CN115031585B - 一种双阵列声学立靶斜入射弹着点定位方法 - Google Patents

一种双阵列声学立靶斜入射弹着点定位方法 Download PDF

Info

Publication number
CN115031585B
CN115031585B CN202210596503.4A CN202210596503A CN115031585B CN 115031585 B CN115031585 B CN 115031585B CN 202210596503 A CN202210596503 A CN 202210596503A CN 115031585 B CN115031585 B CN 115031585B
Authority
CN
China
Prior art keywords
target
ballistic
substations
array
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210596503.4A
Other languages
English (en)
Other versions
CN115031585A (zh
Inventor
许志勇
吴桐
赵兆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210596503.4A priority Critical patent/CN115031585B/zh
Publication of CN115031585A publication Critical patent/CN115031585A/zh
Application granted granted Critical
Publication of CN115031585B publication Critical patent/CN115031585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/06Acoustic hit-indicating systems, i.e. detecting of shock waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种双阵列声学立靶斜入射弹着点定位方法,该方法采用两个三维立体麦克风阵列分站构成双阵列声学立靶系统,两个分站同步采集入射超声速弹丸的弹道激波;该方法借助弹道模型和解析几何理论,根据弹道激波到达各麦克风的波达时刻以及相对于各分站的波达方向信息,解算分别对应两个分站的弹道激波脱离点的三维点坐标,再通过两个弹道脱离点连线构成近靶弹道线段,最后选取线段中点在靶面的投影点作为声学立靶的弹着点坐标估计。本发明能够在无需实物靶面的前提下,针对大靶面斜入射超声速弹丸的弹着点进行被动式的高精度自动定位,同时具备机动性能好、系统结构简单、架收便利、不易损坏、可全天候工作、成本低廉等优点。

Description

一种双阵列声学立靶斜入射弹着点定位方法
技术领域
本发明涉及弹着点自动检测声学立靶系统技术,具体涉及一种双阵列声学立靶斜入射弹着点定位方法。
背景技术
在进行直瞄弹道武器射击过程中,能够及时准确的掌握弹丸在靶面上的弹着点位置,不仅对评价武器性能优劣的靶场试验具有重要意义,而且也是检验武器使用和训练效果的重要依据。目前,直瞄弹道武器射击在靶上的弹着点位置主要通过人工目测的方式来判断,这种方式存在时效性差、精确度不够等诸多缺点,不能满足现代化测试和训练的迫切需求。随着电子信息技术发展,弹着点定位方式越来越趋于自动化、智能化,出现了一系列无需实物靶面的弹着点自动检测电子靶系统。声学立靶就是一种非常重要且很常用的电子靶系统。声学立靶系统是基于被动声学定位原理,主要利用弹丸在超声速飞行时产生的弹道激波信号,通过多个麦克风组成阵列对弹道激波信号进行检测和定时、定向等处理,然后根据相应的数学模型计算得到弹着点在虚拟靶面上的位置坐标。声学立靶主要有以下优点:第一,构造简单,不论靶面大小都很容易组建,可以针对不同口径的直瞄弹道武器进行弹着点自动检测与定位;第二,虚拟靶面及其附近的电子设备体积小,不易被弹丸击中;第三,可全天候工作,不受能见度影响;第四,全套系统体积小、重量轻,运输方便,架设容易,机动性强。
公开号为CN106247862A的专利公开了一种基于弹道激波的自动声学报靶装置、测量方法及数据处理算法,该方法与文献《弹丸任意角度入射弹着点声学检测模型》均针对小型靶面,采用声学传感器检测超声速弹丸飞行过程中激发的“N”型弹道激波信号计算弹丸飞行弹道和击中靶面的位置。公开号为CN106595394A的专利公开了一种利用音爆(即弹道激波)测量超声速弹丸弹着点的方法,该方法通过采集超声速弹丸飞跃压力传感器时的音爆特征,根据CFD数值模拟方法估计超声速弹丸流场,进而确定弹丸的速度矢量和空间位置。文献《基于激波传播路径的弹头斜入射双三角阵定位模型》提出了一种基于两个三角形阵列的激波信号和到达时间差的弹着点定位方法,仅对于小靶面弹着点的定位较为精确。文献《基于开放式靶标的数学建模及传感器阵列分析》基于相同原理,改进布阵形式,提出了一种基于开放靶标的弹着点定位方法。该方法通用性较强,但是对地形要求较高、布阵复杂。
在大靶面声学立靶系统的设计中,近靶超声速弹丸的弹道激波到达部分麦克风的传播距离更长,易受到各种因素的干扰,使系统产生较大的弹着点定位误差。例如,声波传播速度的变化将无法忽略,这会导致弹道激波沿靶面平面向不同麦克风传播的视在速度出现明显差异。如何优化相关数学模型及解算方法来增强弹着点定位性能的抗干扰能力与解算稳定性,是大靶面声学立靶系统的设计难点。此外,为贴近靶场试验和日常训练的应用需求,也要求声学立靶系统应能在任意射击位置和运动射击条件下仍能实现精确的弹着点定位任务,如何保证任意角度斜入射弹丸的弹着点定位精度,是大靶面声学立靶系统的另一个设计难题。
发明内容
本发明的目的在于提供一种双阵列声学立靶斜入射弹着点定位方法。
实现本发明目的的技术解决方案为:第一方面。本发明提供一种双阵列声学立靶斜入射弹着点定位方法,步骤如下:
步骤1、两个三维立体麦克风阵列分站M1和M2构成双阵列声学立靶系统,每个分站的阵元数L不小于4;两个分站同步采集入射超声速弹丸的弹道激波信号,获得弹道激波到达各麦克风的波达时刻以及相对于各分站的波达方向;
步骤2、对步骤1得到的弹道激波波达时刻信息和波达方向信息,解算弹道激波信号分别传往两个分站的弹道脱离点P1和P2的三维点坐标;
步骤3、对步骤2得到的弹道脱离点P1和P2的坐标,两点连线构成近靶弹道线段,取近靶弹道线段/>中点在靶面的投影点作为声学立靶的弹着点坐标估计。
第二方面,本发明提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现第一方面所述的方法的步骤。
第三方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面所述的方法的步骤。
第四方面,本发明提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面所述的方法的步骤。
与现有技术相比,本发明的有益效果为:1)两个L元三维立体麦克风阵列分站同步采集超声速弹丸弹道激波波达时刻信息和波达方向信息,可在任意射击位置和运动射击条件下实现精确的弹着点定位;2)基于弹丸弹道激波脱离点模型,可构建近靶弹道线段,得到线段方程及其单位方向矢量;3)采用对较大测量误差范围低敏感的小孔径阵列分站组网探测技术及其信号处理算法,可有效消除声速变化、风力方向等环境影响,具有更强的环境适应性;4)本发明的方法实现过程便捷,易于实施。
附图说明
图1是一种双阵列声学立靶斜入射弹着点定位方法的流程图。
图2是分站系统采用的一种4元三维立体麦克风阵列结构示意图。
图3是超声速弹丸弹道几何关系示意图。
图4是靶面弹着点分布图。
图5(a)、图5(b)是弹丸弹着点靶面横向和纵向坐标平均误差等高线图。
图6(a)、图6(b)是弹丸弹着点靶面横向和纵向坐标均方根误差等高线图。
具体实施方式
本发明提出一种基于双阵列声学立靶斜入射弹着点定位方法,以严格同步的波达时刻信息和高度精确的波达方向信息作为超声速弹丸的近靶弹道激波参数,通过建立近靶弹道线段的数学模型,解算出准确的弹着点坐标,从而在很大程度上抵消温湿度等环境因素的干扰。
结合图1,本发明的一种双阵列声学立靶斜入射弹着点定位方法,步骤如下:
步骤1、如图2所示,两个三维立体麦克风阵列分站均以4元正三棱锥阵型为例,水平孔径和俯仰孔径均为0.5m。两个分站同步采集入射超声速弹丸的弹道激波信号,获得弹道激波到达各麦克风的波达时刻以及相对于各分站的波达方向。两个三维立体麦克风阵列分站模型和本发明办法具有普适性,可适用于任意数量麦克风组成的任意形状和尺寸的立体阵列方案。本发明以分站M1为例,4个麦克风m1~m4组成正三棱锥阵型。水平方向的3个阵元m2~m4均匀分布在直径不大于0.5m的水平圆周上,俯仰方向的阵元m1与水平圆心之间的连线与z轴方向平行。阵元m1定义为分站M1的本地参考阵元,即分站M1的本地坐标系原点和时标参考点。定义阵元m1同时也是整个声学立靶系统的全局参考阵元和时标参考点。分站M2的阵列结构与M1完全一致,4个麦克风编号为m5~m8,相互之间的位置关系分别对应分站M1中的m1~m4。其中,中心俯仰方向的阵元m5定义为分站M2的本地坐标系原点和时标参考点。
步骤1-1、结合图2和图3,测量弹道激波到达两个分站内各麦克风的波达时刻为tj,j=1~8。其中,麦克风m1~m4属于分站M1,m1是其本地参考阵元;麦克风m5~m8属于分站M2,m5是其本地参考阵元。m1同时也是整个双站立靶系统的全局参考阵元。计算得到两个分站M1和M2内各麦克风与系统全局参考阵元之间的波达时间差(TDOA)为Δtj1=tj-t1,j=1~8;
步骤1-2、根据步骤1-1得到的TDOA信息,分别解算弹道激波相对于分站M1和M2的波达方向,提取对应的单位方向矢量和/>
步骤1-2-1、以分站M1为例,根据三维立体麦克风阵列分站结构相关预设常数和TDOA方程,估计弹道激波相对于分站M1的波达方向:
式中常数a1~a7为与三维立体麦克风阵列结构相关的预设常数,Δt21、Δt31、Δt41为正三棱锥分布的阵列分站M1内麦克风m2、m3、m4相对中间的参考麦克风m1的TDOA测量值;
步骤1-2-2、将步骤1-2-1得到相对于分站M1的波达方向矢量a1β(xs1,ys1,zs1)T归一化处理,得到波达方向单位矢量
步骤2、对步骤1得到的弹道激波波达时刻信息和波达方向信息,解算弹道激波信号分别传往两个分站的弹道脱离点P1和P2的三维点坐标;
步骤2-1、定义两个分站M1和M2的位置坐标矢量分别为和/>两个弹道脱离点P1和P2到各自接收分站M1和M2之间的传播距离分别为/>和/>根据步骤1-2得到的弹道激波相对于两个分站的单位方向矢量/>和/>获得P1和P2两点之间的连线即近靶弹道线段矢量:
步骤2-2、由于两个分站相距仅有数米,近靶弹道线段一般很短,因而可认为超声速弹丸在P1和P2两点之间匀速直线飞行,P1和P2两点处的弹道激波锥角即马赫角θ1和θ2近似相等。定义θ1=θ2=θ,得到关系式:
式中Ma和v分别表示近靶弹道线段的超声速弹丸马赫数和飞行速度,c为大气声速,<x,y>表示矢量x和y的内积。将/>代入步骤2-1中的近靶弹道线段表达式,得到两个弹道脱离点P1和P2到达各自接收分站M1和M2的传播距离之和满足:
步骤2-3、由于两个分站M1和M2的本地参考阵元分别为1和5,弹道激波信号在两个本地参考阵元之间的TDOA满足以下关系:
式中c1和c2分别为弹道激波脱离弹道后传向两个分站的大气声速。在无风理想条件下,c1βc2=c。进而得到两个弹道脱离点P1和P2到各自接收分站M1和M2的传播距离之差满足:
步骤2-4、结合步骤2-2和步骤2-3求解得到和/>进而得到两个弹道激波脱离点P1和P2的位置坐标矢量:
步骤3、对步骤2得到的弹道脱离点P1和P2坐标,两点连线构成近靶弹道线段,取近靶弹道线段/>中点在靶面的投影点作为声学立靶的弹着点坐标估计,具体包括以下步骤:
步骤3-1、定义步骤2-4得到的两个弹道脱离点坐标分别为P1(xp1,yp1,zp1)T和P2(xp2,yp2,zp2)T,建立P1和P2两点连线得到的斜入射超声速弹丸近靶弹道线段,线段中点坐标为P3(xp3,yp3,zp3)T
步骤3-2、定义靶平面为空间平面S,靶平面方程为:x=0。据步骤3-1可知近靶弹道线段中点P3(xp3,yp3,zp3)T不在靶平面上,将其投影到靶平面的点坐标定义为Ts(xT,yT,zT)T
即为声学立靶的弹着点坐标估计。
结合附图,下面给出具体实施例:
本实施例提供了一种基于两个三维立体麦克风阵列分站和超声速弹丸弹道激波信号的斜入射弹着点定位方法,具体实施通过图1所示步骤实现,参数设置和效果通过以下实验进一步说明。
参照图3,对基于双阵列声学立靶系统的超声速弹丸定位实验参数设置如下:采用右手系三维直角坐标系,坐标系原点距离地面高度为5m,方位角定义为待测矢量在Oxy平面上的投影线与x轴之间的夹角,俯视顺时针方向为正;俯仰角定义为待测矢量与其在Oxy平面上的投影线之间的夹角,向上方向为正。平面Oyz(即x=0)为默认靶面,靶心T0(0,0,0)为坐标系原点,靶面区域为以靶心为中心的10m×10m区域。分站M1和M2架设高度均为1.5m,分站M1的中心阵元坐标作为分站M1的坐标M1(0,-5,3.5),分站M2的中心阵元坐标作为分站M2的坐标M2(0,-5,-3.5),分站坐标单位均为m。定义各麦克风三维点坐标的自定位误差均服从ε~N(0,0.1)的高斯分布,单位为m;定义各麦克风波达时刻的测量误差均服从εt~N(0,2.5)的高斯分布,单位为ms;定义各分站激波方位角测量误差和俯仰角测量误差分别服从εα~N(0,0.25)和的高斯分布,单位为度;定义超声速弹丸的近靶飞行速度为v=800m/s;定义大气声波传播速度c=342m/s。
参照图4,在10m×10m的靶面上以0.5m为间距等距取点,作为真实弹着点位置。对靶面共计441个预设弹着点分别单独进行100次蒙特卡洛试验,得到弹着点坐标估计值与真实值之间的误差。图5(a)和5(b)分别给出靶面弹着点在y维度和z维度的定位平均误差分布,可以看出针对10m×10m的大靶面,两个维度的定位平均误差均能达到5cm以下,靶心处的定位平均误差在两个维度均可以达到3cm。靶面弹着点在y维度和z维度的定位均方根误差分布图分别如图6(a)和6(b)所示,可以看出针对10m×10m的大靶面,两个维度的定位均方根误差均能达到6cm以下,靶心处的定位均方根误差在两个维度均可以达到3cm。
本发明借助弹道模型和解析几何理论,同步采集入射超声速弹丸的弹道激波,根据弹道激波到达各麦克风的波达时刻以及相对于各个分站的波达方向信息,解算分别对应两个分站的弹道激波脱离点的三维点坐标,再通过两个弹道脱离点连线构成近靶弹道线段,进而得到近靶弹道线段的直线方程及其单位方向矢量,最后将其与靶面方程的交点坐标作为声学立靶的弹着点坐标估计。本发明能够在无需实物靶面的前提下,针对大靶面斜入射超声速弹丸的弹着点进行被动式的高精度自动定位,同时具备机动性能好、系统结构简单、架收便利、不易损坏、可全天候工作、成本低廉等优点,对于满足靶场试验和日常训练的现代化技术保障需求具有重要意义。

Claims (4)

1.一种双阵列声学立靶斜入射弹着点定位方法,其特征在于,步骤如下:
步骤1、两个三维立体麦克风阵列分站M1和M2构成双阵列声学立靶系统,每个分站的阵元数L不小于4;
对两个三维立体麦克风阵列分站同步采集入射超声速弹丸的弹道激波信号,获得弹道激波到达各麦克风的波达时刻以及相对于各分站的波达方向,具体包括以下步骤:
步骤1-1、测量弹道激波到达各麦克风的波达时刻,分别计算两个分站M1和M2内各麦克风与所属分站本地参考阵元之间的波达时间差;
步骤1-2、根据步骤1-1得到的TDOA信息,分别解算弹道激波相对于分站M1和M2的波达方向,提取相应的单位方向矢量和/>
步骤2、对步骤1得到的弹道激波波达时刻信息和波达方向信息,解算弹道激波信号分别传往两个分站的弹道脱离点P1和P2的三维点坐标,具体包括以下步骤:
步骤2-1、定义两个分站M1和M2的位置坐标矢量分别为和/>两个弹道脱离点P1和P2到各自接收分站M1和M2之间的传播距离分别为/>和/>根据步骤1-2得到的弹道激波相对于两个分站的单位方向矢量/>和/>获得P1和P2两点之间的连线即近靶弹道线段矢量:
步骤2-2、超声速弹丸在P1和P2两点之间匀速直线飞行,P1和P2两点处的弹道激波锥角即马赫角θ1和θ2近似相等;定义θ1=θ2=θ,得到关系式:
步骤2-3、定义两个分站M1和M2的本地参考阵元序号分别为l和n,弹道激波信号在两个本地参考阵元之间的TDOA满足以下关系:
v表示近靶弹道线段的飞行速度,c为大气声速,tn为序号为n的阵元接收到激波信号的波达时间,tl为序号为l的阵元接收到激波信号的波达时间,Δtnl为阵元n和l接收到激波信号的波达时间差;进而得到两个弹道脱离点P1和P2到各自接收分站M1和M2的传播距离之差满足:
步骤2-4、结合步骤2-2和步骤2-3求解得到和/>进而得到两个弹道脱离点P1和P2的位置坐标矢量:
步骤3、对步骤2得到的弹道脱离点P1和P2的坐标,两点连线构成近靶弹道线段,取近靶弹道线段/>中点在靶面的投影点作为声学立靶的弹着点坐标估计,具体包括以下步骤:
步骤3-1、定义步骤2-4得到的两个弹道脱离点坐标分别为P1(xp1,yp1,zp1)T和P2(xp2,yp2,zp2)T,建立P1和P2两点连线得到的斜入射超声速弹丸近靶弹道线段,线段中点坐标为P3(xp3,yp3,zp3)T
步骤3-2、定义靶平面为空间平面S,靶平面方程为:x=0;据步骤3-1可知近靶弹道线段中点P3(xp3,yp3,zp3)T不在靶平面上,将其投影到靶平面的点坐标定义为Ts(xT,yT,zT)T
即为声学立靶的弹着点坐标估计。
2.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1所述的方法的步骤。
3.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1所述的方法的步骤。
4.一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1所述的方法的步骤。
CN202210596503.4A 2022-05-30 2022-05-30 一种双阵列声学立靶斜入射弹着点定位方法 Active CN115031585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210596503.4A CN115031585B (zh) 2022-05-30 2022-05-30 一种双阵列声学立靶斜入射弹着点定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210596503.4A CN115031585B (zh) 2022-05-30 2022-05-30 一种双阵列声学立靶斜入射弹着点定位方法

Publications (2)

Publication Number Publication Date
CN115031585A CN115031585A (zh) 2022-09-09
CN115031585B true CN115031585B (zh) 2024-04-05

Family

ID=83121727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210596503.4A Active CN115031585B (zh) 2022-05-30 2022-05-30 一种双阵列声学立靶斜入射弹着点定位方法

Country Status (1)

Country Link
CN (1) CN115031585B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299182A (zh) * 2023-05-11 2023-06-23 深圳市烽火宏声科技有限公司 一种声源三维定位的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196226A (zh) * 2017-12-08 2018-06-22 南京理工大学 一种高精度弹丸斜入射被动声定位模型的建模方法
KR101943631B1 (ko) * 2018-07-12 2019-02-08 자인테크놀로지(주) TDoA 기반의 소총화기 탄착점 추정 시스템
KR101997387B1 (ko) * 2018-01-15 2019-07-05 단국대학교 산학협력단 음향 센서를 이용한 탄착점 추정 방법 및 장치
CN112162239A (zh) * 2020-09-14 2021-01-01 西北工业大学 一种基于水平门型阵列的弹着点定位方法
CN112161523A (zh) * 2020-09-01 2021-01-01 南京理工大学 基于激波速度衰减模型的弹着点估计方法及系统
CN112378295A (zh) * 2020-12-07 2021-02-19 济南大学 一种双t型布阵的激波弹丸弹着点定位方法
CN113074591A (zh) * 2021-04-12 2021-07-06 西安工业大学 一种双靶面多点阵声学精度靶及弹头激波马赫角测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196226A (zh) * 2017-12-08 2018-06-22 南京理工大学 一种高精度弹丸斜入射被动声定位模型的建模方法
KR101997387B1 (ko) * 2018-01-15 2019-07-05 단국대학교 산학협력단 음향 센서를 이용한 탄착점 추정 방법 및 장치
KR101943631B1 (ko) * 2018-07-12 2019-02-08 자인테크놀로지(주) TDoA 기반의 소총화기 탄착점 추정 시스템
CN112161523A (zh) * 2020-09-01 2021-01-01 南京理工大学 基于激波速度衰减模型的弹着点估计方法及系统
CN112162239A (zh) * 2020-09-14 2021-01-01 西北工业大学 一种基于水平门型阵列的弹着点定位方法
CN112378295A (zh) * 2020-12-07 2021-02-19 济南大学 一种双t型布阵的激波弹丸弹着点定位方法
CN113074591A (zh) * 2021-04-12 2021-07-06 西安工业大学 一种双靶面多点阵声学精度靶及弹头激波马赫角测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于声学传感器的精度靶设计与仿真;陆文骏;童利标;郑锴;;噪声与振动控制(第06期);全文 *
声学精度靶工作原理及其误差分析;陆文骏;童利标;郑锴;;声学与电子工程(第03期);全文 *

Also Published As

Publication number Publication date
CN115031585A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US8325563B2 (en) Systems and methods of locating weapon fire incidents using measurements/data from acoustic, optical, seismic, and/or other sensors
CN108614268B (zh) 低空高速飞行目标的声学跟踪方法
CN101095062B (zh) 用于消歧枪械位置的系统和方法
CN106842128B (zh) 运动目标的声学跟踪方法及装置
CN106054134A (zh) 一种基于tdoa的快速定位方法
CN109212475B (zh) 基于方位角和俯仰角信息的双机无源定位方法
CN101799560A (zh) 多个声音传感器雷电定位仪及其定位方法
CN106706133B (zh) 一种点斑状目标姿态估计方法及系统
WO2012103153A2 (en) Systems and methods for augmenting gunshot location involving echo processing features
CN115031585B (zh) 一种双阵列声学立靶斜入射弹着点定位方法
RU2416103C2 (ru) Способ определения траектории и скорости объекта
CN106019266B (zh) 枪声定距与弹丸测速方法
CN107861096A (zh) 基于声音信号到达时间差的最小二乘测向方法
CN107884743A (zh) 适用于任意结构声音阵列的波达方向智能估计方法
CN107505598A (zh) 一种基于三基阵的空中炸点定位方法
CN112162239B (zh) 一种基于水平门型阵列的弹着点定位方法
CN112161523B (zh) 基于激波速度衰减模型的弹着点估计方法及系统
CN112229280B (zh) 多支路引信探测区确定方法
CN112525407B (zh) 一种冲击波单体多传感器阵列测试方法及装置
CN106595394A (zh) 一种利用音爆测量超音速弹体弹着点的方法
CN104237880B (zh) 变结构联合概率数据互联编队目标跟踪方法
US8300501B2 (en) Supercavitating projectile tracking system and method
CN113095576B (zh) 一种基于多探测器的自动报靶预测算法
CN112255590B (zh) 基于模糊函数匹配的低空声源反演定位方法及装置
CN109725306B (zh) 一种飞行目标弹道确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant