CN115053379A - 一种电化学装置和电子装置 - Google Patents

一种电化学装置和电子装置 Download PDF

Info

Publication number
CN115053379A
CN115053379A CN202180012182.2A CN202180012182A CN115053379A CN 115053379 A CN115053379 A CN 115053379A CN 202180012182 A CN202180012182 A CN 202180012182A CN 115053379 A CN115053379 A CN 115053379A
Authority
CN
China
Prior art keywords
electrochemical device
active material
peak
diffraction peak
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180012182.2A
Other languages
English (en)
Inventor
袁国霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Amperex Technology Ltd
Original Assignee
Ningde Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Amperex Technology Ltd filed Critical Ningde Amperex Technology Ltd
Publication of CN115053379A publication Critical patent/CN115053379A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本申请提供了一种电化学装置和电子装置,其包括正极、负极和电解液,正极活性材料包括含锰复合材料,在30%SOC至40%SOC条件下,正极活性材料的XRD衍射图谱中,在40°至46°范围内包括第一衍射峰锰酸锂特征峰(400)和第二衍射峰镍钴锰酸锂特征峰(104),第一衍射峰的2θ角小于第二衍射峰的2θ角,第一衍射峰的峰强为A,第二衍射峰的峰强为B,满足:0.01≤B/A≤0.55,提高了电化学装置的高温循环性能和存储性能,改善了电化学装置的低温循环性能。

Description

一种电化学装置和电子装置
技术领域
本申请涉及电化学技术领域,具体涉及一种电化学装置和电子装置。
背景技术
锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等特点,广泛应用于电能存储、便携式电子设备和电动汽车等各个领域。
随着锂离子电池在消费终端等领域应用的迅速发展,人们对锂离子电池的充放电循环性能也有了越高的要求,但是目前的锂离子电池在高温下性能衰减较大。
发明内容
本申请的目的在于提供一种电化学装置和电子装置,以实现提高电化学装置在高温下的性能。具体技术方案如下:
本申请的第一方面提供了一种电化学装置,包括正极、负极和电解液,所述正极包括正极活性材料,其中,所述正极活性材料包括含锰复合材料,在30%SOC(State ofCharge,荷电状态)至40%SOC条件下,所述正极活性材料的XRD(X-ray diffraction,X射线衍射)衍射图谱中,在40°至46°范围内包括第一衍射峰锰酸锂LMO特征峰(400)和第二衍射峰镍钴锰酸锂NCM特征峰(104),第一衍射峰的2θ角小于第二衍射峰的2θ角,第一衍射峰的峰强为A,第二衍射峰的峰强为B,满足:0.01≤B/A≤0.55。控制第一衍射峰的峰强为A与第二衍射峰的峰强为B之间满足0.01≤B/A≤0.55,能够使本申请的电化学装置具有优良的高温性能,使电化学装置具有较高的成本竞争力。
在本申请的一种实施方案中,在60%SOC条件下,所述正极活性材料的XRD衍射图谱中,第一衍射峰的峰面积为I1,第二衍射峰的峰面积为I2,满足:0.1≤I2/I1≤0.5。通过控制I2/I1在上述范围内,能够提高电化学装置的高温循环性能和存储性能。
在本申请的一种实施方案中,电化学装置由0%SOC上升至100%SOC过程中,第一衍射峰的2θ角向高角度偏移0.5°至1°。通过控制第一衍射峰的2θ角向高角度的偏移量在上述范围内,能够改善正极活性材料中Mn-O键稳定性,提高电化学装置的高温循环性能。
在本申请的一种实施方案中,所述电化学装置满足如下条件a)至c)中至少一种:a)基于所述正极活性材料的质量,镍钴锰酸锂NCM的质量含量为0.5%至35%;b)基于所述正极活性材料的质量,锰酸锂LMO的质量含量为50%至92%;c)所述正极活性材料还包括掺杂元素,所述掺杂元素包括Al、Mg或Nb中的至少一种,基于所述正极活性材料的质量,所述掺杂元素的质量含量为0.1%至2.5%。通过控制NCM的含量在上述范围内,有利于在控制电化学装置的成本同时提升高温性能。通过控制LMO的含量在上述范围内,有利于降低电化学装置生产成本。通过控制掺杂元素的含量在上述范围内,能够提高电化学装置的高温性能,例如高温循环性能和高温存储性能。
在本申请的一种实施方案中,正极活性材料的粒度分布满足:0.9≤(Dv90-Dv10)/Dv50≤2.0。通过控制(Dv90-Dv10)/Dv50在上述范围内,能够改善电化学装置的低温动力学性能。进一步的,正极活性材料的粒度分布满足0.9≤(Dv90-Dv10)/Dv50≤1.24时,电化学装置的低温动力学性能更优。
在本申请的一种实施方案中,电化学装置满足如下条件d)至e)中至少一种:d)所述电解液包括溶剂,所述溶剂包括碳酸二甲酯(DMC)、碳酸亚乙酯(EC)和碳酸亚丙酯(PC),所述碳酸二甲酯与碳酸亚乙酯之间的质量比为3.1至7;e)所述电解液还包括磺酸内酯化合物、多腈化合物、含硼锂盐、硫酸亚乙酯、联苯或碳酸亚乙烯酯中的至少一种。通过控制碳酸二甲酯与碳酸亚乙酯之间的质量比在上述范围内,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能;本申请的电解液中包括上述化合物,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
在本申请的一种实施方案中,电化学装置满足如下条件f)至g)中至少一种:f)所述磺酸内酯化合物包括1,3-丙磺酸内酯、1,3-丁磺酸内酯或2-氟-1,3-丙磺酸内酯中至少一种,基于所述电解液的质量,所述磺酸内酯化合物的质量含量为0.01%至5%;g)所述多腈化合物包括丁二腈、己二腈、反丁烯二腈、戊二腈或1,3,6-己烷三腈中至少一种,基于所述电解液的质量,所述多腈化合物的质量含量为0.01%至5%。本申请的电解液包括上述磺酸内酯化合物,控制磺酸内酯化合物的含量在上述范围内,能够进一步提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。本申请的电解液包括上述多腈化合物,控制多腈化合物的含量在上述范围内,能够进一步提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
在本申请的一种实施方案中,负极包括负极活性材料,所述负极活性材料的粒度分布满足:1.8≤(Dv90-Dv10)/Dv50≤2.8。控制负极活性材料的粒度分布在上述范围内,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
本申请第二方面提供了一种电子装置,包括上述任一实施方案中的电化学装置。
本申请提供一种电化学装置和电子装置,在30%SOC至40%SOC条件下,电化学装置的正极活性材料的XRD衍射图谱中存在第一衍射峰锰酸锂LMO特征峰(400)和第二衍射峰镍钴锰酸锂NCM特征峰(104),其中第一衍射峰的2θ角小于第二衍射峰的2θ角,第一衍射峰的峰强A与第二衍射峰的峰强B满足0.01≤B/A≤0.55,使得具有本申请正极的电化学装置具有优良的高温循环性能和存储性能,改善了其低温循环性能。
附图说明
为了更清楚地说明本申请和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为基于本申请实施例1锂离子电池组装的扣式电池,经满放后(0%SOC)正极活性材料的XRD衍射图谱;
图2为基于本申请实施例1锂离子电池组装的扣式电池,经满充后(100%SOC)正极活性材料的XRD衍射图谱。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他技术方案,都属于本申请保护的范围。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
本申请的第一方面提供了一种电化学装置,包括正极、负极和电解液,正极包括正极活性材料,其中,正极活性材料包括含锰复合材料,在30%SOC(State of Charge,荷电状态)至40%SOC条件下,正极活性材料的XRD(X-ray diffraction,X射线衍射)衍射图谱中,在40°至46°范围内包括第一衍射峰锰酸锂LMO特征峰(400)和第二衍射峰镍钴锰酸锂NCM特征峰(104),第一衍射峰的2θ角小于第二衍射峰的2θ角,第一衍射峰的峰强为A,第二衍射峰的峰强为B,满足:0.01≤B/A≤0.55。例如,B/A可以为0.01、0.02、0.05、0.07、0.1、0.3、0.5、0.55或为其间的任意范围。
本申请的发明人发现,第一衍射峰的峰强为A与第二衍射峰的峰强为B之间满足0.01≤B/A≤0.55,能够使本申请的电化学装置具有优良的高温存储性能,使电化学装置具有较高的成本竞争力。不限于任何理论,本申请发明人认为,当B/A过小时(例如小于0.01),表明第一衍射峰的峰强过大,说明LMO含量过高,高温性能差;当B/A过大时(例如大于0.55),表明第一衍射峰的峰强过小,说明LMO(110)面数量过少,LMO含量过少,电化学装置成本高。通过控制B/A在上述范围内,能够增大正极活性材料的LMO中Li+的脱嵌面(110)数量,Li+脱嵌越容易则电化学装置的低温性能越好,复合一定量的镍钴锰酸锂(NCM),从而提高电化学装置的高温循环性能和存储性能,改善电化学装置的低温性能,有利于控制电化学装置的生产成本,使电化学装置具有高性价比。
在本申请的一种实施方案中,在60%SOC条件下,正极活性材料的XRD衍射图谱中,第一衍射峰的峰面积为I1,第二衍射峰的峰面积为I2,满足:0.1≤I2/I1≤0.5。例如,I2/I1可以为0.1、0.2、0.3、0.4、0.5或为其间的任意范围。不限于任何理论,本申请发明人认为,电化学装置在60%SOC条件下,当I2/I1过小时(例如小于0.1),表明第一衍射峰的峰面积过小,NCM含量过低,不利于电化学装置高温循环及存储性能的提升;当I2/I1过大时(例如大于0.5),LMO中Li+的脱嵌面(110)数量过少,低温性能差;通过控制I2/I1在上述范围内,能够提高电化学装置的高温循环性能和存储性能。
在本申请的一种实施方案中,电化学装置由0%SOC上升至100%SOC过程中,第一衍射峰的2θ角向高角度偏移0.5°至1°。通过控制第一衍射峰的2θ角向高角度的偏移量在上述范围内,能够改善正极活性材料中Mn-O键稳定性,提高电化学装置的高温循环性能。
在本申请的一种实施方案中,电化学装置满足如下条件a)至c)中至少一种:
a)基于正极活性材料的质量,NCM的质量含量为0.5%至35%;
例如,NCM的质量含量为0.5%、1%、5%、10%、20%、25%、35%或为其间的任意范围。不限于任何理论,当NCM的含量过低时(例如低于0.5%),不利于电化学装置高温循环及存储性能的提升;当NCM的含量过高时(例如高于35%),影响电化学装置的生产成本。通过控制NCM的含量在上述范围内,有利于提高电化学装置的高温性能,降低其生产成本。
本申请对NCM的种类没有特别限制,只要能够实现本申请目的即可,例如可以包括NCM811、NCM622、NCM523或NCM111中的至少一种。
b)基于正极活性材料的质量,LMO的质量含量为50%至92%;
例如,LMO的质量含量为50%、60%、70%、80%、90%、92%或为其间的任意范围。不限于任何理论,当LMO的含量过低时(例如低于50%),其他种类的正极活性材料(例如NCM)含量升高,影响电化学装置的生产成本;当LMO的含量过高时(例如高于92%),其他种类的正极活性材料(例如NCM)含量降低,不利于电化学装置高温性能的提升。通过控制LMO的含量在上述范围内,有利于降低电化学装置的生产成本。本申请中,正极活性材料中除含有NCM和LMO外,还可以含有磷酸铁锂LFP。
c)正极活性材料还包括掺杂元素,掺杂元素包括Al、Mg或Nb中的至少一种,基于正极活性材料的质量,掺杂元素的质量含量为0.1%至2.5%。
例如,掺杂元素的含量为0.1%、0.2%、0.5%、1%、1.2%、1.5、2%、2.5%或为其间的任意范围。不限于任何理论,当掺杂元素的含量过低时(例如低于0.1%),电化学装置的高温性能变差;当掺杂元素的含量过高时(例如高于2.5%),对电化学装置的高温性能提高程度有限,电化学装置的比容量下降。通过控制掺杂元素的含量在上述范围内,能够提高电化学装置的高温性能和比容量,例如高温循环性能和高温存储性能。
在本申请的一种实施方案中,正极活性材料的粒度分布满足:0.9≤(Dv90-Dv10)/Dv50≤2.0。例如,(Dv90-Dv10)/Dv50为0.9、1、1.5、1.8、2.0或为其间的任意范围。不限于任何理论,当(Dv90-Dv10)/Dv50过大时(例如大于2.0),不利于电化学装置低温动力学性能的提升;当(Dv90-Dv10)/Dv50过小时(例如小于0.9),加工难度大、电化学装置制造成本升高。通过控制(Dv90-Dv10)/Dv50在上述范围内,能够改善电化学装置的低温动力学性能,降低电化学装置制造成本。
本申请中,Dv90是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积90%的粒径,Dv50是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积50%的粒径,Dv10是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积10%的粒径。
在本申请的一种实施方案中,电化学装置满足如下条件d)至e)中至少一种:
d)电解液包括溶剂,溶剂包括碳酸二甲酯DMC、碳酸亚乙酯EC和碳酸亚丙酯PC,其中,DMC与EC之间的质量比为3.1至7。例如,碳酸二甲酯与碳酸亚乙酯之间的质量比为3.1、4、4.5、5、6、7或为其间的任意范围。通过控制碳酸二甲酯与碳酸亚乙酯之间的质量比在上述范围内,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
e)电解液还包括磺酸内酯化合物、多腈化合物、含硼锂盐、硫酸亚乙酯、联苯或碳酸亚乙烯酯中的至少一种。本申请的电解液中包括上述化合物,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
在本申请的一种实施方案中,电化学装置满足如下条件f)至g)中至少一种:
f)磺酸内酯化合物包括1,3-丙磺酸内酯、1,3-丁磺酸内酯或2-氟-1,3-丙磺酸内酯中至少一种,基于电解液的质量,磺酸内酯化合物的质量含量为0.01%至5%。例如,磺酸内酯化合物的质量含量为0.01%、0.1%、1%、5%或为其间的任意范围。本申请的电解液包括上述磺酸内酯化合物,控制磺酸内酯化合物的含量在上述范围内,能够进一步提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
g)多腈化合物包括丁二腈、己二腈、反丁烯二腈、戊二腈或1,3,6-己烷三腈中至少一种,基于电解液的质量,多腈化合物的质量含量为0.01%至5%,例如,多腈化合物的质量含量为0.01%、0.1%、1%、5%或为其间的任意范围。本申请的电解液包括上述多腈化合物,控制多腈化合物的含量在上述范围内,能够进一步提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
在本申请的一种实施方案中,负极包括负极活性材料,负极活性材料的粒度分布满足:1.8≤(Dv90-Dv10)/Dv50≤2.8。例如,(Dv90-Dv10)/Dv50为1.8、2.0、2.2、2.5、2.8或为其间的任意范围。控制负极活性材料的粒度分布在上述范围内,能够提高电化学装置的高温存储性能,改善电化学装置的低温动力学性能。
本申请对具有掺杂元素的含锰复合材料的制备方法没有特别限制,可以采用本领域技术人员的制备方法,例如,可以在合成含锰复合材料过程中,在LiMn2O4中加入含铝化合物(例如Al2O3、Al(OH)3、AlF3)、含镁化合物(例如MgO)或含铌化合物(例如Nb2O5、NbF5)得到上述锂含锰复合材料。另外,本申请可以通过调整含锰复合材料中掺杂元素的含量,例如控制含掺杂元素化合物的加入量,即可实现正极活性材料中掺杂元素的变化。本申请对其调整过程不做具体限定,只要能实现本申请目的即可。
本申请中的正极集流体没有特别限制,可以为本领域的任何正极集流体,例如铝箔、铝合金箔或复合集流体等。
本申请中的负极集流体没有特别限制,可以使用金属箔材或多孔金属板等材料,例如铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。负极活性材料层包括负极活性材料、导电剂、粘结剂和增稠剂。负极活性材料没有特别限制,可以使用本领域的任何负极活性材料。例如,可以包括人造石墨、天然石墨、中间相碳微球(MCMB)、软碳、硬碳、硅、硅碳、SiO、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO2、尖晶石结构的钛酸锂Li4Ti5O12、Li-Al合金或金属锂中的至少一种;导电剂可以是石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯或碳纳米纤维中的至少一种;粘结剂可以是丁苯橡胶(SBR)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、水性丙烯酸树脂(water-basedacrylicresin)或羧甲基纤维素(CMC)中的至少一种;增稠剂可以是羧甲基纤维素(CMC)。
本申请的隔离膜的基材包括但不限于,选自聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)或芳纶中的至少一种。举例来说,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯和超高分子量聚乙烯中的至少一种组分。尤其是聚乙烯和聚丙烯,它们对防止短路具有优良的作用,并可以通过关断效应改善电化学装置的稳定性。基材可以是单层结构或多种混合的多层复合结构,厚度为3μm至20μm。
本申请的第二方面提供了一种电子装置,包含本申请上述实施方案中所述的电化学装置。
本申请的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
电化学装置的制备过程为本领域技术人员所熟知的,本申请没有特别的限制。例如锂离子电池可以通过以下过程制造:将正极和负极经由隔离膜重叠,并根据需要将其卷绕、折叠等操作后放入壳体内,将电解液注入壳体并封口。此外,也可以根据需要将防过电流元件、导板等置于壳体中,从而防止锂离子电池内部的压力上升、过充放电。
如图1所示,将实施例1的锂离子电池拆解取出正极极片并组装为扣式电池,满放后(0%SOC)其正极活性材料的XRD衍射图谱中,第一衍射峰的2θ角为44.09°;如图2所示,将实施例1的锂离子电池拆解取出正极极片并组装为扣式电池,满充后(100%SOC)其正极活性材料的XRD衍射图谱中,第一衍射峰的2θ角为44.82°,可见锂离子电池由0%SOC上升至100%SOC过程中,2θ角向高角度偏移了0.73°。
以下,举出实施例及对比例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为质量基准。
测试方法和设备:
第二衍射峰的峰强为B与第一衍射峰的峰强为A比值的测试:
将锂离子电池充电至4.2V,再放电至2.8V,如此循环共两次,然后将锂离子电池再充电至不同的SOC(例如30%SOC至40%SOC之间的任一值),完成后,拆解锂离子电池,取出正极极片,将正极极片浸泡在DMC(碳酸二甲酯)中30分钟,去除正极极片表面的电解液及副产物,然后在通风橱中干燥4小时。用刮刀将正极活性材料层刮下,得到正极活性材料层粉末,然后将正极活性材料层粉末放置在XRD测试仪器(型号布鲁克,D8)样品台中,使用2°/min的扫描速率,扫描角度范围10°至90°,得到XRD衍射图。在XRD衍射图中取正极活性材料的镍钴锰酸锂特征峰(104)、锰酸锂特征峰(400)对应的峰强,得到B和A的比值。
第一衍射峰的2θ角偏移量的测试:
将锂离子电池充电至4.2V,再放电至2.8V,如此循环共两次,然后取出正极极片,使用NMP将正极极片一面的活性材料擦除,剩余单面极片,冲成直径为14mm的小圆片,组装成扣式电池,再将锂离子电池充电至4.3V,再放电至3V,如此循环共两次,再满充,分别拆解满充及满放的扣式电池得到不同状态的极片,用刮刀将正极活性材料层刮下,然后将正极活性材料层粉末放置在XRD测试仪器(型号布鲁克,D8)样品台中,使用2°/min的扫描速率,扫描角度范围10°至90°,得到XRD衍射图。比较满放和满充状态下正极活性材料第一衍射峰(400)的2θ角偏移量。
正极活性材料元素含量测试:
将用DMC清洗后的正极极片的活性材料用刮刀刮下,用混合溶剂溶解(例如,0.4g正极活性材料使用10mL(硝酸与盐酸按照体积比1:1混合)王水与2mL HF的混合溶剂),定容至100mL,然后使用ICP(Inductively coupled plasma,电感耦合等离子)分析仪测试溶液中Ni、Co、Mn、Al、Mg、Nb等元素的含量。
将烘干后的正极极片进行切片,然后使用扫描电子显微镜(SEM)观察切片截面,寻找截面中的颗粒,然后使用能谱仪(EDS)以及ICP测得的各元素的含量确定单颗粒的成分,例如确定颗粒的化学式为LiNiaCobMn(1-a-b)O2,再基于化学式、EDS数据及ICP数据反推该化学式所表示的物质在正极活性材料中的含量。
正极活性材料层中颗粒粒径测试:
将拆解的正极极片或负极极片在真空中400℃烧成粉状后,使用粒度分析仪测试粒度,得到Dv10、Dv50、Dv90的值。
-10℃放电容量/25℃放电容量测试:
在25℃的环境中,以0.5C的充电电流下进行恒流和恒压充电,直到上限电压为4.2V,然后调整环境为-10℃,静置2小时后,在0.2C的放电电流下进行恒流放电,直到最终电压为2.8V,计算0.2C首次的放电容量作为电池的容量,记为第一容量;
在25℃的环境中,以0.5C的充电电流下进行恒流和恒压充电,直到上限电压为4.2V,然后在0.2C的放电电流下进行恒流放电,直到最终电压为2.8V,计算0.2C首次的放电容量作为电池的容量,记为第二容量;
则-10℃放电容量/25℃放电容量=(第一容量/第二容量)×100%。
锂离子电池循环性能测试:
通过以下步骤对锂离子电池重复进行充电和放电,并计算锂离子电池的放电容量保持率:
10℃循环测试:
在10℃的环境中,进行第一次充电和放电,在0.5C的充电电流下进行充电,直到电压为4.2V,然后在1C的放电电流下进行恒流放电,直到最终电压为2.8V,记录放电容量,记为首次循环的放电容量;而后重复上述步骤进行500次的充电和放电循环,记录第500次循环的放电容量。
10℃循环容量保持率=(第500次循环的放电容量/首次循环的放电容量)×100%。
50℃循环测试:
在50℃的环境中,进行第一次充电和放电,在0.5C的充电电流下进行充电,直到电压为4.2V,然后在1C的放电电流下进行恒流放电,直到最终电压为2.8V,记录放电容量,记为首次循环的放电容量;而后重复上述步骤进行500次的充电和放电循环,记录第500次循环的放电容量。
50℃循环容量保持率=(第500次循环的放电容量/首次循环的放电容量)×100%。
锂离子电池高温存储性能测试:
在25℃的环境中,在0.5C的充电电流下进行充电,直到上限电压为4.2V,然后在0.5C的放电电流下进行恒流放电,直到最终电压为2.8V,记录放电容量,记为存储前容量;
以0.5C倍率恒定电流充电至电压3.85V,在4.2V恒定电压下充电至电流低于0.05C,将电池置于60℃烘箱存储7天后,在0.5C的放电电流下进行恒流放电,直到最终电压为2.8V;然后在0.5C的充电电流下进行充电,直到电压为4.2V,然后在0.5C的放电电流下进行恒流放电,直到电压为2.8V,循环三次,记录第三次放电容量,记为存储后容量。
锂离子电池的容量保持率=存储后容量/存储前容量×100%。
0.1C放电比容量测试:
将各实施例和各对比例中的锂离子电池,运用蓝电(LAND)系列电池测试系统对锂离子电池进行充放电测试,测试其充放电性能,在常温下以0.1C倍率恒定电流充电至电压达到4.2V,进一步在4.2V恒定电压下充电至电流低于0.05C,使其处于4.2V满充状态。随后在0.1C倍率下恒流放电,直到电压为2.8V,以上述操作对电化学装置充放电两次,以得到的第二次容量即为0.1C放电容量。
0.1C放电比容量=0.1C放电容量/极片活性材料质量。
实施例1
<锰酸锂的制备>
称取碳酸锂203.3kg、四氧化三锰780.6kg、三氧化二铝29.68kg、五氧化二铌5.65kg,在高速混合机中300r/min混合20min,将混合物置于空气窑炉中,以5℃/min升温至790℃,保持24h,自然冷却后取出,过300目筛后得到锰酸锂(LMO)。
<混合正极活性材料的制备>
称取合成的LMO 180kg,市面购买的多晶LiNi0.55Co0.15Mn0.3O2(NCM)20kg,加入无水乙醇15kg,再添加2kg葡萄糖,混合均匀并干燥后,将混合物置于空气窑炉中,以5℃/min升温至400℃,保持4h,自然冷却后取出,过300目筛后得到混合正极活性材料,即含锰复合材料。
<正极极片的制备>
将混合正极活性材料含锰复合材料、粘结剂聚偏氟乙烯(PVDF)、导电炭黑、碳纳米管(CNT)按质量比95∶2∶1.8∶1.2混合,然后加入NMP(N-甲基吡咯烷酮)作为溶剂,在真空搅拌下调配成均匀的、固含量为75%的正极浆料。将正极浆料均匀涂布在厚度为13μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层总厚度为95μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂布有正极活性材料层的正极极片。将正极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
<负极极片的制备>
将负极活性材料人造石墨、丁苯橡胶(SBR)及羧甲基纤维素(CMC)按质量比98∶1∶1混合,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为65μm的单面涂布负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂布步骤,得到双面涂布有负极活性材料层的负极极片。将负极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
<隔离膜的制备>
以厚度为15μm的聚乙烯(PE)多孔聚合薄膜作为隔离膜。
<电解液的制备>
在含水量小于10ppm的环境下,将非水有机溶剂碳酸二甲酯(DMC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)按照质量比6.2∶1∶1混合,然后向非水有机溶剂中加入六氟磷酸锂(LiPF6)溶解并混合均匀。其中,LiPF6在电解液中的质量分数为12.5%。
<锂离子电池的制备>
将制备例1的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件装入铝塑膜包装袋中,并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到锂离子电池。
<锂离子电池的充电>
对制得的锂离子电池充电,使锂离子电池的SOC为30%。其第一衍射峰、第二衍射峰、B/A的值及性能参数如表1所示。
实施例2至实施例4
除了在<混合正极活性材料的制备>中,如表1所示调整NCM在正极活性材料中的含量,从而调整B/A的值以外,其余与实施例1相同。
实施例5至实施例7
除了在<锰酸锂的制备>中,如表2所示调整掺杂元素的含量以外,其余与实施例2相同。
实施例8至实施例9
除了在<锰酸锂的制备>中,LMO中还添加镁化合物MgO,如表2所示调整掺杂元素的种类及含量以外,其余与实施例2相同。
实施例10至实施例11
除了在<锰酸锂的制备>中,如表2所示调整掺杂元素的种类和含量以外,其余与实施例2相同。
实施例12至实施例17
除了在<正极极片的制备>中,如表3所示调整正极活性材料的Dv50、(Dv90-Dv10)/Dv50以外,其余与实施例2相同。
实施例18至实施例23
除了在<电解液的制备>中,在电解液中的PC及LiPF6保持与实施例2相同含量的基础上,如表4所示调整非水有机溶剂中DMC与EC的质量比以外,其余与实施例2相同。
实施例24至实施例32
将实施例2所制备的电解液作为基础电解液,向其中进一步添加如表5所示的磺酸内酯化合物、多腈化合物、联苯,使上述添加剂的含量如表5所示以外,其余与实施例2相同。
实施例33至实施例38
除了在<负极极片的制备>中,负极活性材料的Dv50、(Dv90-Dv10)/Dv50如表6所示以外,其余与实施例2相同。
对比例1至对比例2
除了在<混合正极活性材料的制备>中,如表1所示调整NCM在正极活性材料中的含量,从而调整B/A的值以外,其余与实施例1相同。
对比例3
<锰酸锂的制备>
称取碳酸锂203.3kg、四氧化三锰780.6kg,在高速混合机中300r/min混合20min,将混合物置于空气窑炉中,以5℃/min升温至790℃,保持24h,自然冷却后取出,过300目筛后得到锰酸锂(LMO)。
<混合正极活性材料的制备>
称取上述合成的LMO 140kg、市面购买的多晶LiNi0.55Co0.15Mn0.3O2(NCM)60kg,加入无水乙醇15kg,再添加2kg葡萄糖,混合均匀并干燥后,将混合物置于空气窑炉中,以5℃/min升温至400℃,保持4h,自然冷却后取出,过300目筛后得到混合正极活性材料。
表1锂离子电池在30%SOC下的测试结果:
Figure BDA0003775724120000131
表2
Figure BDA0003775724120000132
表3
Figure BDA0003775724120000133
表4
DMC与EC质量比 10℃循环容量保持率 60℃存储7天容量恢复率
实施例2 6.2 89.3% 93.5%
实施例18 3.1 87.7% 94.2%
实施例19 4 88.7% 94.1%
实施例20 6.5 90.2% 93.0%
实施例21 7 89.6% 91.8%
实施例22 3 85.2% 94.1%
实施例23 7.2 86.9% 90.2%
表5
Figure BDA0003775724120000141
表5中,“/”表示不含有或未测得。
表6
Figure BDA0003775724120000142
从实施例1至4和对比例1至2可以看出,正极活性材料中,第二衍射峰峰强B与第一衍射峰峰强A在本申请范围内,锂离子电池的60℃存储7天容量恢复率明显提升,表明本申请的锂离子电池具有良好的高温存储性能。
NCM材料的成本约为LMO材料的4.2倍。从实施例1至4和对比例1可以看出,相较于不加入NCM(例如对比例1)的锂离子电池,本申请能够显著提高锂离子电池高温存储性能,但正极制造成本并没有如同NCM材料的成本大幅提高;从实施例1至4和对比例2可以看出,进一步增加NCM在正极活性材料中的含量,锂离子电池的高温循环性能提升有限,但正极制造成本大幅增加。可见通过控制正极活性材料中NCM含量在本申请范围内,能够得到良好高温存储性能的锂离子电池,并有利于锂离子电池的成本控制。
从实施例3和对比例3可以看出,通过优化正极活性材料的制备工艺,使B/A在本申请范围内,能够得到具有良好高温存储性能的锂离子电池。
正极活性材料中掺杂元素的种类、掺杂元素的含量、I2/I1、第一衍射峰2θ角偏移量等参数可能也会影响锂离子电池的性能。从实施例5至11可以看出,通过控制上述参数,能够得到具有良好高温循环性能、高温存储性能和比容量的锂离子电池。
从实施例12至实施例17可以看出,通过控制正极活性材料的(Dv90-Dv10)/Dv50,其-10℃放电容量/25℃放电容量得到提高,进一步改善了锂离子电池的低温动力学性能。
从实施例18至实施例23可以看出,通过控制电解液中DMC与EC质量比,能够进一步提高锂离子电池的高温存储性能、改善锂离子电池的低温动力学性能。
从实施例2和实施例24至32可以看出,当电解液中含有磺酸内酯化合物、多腈化合物、联苯等添加剂时,能够进一步提高锂离子电池的高温存储性能,改善锂离子电池的低温动力学性能。
从实施例33至实施例38可以看出,通过控制负极活性材料的(Dv90-Dv10)/Dv50,能够进一步提高锂离子电池的高温存储性能及低温动力学性能。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (9)

1.一种电化学装置,包括正极、负极和电解液,所述正极包括正极活性材料,
其中,所述正极活性材料包括含锰复合材料,在30%SOC至40%SOC条件下,所述正极活性材料的XRD衍射图谱中,在40°至46°范围内包括第一衍射峰锰酸锂特征峰(400)和第二衍射峰镍钴锰酸锂特征峰(104),第一衍射峰的2θ角小于第二衍射峰的2θ角,
第一衍射峰的峰强为A,第二衍射峰的峰强为B,满足:0.01≤B/A≤0.55。
2.根据权利要求1所述的电化学装置,其中,在60%SOC条件下,所述正极活性材料的XRD衍射图谱中,第一衍射峰的峰面积为I1,第二衍射峰的峰面积为I2,满足:0.1≤I2/I1≤0.5。
3.根据权利要求1所述的电化学装置,其中,电化学装置由0%SOC上升至100%SOC过程中,第一衍射峰的2θ角向高角度偏移0.5°至1°。
4.根据权利要求1所述的电化学装置,其中,所述电化学装置满足如下条件a)至c)中至少一种:
a)基于所述正极活性材料的质量,镍钴锰酸锂的质量含量为0.5%至35%;
b)基于所述正极活性材料的质量,锰酸锂的质量含量为50%至92%;
c)所述正极活性材料还包括掺杂元素,所述掺杂元素包括Al、Mg或Nb中的至少一种,基于所述正极活性材料的质量,所述掺杂元素的质量含量为0.1%至2.5%。
5.根据权利要求1所述的电化学装置,其中,所述正极活性材料的粒度分布满足:0.9≤(Dv90-Dv10)/Dv50≤2.0。
6.根据权利要求1所述的电化学装置,其中,满足如下条件d)至e)中至少一种:
d)所述电解液包括溶剂,所述溶剂包括碳酸二甲酯、碳酸亚乙酯和碳酸亚丙酯,所述碳酸二甲酯与碳酸亚乙酯之间的质量比为3.1至7;
e)所述电解液还包括磺酸内酯化合物、多腈化合物、含硼锂盐、硫酸亚乙酯、联苯或碳酸亚乙烯酯中的至少一种。
7.根据权利要求6所述的电化学装置,其中,满足如下条件f)至g)中至少一种:
f)所述磺酸内酯化合物包括1,3-丙磺酸内酯、1,3-丁磺酸内酯或2-氟-1,3-丙磺酸内酯中至少一种,基于所述电解液的质量,所述磺酸内酯化合物的质量含量为0.01%至5%;
g)所述多腈化合物包括丁二腈、己二腈、反丁烯二腈、戊二腈或1,3,6-己烷三腈中至少一种,基于所述电解液的质量,所述多腈化合物的质量含量为0.01%至5%。
8.根据权利要求1所述的电化学装置,其中,所述负极包括负极活性材料,所述负极活性材料的粒度分布满足:1.8≤(Dv90-Dv10)/Dv50≤2.8。
9.一种电子装置,包括权利要求1至8任一项所述的电化学装置。
CN202180012182.2A 2021-09-28 2021-09-28 一种电化学装置和电子装置 Pending CN115053379A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121261 WO2023050044A1 (zh) 2021-09-28 2021-09-28 一种电化学装置和电子装置

Publications (1)

Publication Number Publication Date
CN115053379A true CN115053379A (zh) 2022-09-13

Family

ID=83156173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180012182.2A Pending CN115053379A (zh) 2021-09-28 2021-09-28 一种电化学装置和电子装置

Country Status (3)

Country Link
EP (1) EP4345949A1 (zh)
CN (1) CN115053379A (zh)
WO (1) WO2023050044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199343A (zh) * 2023-11-08 2023-12-08 宁德时代新能源科技股份有限公司 电池单体和含有其的用电装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148404A (zh) * 2011-03-07 2011-08-10 重庆永通信息工程实业有限公司 一种锂离子电池的制作方法
JP6435093B2 (ja) * 2013-11-22 2018-12-05 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 正極活物質、およびリチウムイオン二次電池
CN109449446B (zh) * 2018-10-17 2020-09-11 宁德时代新能源科技股份有限公司 二次电池
CN110556531A (zh) * 2019-11-04 2019-12-10 天目湖先进储能技术研究院有限公司 正极材料及其制备方法及包含该正极材料的锂离子电池
CN111233052A (zh) * 2020-01-17 2020-06-05 清华大学深圳国际研究生院 镍钴锰酸锂三元正极材料、其制备方法、正电极及电池
CN111816875A (zh) * 2020-07-01 2020-10-23 淮安新能源材料技术研究院 一种铝钛双掺杂型锰酸锂与523型三元材料的复合正极材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199343A (zh) * 2023-11-08 2023-12-08 宁德时代新能源科技股份有限公司 电池单体和含有其的用电装置

Also Published As

Publication number Publication date
EP4345949A1 (en) 2024-04-03
WO2023050044A1 (zh) 2023-04-06

Similar Documents

Publication Publication Date Title
CN111029543B (zh) 负极材料及包含其的电化学装置和电子装置
CN111082129B (zh) 电化学装置和电子装置
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
US20230282836A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
WO2022198654A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN111146428B (zh) 负极和包含其的电化学装置及电子装置
CN112490518B (zh) 正极补锂添加剂及其制备方法、正极和锂离子电池
CN116093316B (zh) 负极活性材料及其制备方法、负极极片和二次电池
CN111384395A (zh) 电化学装置和电子装置
CN113812021A (zh) 一种电化学装置及电子装置
WO2022198660A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN108365220B (zh) 锂源材料及其制备方法和在锂离子电池中的应用
CN111146434A (zh) 负极材料及包含其的电化学装置和电子装置
WO2021203408A1 (zh) 负极活性材料及使用其的电化学装置和电子装置
JP5322259B2 (ja) 二次電池用正極およびこれを使用したリチウム二次電池
WO2023050044A1 (zh) 一种电化学装置和电子装置
CN116344766A (zh) 一种二次电池和电子装置
CN112421031B (zh) 电化学装置和电子装置
EP4089766B1 (en) Positive electrode plate, electrochemical device comprising same, and electronic device
WO2022198662A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
CN115004413A (zh) 一种电化学装置和电子装置
JP7376708B2 (ja) リチウムモリブデン化合物がコーティングされたリチウム二次電池用の正極活物質及びその製造方法
EP4089762A1 (en) Positive electrode plate, and electrochemical device and electronic device containing positive electrode plate
WO2024077522A1 (zh) 负极活性材料的制备方法、负极活性材料、二次电池和用电装置
JP7349498B2 (ja) 負極材料、並びに、それを含む電気化学装置及び電子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination