂移层;
所述第1导电型的载流子积蓄层,其在所述半导体衬底形成于比所述漂移层更靠所述第1主面侧处,与所述漂移层相比杂质的峰值浓度高;
第2导电型的基极层,其在所述半导体衬底形成于比所述载流子积蓄层更靠所述第1主面侧处;
所述第1导电型的发射极层及所述第2导电型的接触层,它们是在所述半导体衬底处与所述第1主面接触地形成的;以及
有源沟槽栅极,其形成于与所述发射极层、所述基极层及所述载流子积蓄层接触而到达所述漂移层的沟槽内,
所述有源沟槽栅极具有:
栅极沟槽绝缘膜,其形成于所述沟槽的内壁;以及
栅极沟槽电极及填埋电极,它们在所述沟槽内形成于所述栅极沟槽绝缘膜之上,彼此绝缘,该填埋电极配置于比所述栅极沟槽电极更靠所述第2主面侧处,
所述填埋电极的磷浓度比所述栅极沟槽电极的磷浓度低。
2.根据权利要求1所述的半导体装置,其中,
所述填埋电极不包含磷。
3.根据权利要求2所述的半导体装置,其中,
所述填埋电极由无掺杂多晶硅形成。
4.根据权利要求2所述的半导体装置,其中,
所述填埋电极由添加了氮的掺杂多晶硅形成。
5.根据权利要求2所述的半导体装置,其中,
所述填埋电极由金属形成。
6.一种半导体装置的制造方法,其是权利要求1至5中任一项所述的半导体装置的制造方法,其中,
形成所述有源沟槽栅极的工序包含以下工序:
工序(a),在所述半导体衬底的所述第1主面形成所述沟槽;
工序(b),在所述沟槽的内表面成膜出第1绝缘膜;
工序(c),在所述沟槽内的所述第1绝缘膜之上形成所述填埋电极;
工序(d),在所述工序(c)之后,将所述沟槽内的所述基极层的侧壁的所述第1绝缘膜去除;
工序(e),在所述工序(d)之后,通过包含CVD法在内的方法而在所述沟槽内的所述填埋电极之上及所述基极层的侧壁成膜出第2绝缘膜,其中,CVD是指化学气相沉积;以及
工序(f),在所述沟槽内的所述第2绝缘膜之上形成所述栅极沟槽电极。
7.一种半导体装置,其具有:
半导体衬底,其具有第1主面、第2主面及第1导电型的漂移层;
所述第1导电型的载流子积蓄层,其在所述半导体衬底形成于比所述漂移层更靠所述第1主面侧处,与所述漂移层相比杂质的峰值浓度高;
第2导电型的基极层,其在所述半导体衬底形成于比所述载流子积蓄层更靠所述第1主面侧处;
所述第1导电型的发射极层及所述第2导电型的接触层,它们是在所述半导体衬底处与所述第1主面接触地形成的;以及
有源沟槽栅极,其形成于与所述发射极层、所述基极层及所述载流子积蓄层接触而到达所述漂移层的沟槽内,
所述有源沟槽栅极具有:
栅极沟槽绝缘膜,其形成于所述沟槽的内壁;以及
栅极沟槽电极及填埋电极,它们在所述沟槽内形成于所述栅极沟槽绝缘膜之上,彼此绝缘,该填埋电极配置于比所述栅极沟槽电极更靠所述第2主面侧处,
所述填埋电极的表层部由无掺杂多晶硅形成,所述填埋电极的比所述表层部更靠内侧处由添加了磷的掺杂多晶硅形成。
8.一种半导体装置的制造方法,其是权利要求7所述的半导体装置的制造方法,
形成所述有源沟槽栅极的工序包含以下工序:
工序(a),在所述半导体衬底的所述第1主面形成所述沟槽;
工序(b),在所述沟槽的内表面成膜出第1绝缘膜;
工序(c),在所述沟槽内的所述第1绝缘膜之上形成所述填埋电极;
工序(d),在所述工序(c)之后,将所述沟槽内的所述基极层的侧壁的所述第1绝缘膜去除;
工序(e),在所述工序(d)之后,通过包含CVD法在内的方法而在所述沟槽内的所述填埋电极之上及所述基极层的侧壁成膜出第2绝缘膜,其中,CVD是指化学气相沉积;以及
工序(f),在所述沟槽内的所述第2绝缘膜之上形成所述栅极沟槽电极。
9.一种半导体装置,其具有:
半导体衬底,其具有第1主面、第2主面及第1导电型的漂移层;
所述第1导电型的载流子积蓄层,其在所述半导体衬底形成于比所述漂移层更靠所述第1主面侧处,与所述漂移层相比杂质的峰值浓度高;
第2导电型的基极层,其在所述半导体衬底形成于比所述载流子积蓄层更靠所述第1主面侧处;
所述第1导电型的发射极层及所述第2导电型的接触层,它们是在所述半导体衬底处与所述第1主面接触地形成的;以及
有源沟槽栅极,其形成于与所述发射极层、所述基极层及所述载流子积蓄层接触而到达所述漂移层的沟槽内,
所述有源沟槽栅极具有:
栅极沟槽绝缘膜,其形成于所述沟槽的内壁;以及
栅极沟槽电极及填埋电极,它们在所述沟槽内形成于所述栅极沟槽绝缘膜之上,彼此绝缘,该填埋电极配置于比所述栅极沟槽电极更靠所述第2主面侧处,
所述栅极沟槽电极的至少表层部不包含磷。
10.根据权利要求9所述的半导体装置,其中,
所述栅极沟槽电极由无掺杂多晶硅形成。
11.根据权利要求9所述的半导体装置,其中,
所述栅极沟槽电极由添加了氮的掺杂多晶硅形成。
12.根据权利要求9所述的半导体装置,其中,
所述栅极沟槽电极由金属形成。
13.根据权利要求9所述的半导体装置,其中,
所述栅极沟槽电极的所述表层部由无掺杂多晶硅形成,所述栅极沟槽电极的比所述表层部更靠内侧处由添加了磷的掺杂多晶硅形成。
14.一种半导体装置的制造方法,其是权利要求9至13中任一项所述的半导体装置的制造方法,
形成所述有源沟槽栅极的工序包含以下工序:
工序(a),在所述半导体衬底的所述第1主面形成所述沟槽;
工序(b),在所述沟槽的内表面成膜出第1绝缘膜;
工序(c),在所述沟槽内的所述第1绝缘膜之上形成所述填埋电极;
工序(d),在所述工序(c)之后,将所述沟槽内的所述基极层的侧壁的所述第1绝缘膜去除;
工序(e),在所述工序(d)之后,通过包含CVD法在内的方法而在所述沟槽内的所述填埋电极之上及所述基极层的侧壁成膜出第2绝缘膜,其中,CVD是指化学气相沉积;以及
工序(f),在所述沟槽内的所述第2绝缘膜之上形成所述栅极沟槽电极。
CN202210237812.2A 2021-03-16 2022-03-11 半导体装置及半导体装置的制造方法 Pending CN115084254A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-042533 2021-03-16
JP2021042533A JP7466482B2 (ja) 2021-03-16 2021-03-16 半導体装置

Publications (1)

Publication Number Publication Date
CN115084254A true CN115084254A (zh) 2022-09-20

Family

ID=83114684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210237812.2A Pending CN115084254A (zh) 2021-03-16 2022-03-11 半导体装置及半导体装置的制造方法

Country Status (4)

Country Link
US (1) US20220302289A1 (zh)
JP (1) JP7466482B2 (zh)
CN (1) CN115084254A (zh)
DE (1) DE102022102516A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210564B2 (ja) 2007-07-27 2013-06-12 ルネサスエレクトロニクス株式会社 半導体装置
JP2013058575A (ja) 2011-09-07 2013-03-28 Toshiba Corp 半導体装置及びその製造方法
JP2013065774A (ja) 2011-09-20 2013-04-11 Toshiba Corp 半導体装置およびその製造方法
JP6218423B2 (ja) 2013-04-25 2017-10-25 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP6844147B2 (ja) 2016-02-12 2021-03-17 富士電機株式会社 半導体装置
JP2019012813A (ja) 2017-06-29 2019-01-24 株式会社東芝 絶縁ゲート型バイポーラトランジスタ

Also Published As

Publication number Publication date
JP7466482B2 (ja) 2024-04-12
US20220302289A1 (en) 2022-09-22
DE102022102516A1 (de) 2022-09-22
JP2022142382A (ja) 2022-09-30

Similar Documents

Publication Publication Date Title
US11646369B2 (en) Silicon carbide semiconductor device having a conductive layer formed above a bottom surface of a well region so as not to be in ohmic connection with the well region and power converter including the same
JP5710644B2 (ja) 炭化珪素半導体装置およびその製造方法
TWI534902B (zh) 功率半導體裝置及形成功率半導體裝置之方法
US8878343B2 (en) Semiconductor device with an integrated poly-diode
US20210183995A1 (en) Superjunction silicon carbide semiconductor device and method of manufacturing superjunction silicon carbide semiconductor device
CN111149213B (zh) 碳化硅半导体装置及其制造方法
JP2021048423A (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
US10418445B2 (en) Silicon carbide semiconductor device and method of manufacturing a silicon carbide semiconductor device
US10727225B2 (en) IGBT semiconductor device
CN106796955B (zh) 半导体装置
US9276075B2 (en) Semiconductor device having vertical MOSFET structure that utilizes a trench-type gate electrode and method of producing the same
CN106252414B (zh) 具有场电极和改进的雪崩击穿行为的晶体管
KR101802419B1 (ko) 트렌치형 필러 옥사이드를 이용한 탄화규소 슈퍼정션 모스펫 및 그 제조방법
WO2021254616A1 (en) Sic mosfet with asymmetric trench oxide and method of manufacture
JP4755439B2 (ja) 半導体装置およびその製造方法
CN113421927B (zh) 一种逆导SiC MOSFET器件及其制造方法
JP2014187320A (ja) 半導体装置
JP2006100779A (ja) 半導体装置およびその製造方法
CN115084254A (zh) 半导体装置及半导体装置的制造方法
CN114203818A (zh) 半导体装置
JP3541832B2 (ja) 電界効果トランジスタ及びその製造方法
CN110911477A (zh) 半导体装置
US20230253458A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20230290850A1 (en) Semiconductor device and semiconductor package
US20240072152A1 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination