CN115011619B - 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用 - Google Patents

木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用 Download PDF

Info

Publication number
CN115011619B
CN115011619B CN202210465227.8A CN202210465227A CN115011619B CN 115011619 B CN115011619 B CN 115011619B CN 202210465227 A CN202210465227 A CN 202210465227A CN 115011619 B CN115011619 B CN 115011619B
Authority
CN
China
Prior art keywords
meglyi
cassava
gene
transgenic
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210465227.8A
Other languages
English (en)
Other versions
CN115011619A (zh
Inventor
李瑞梅
唐芬莲
郭建春
姚远
刘姣
王亚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Original Assignee
Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences filed Critical Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences
Priority to CN202210465227.8A priority Critical patent/CN115011619B/zh
Publication of CN115011619A publication Critical patent/CN115011619A/zh
Application granted granted Critical
Publication of CN115011619B publication Critical patent/CN115011619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y404/00Carbon-sulfur lyases (4.4)
    • C12Y404/01Carbon-sulfur lyases (4.4.1)
    • C12Y404/01005Lactoylglutathione lyase (4.4.1.5)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了木薯MeGLYI‑13基因及其编码蛋白在调控真核生物抗逆性方面的应用。所述真核生物为酵母、拟南芥或木薯。所述木薯MeGLYI‑13基因的核苷酸序列如SEQ ID NO:1所示,所述木薯MeGLYI‑13基因编码蛋白的氨基酸序列如SEQ ID NO:2所示。所述木薯MeGLYI‑13基因亚细胞定位于细胞核。通过在酵母、拟南芥或木薯中过表达木薯MeGLYI‑13基因的CDS序列,从而调控转基因酵母、转基因拟南芥或转基因木薯的抗逆性。

Description

木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方 面的应用
技术领域
本发明属于基因工程领域,特别涉及一种来源于华南8号木薯的MeGLYI-13基因及其编码蛋白的氨基酸序列在调控真核生物特别是酵母、拟南芥和木薯的抗逆性方面的应用。
背景技术
低温、干旱、盐、重金属等胁迫是生物面临的主要环境胁迫因子,严重影响生物的生长发育。发掘抗逆调控基因及蛋白并通过基因工程调控生物抗逆性是行之有效的手段。生物遭受外界胁迫时体内会积累有毒物质丙酮醛(Methylglyoxal,MG)。虽然低浓度的MG可作为信号分子,诱导生物相关防御系统的开启,但植物体内过量的MG会引起DNA、RNA、蛋白质以及生物膜等细胞组分的功能紊乱与丧失,影响生物的生长发育(Yadav S K,etal.2005a;付正伟,2016;马奇斌,2019;Parvin K,2019)。乙二醛酶I是平衡生物细胞内MG含量的关键酶,在植物的生长发育和逆境胁迫中起着关键作用。植物中乙二醛酶I属于多基因家族,虽然已有少量物种的部分乙二醛酶I基因(GLYI)的抗逆功能得到了实验验证,但绝大多数的物种中的GLYI的抗逆功能还未知。如何利用GLYI基因提高生物的抗逆性已经成为研究的热点。
发明内容
本发明的目的在于提供一种木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性中的应用。
本发明的上述目的可以通过以下技术方案来实现:木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用。
优选的,所述真核生物为酵母、拟南芥或木薯。
优选的,所述木薯MeGLYI-13基因的核苷酸序列如SEQ ID NO:1所示,所述木薯MeGLYI-13基因编码蛋白的氨基酸序列如SEQ ID NO:2所示。
优选的,所述木薯MeGLYI-13基因亚细胞定位于细胞核。
优选的,通过在酵母、拟南芥或木薯中过表达木薯MeGLYI-13基因的CDS序列,从而调控转基因酵母、转基因拟南芥或转基因木薯抗逆性。
优选的,过表达木薯MeGLYI-13基因能提高转基因酵母对Na2CO3、NaHCO3、FeCl3、KCl、Pb(CH3COOH)2、MnCl2、ZnCl2、Cd(NO3)2和CuCl2的耐受性,能降低转基因酵母对NaCl、CoCl2、BaCl2、CaCl2、山梨醇和H2O2的耐受性,所述转基因酵母含有重组质粒pYES2-MeGLYI-13。
优选的,过表达木薯MeGLYI-13基因能提高转基因拟南芥无菌幼苗对MG、NH4Cl、H2O2、FeCl3、CuCl2、Zn(CH3COOH)2、MeJA逆境胁迫的耐性,能降低转基因拟南芥无菌幼苗对KCl、CaCl2、NaCl、甘露醇、CoCl2、SA和ABA胁迫的抗性,所述转基因拟南芥采用农杆菌介导的花粉管浸染法获得。
优选的,过表达木薯MeGLYI-13基因能增加转基因拟南芥盆栽苗对MG、Fe3+胁迫抗性,能降低转基因拟南芥盆栽苗对NaCl和干旱胁迫抗性。
优选的,过表达木薯MeGLYI-13基因能增强转基因木薯苗对MG和FeCl3胁迫抗性,能减弱转基因木薯苗对NaCl和甘露醇胁迫抗性,其中所述转基因木薯苗采用农杆菌介导法侵染SC8木薯脆性胚性愈伤组织获得。
与现有技术相比,本发明具有以下优点:
(1)木薯MeGLYI-13基因亚细胞定位于细胞核;
(2)过表达MeGLYI-13基因降低了转基因酵母对NaCl、CoCl2、BaCl2、CaCl2、山梨醇和H2O2的耐受性;提高了转基因酵母对Na2CO3、NaHCO3、FeCl3、KCl、Pb(CH3COOH)2、MnCl2、Zn(CH3COOH)2、Cd(NO3)2和CuCl2的耐受性。过表达MeGLYI-13基因提高了转基因拟南芥无菌幼苗对MG、NH4Cl、H2O2、FeCl3、CuCl2、Zn(CH3COOH)2和MeJA逆境胁迫的耐性,降低了转基因拟南芥无菌幼苗对KCl、CaCl2、NaCl、甘露醇、CoCl2、SA和ABA胁迫的抗性,转基因拟南芥盆栽苗进一步验证了其对MG、FeCl3胁迫抗性的增强,对NaCl和干旱胁迫抗性的降低,过表达MeGLYI-13基因提高了转基因木薯苗对MG和FeCl3胁迫抗性的增强,而对NaCl和甘露醇胁迫抗性的减弱;
(3)本申请实验证明,木薯乙二醛酶基因MeGLYI-13能够调节真核生物的抗逆性,因此,应用MeGLYI-13基因能够有效调整真核生物的抗逆性。
附图说明
图1是实施例1中木薯MeGLYI-13基因的亚细胞定位情况;
图2是实施例2中MeGLYI-13转基因酵母与空载酵母在不同胁迫处理后生长状况;
图3是实施例3中转基因拟南芥和野生型幼苗在不同胁迫下的表型;
图4是实施例4中2mmol/L MG胁迫下转基因和野生型拟南芥生长情况;
图5是实施例4中200mmol/L NaCl胁迫下转基因和野生型拟南芥生长情况;
图6是实施例4中2mmol/L FeCl3胁迫下转基因和野生型拟南芥生长情况;
图7是实施例4中干旱15d和复水7d转基因和野生型拟南芥生长情况;
图8是实施例5中SC8和MeGLYI-13转基因木薯在不同胁迫处理下的生长状况;
具体实施方式
以下实施例中采用的原料优选但不限于:
实验中所用的MS培养基以配置1L的量来说,为MURASHIGE&SKOOG MEDIUMINCLUDING VITAMINS(M0222,DuchefaBiochemie)粉末4.41g,加蔗糖25g,琼脂粉8.0~8.5g,调pH值至5.80~6.0。1/2MS培养基以配置1L的量来说,为MURASHIGE&SKOOG MEDIUMINCLUDING VITAMINS(M0222,DuchefaBiochemie)粉末2.203g,加蔗糖12.5g,琼脂粉8.0~8.5g,调pH值至5.80~6.0。SC/-Ura培养基(S28203,源叶)根据说明书使用。
以下实施例中LBA4404农杆菌感受态、INVSc1酵母菌感受态细胞菌株、pYES2酵母表达载体优选但不限于自上海唯地生物技术有限公司。改良型双元表达载体(pCAMBIA1300-35S-GFP)由阮孟斌老师惠赠。
实施例1木薯乙二醛酶基因MeGLYI-13的克隆基植物表达载体构建及亚细胞定位
1、用Trizol法提取华南八号(SC8)木薯总RNA,反转录成cDNA。设计MeGLYI-13基因PCR扩增引物(MeGLYI-13F:GCTAGGGCTTCTCTGCTCTG、MeGLYI-13R:TCCCACAATCTGACACCTGC),以SC8的cDNA为模板,进行RT-PCR,产物通过1%琼脂糖凝胶电泳检测,结果成功扩增得到符合预期的约500bp的单一明亮条带,对克隆获得的片段进行测序发现其CDS长度为492bp(如SEQ ID NO:1所示),编码164个氨基酸(如SEQ ID NO:2所示)。
MeGLYI-13核苷酸序列具体如下:
atggctcagcaggaagtccagaacggcggttccgccaaggctgacgtggaggtaacttttacggctgtgaagcctcagctgttgattgaagcacctaaggcaaatgatgccgttcagttctacaaggcagcgtttggagccgtggaagctggtcgtataactcagcctaagcgcaaggctgaacaggagctccctcacattatcccagctcagctccaacttgctggcacaaccattattgtctctgaccttgttgatgactctgcaccggtgaagactgtggggaccggaatctctctctgcttggaaactgaggacattgaaactgctatatccaaggccgtgtctgcgggagctgtggccgagggagagattgtcgagggagatggagcttactatggtggtggtcgcgtgggcaaggtgaaggatccttacggtttagtgtgggtcatttcctccccggccaagaagtcgattactgatgcggaagtttagtga498。(包括起始密码子atg和终止密码子tga)。
MeGLYI-13氨基酸序列如下:
MAQQEVQNGGSAKADVEVTFTAVKPQLLIEAPKANDAVQFYKAAFGAVEAGRITQPKRKAEQELPHIIPAQLQLAGTTIIVSDLVDDSAPVKTVGTGISLCLETEDIETAISKAVSAGAVAEGEIVEGDGAYYGGGRVGKVKDPYGLVWVISSPAKKSITDAEV*。
2、将克隆获得MeGLYI-13基因CDS序列去掉终止密码子,利用同源重组方法,连接到植物表达载体pCAMBIA1300-35S-GFP上,得到含有MeGLYI-13的植物表达载体pCAMBIA1300-35S-MeGLYI-13:GFP。将该载体转入农杆菌LBA4404。
3、用含有植物表达载体pCAMBIA1300-35S-MeGLYI-13:GFP的农杆菌注射烟草叶片,以含有pCAMBIA1300-35S-GFP空载体的农杆菌注射叶片为对照。经培养3天后,在激光共聚焦显微镜下观察到pCAMBIA1300-35S-MeGLYI-13:GFP农杆菌侵染后的烟草叶片表皮细胞的细胞核中有绿色荧光产生,表明MeGLYI-13基因定位于细胞核(图1)。
实施例2非生物胁迫对转MeGLYI-13基因酵母的影响
在MeGLYI-13基因起始密码子上游引入KpnI酶切位点,终止密码子下游引入EcoRI酶切位点,利用双酶切的方法,连接到酵母表达载体pYES2,得到含有MeGLYI-13的酵母表达载体pYES2-MeGLYI-13。利用PEG/LiAc化转法将酵母表达载体转入INVSc1酵母菌株,获得了MeGLYI-13转基因酵母,并进行其进行非生物胁迫的抗逆性实验,以转pYES2空载体的酵母作为对照。如图2所示,分别经含有5mmol/L Na2CO3、50mmol/L NaHCO3、20mmol/L FeCl3、2.25mol/L KCl、25mmol/L Pb(CH3COOH)2、150mmol/L MnCl2·4H2O、30mmol/L Zn(CH3COOH)2、1.25mmol/L Cd(NO3)2和3mmol/L CuCl2·2H2O的SC-Ura培养基处理后其MeGLYI-13转基因酵母生长能力明显强于对照酵母,说明MeGLYI-13基因的表达提高了酵母对上述几种胁迫的抗性。经分别含有2.25mol/L NaCl、4.98mol/L山梨醇、3.5mmol/LCoCl2·6H2O、15mmol/L BaCl2、100mmolCaCl2和2mmol/L H2O2的SD-Ura培养基胁迫处理后转基因酵母的活性明显弱于对照酵母,说明MeGLYI-13基因的表达降低了酵母对这些逆境胁迫的抗性。
实施例3转MeGLYI-13基因拟南芥的幼苗抗逆性分析
1、采用农杆菌介导的花粉管浸染法,将实施例1中获得的植物表达载体pCAMBIA1300-35S-MeGLYI-13:GFP转入拟南芥,通过潮霉素筛选及PCR鉴定,最终获得MeGLYI-13转基因拟南芥植株。
2、为研究MeGLYI-13基因对拟南芥幼苗的抗逆性的影响,本实施例3选择3个转基因拟南芥株系(OE1、OE2、OE5)收集T3代种子,以非转基因拟南芥(WT)为对照进行后续抗逆性实验。
3、将MeGLYI-13转基因拟南芥和对照WT种子消毒,播种在1/2MS培养基上,4℃春化2d,22℃、短日照培养8天,得到萌发的拟南芥幼苗。然后将幼苗分别转移到分别含有1000μmol/LMG、2mmol/L NH4Cl、60mmol/L KCl、40mmol/LCaCl2、120mmol/L NaCl、50μmol/LH2O2、200mmol/L甘露醇、450μmol/LFeCl3、60mmol/L CuCl2、60mmol/L Zn(CH3COOH)2、60mmol/LCoCl2、150μmol/LMeJA、50μmol/LABA以及10μmol/LSA的1/2MS培养基上进行胁迫处理,以1/2MS培养基处理为对照,处理12d后观察各株系生长状态。
结果可以看到(图3),在正常1/2MS培养基上,WT和转MeGLYI-13基因拟南芥长势差别不大。1000μmol/L MG处理下,WT无法生长最终死亡,MeGLYI-13转基因拟南芥虽受到明显抑制但仍能存活。这表明MeGLYI-13基因提高了拟南芥对MG的解毒能力。在60mmol/L KCl处理后,转MeGLYI-13基因拟南芥的生长较WT明显受到抑制。说明转MeGLYI-13基因拟南芥对高钾胁迫的抗性降低。40mmol/L CaCl2胁迫后,WT和转MeGLYI-13基因拟南芥主根长均被抑制,但是转MeGLYI-13基因拟南芥的生长受抑制更明显,主根变短,侧根变少,叶片也变小。推测转MeGLYI-13基因拟南芥对高浓度Ca2+的耐性降低。在120mmol/L NaCl胁迫下,转MeGLYI-13基因拟南芥生长受抑制更加明显,说明MeGLYI-13降低了拟南芥对高浓度NaCl的耐性。50μmol/L H2O2的培养基上转MeGLYI-13基因拟南芥和WT主根长均变短,侧根变少,地上部分的叶片变小。但是转MeGLYI-13基因拟南芥生长状况较WT生长更好,侧根更多,叶片更大。说明MeGLYI-13提高了拟南芥对高浓度H2O2的耐性。在200mmol/L甘露醇胁迫下,转基因拟南芥的根长生长较WT受抑制更严重。说明MeGLYI-13降低了拟南芥对甘露醇胁迫的耐性。400μmol/L FeCl3浓度下,转MeGLYI-13基因拟南芥生长明显优于WT的生长,这说明MeGLYI-13基因可能提高了拟南芥对FeCl3胁迫的防御。60μmol/LCuCl2胁迫下,转基因拟南芥的生长状况较WT更好,根毛更多。MeGLYI-13基因提高了转基因拟南芥对CuCl2胁迫的抗性。60mmol/LCoCl2胁迫下,转MeGLYI-13基因拟南芥生长较WT明显受抑制。说明MeGLYI-13基因降低了转基因拟南芥对CoCl2胁迫的耐受性。60mmol/LZn(CH3COO)2胁迫下,转MeGLYI-13基因拟南芥比WT生长的更好,说明MeGLYI-13基因提高了拟南芥对Zn(CH3COO)2胁迫的耐受性。10μmol/LSA处理下,转MeGLYI-13基因拟南芥均较WT长势更弱,主根长更短,地上部分更小。以上结果说明MeGLYI-13基因对SA胁迫抗性降低。150μmol/L MeJA处理下,转MeGLYI-13基因拟南芥较WT侧根更发达,数量增多,根长更长,地上部分更大。该结果说明MeGLYI-13基因增强了转基因拟南芥对MeJA胁迫的抗性。
实施例4 MeGLYI-13转基因拟南芥盆栽苗的抗逆性分析
为进一步确定转MeGLYI-13基因对拟南芥抗逆性的影响,选择实施例2中的幼苗胁迫实验中差异比较明显的胁迫类型如MG、NaCl、干旱和FeCl3胁迫,进行拟南芥盆栽苗的抗逆性分析。分别用含有2mmol/LMG、200mmol/LNaCl水溶液浇灌移栽后15d的盆栽转基因和WT拟南芥,用2mmol/L的FeCl3水溶液浇灌20d的盆栽苗。各处理20d后观察拟南芥的表型。结果显示,在2mmol/LMG处理后,拟南芥抽薹开花结荚,正常发育,但叶片颜色变紫,转MeGLYI-13基因拟南芥的开花的花枝长度显著高于WT(图4)。说明MeGLYI-13基因提高了拟南芥对MG胁迫的防御。200mmol/LNaCl胁迫后,WT和转MeGLYI-13基因拟南芥叶片较正常情况生长均出现叶片颜色加深、变脆表型变化。WT成熟叶受伤死亡较少。转MeGLYI-13基因拟南芥成熟叶片发白死亡程度较大,有的植株甚至完全死亡(图5)。说明过表达MeGLYI-13降低了拟南芥盆栽苗的抗盐能力。2mmol/L的FeCl3胁迫后,转MeGLYI-13基因拟南芥但叶片叶片颜色变紫,开花并结荚,而WT叶片变紫的程度不及转基因株系,且抽薹开花明显晚于转基因株系(图6)。说明转MeGLYI-13基因提高了拟南芥对FeCl3胁迫的抗性。对15d拟南芥盆栽苗进行断水干旱胁迫处理15d后,WT和转MeGLYI-13基因拟南芥叶片均萎蔫,但在复水7d后,转MeGLYI-13基因拟南芥无法恢复生长,叶片全部黄化干枯死亡,无幼嫩叶片存活,而WT植株中心变绿,新芽产生,逐渐恢复生长(图7)。说明了MeGLYI-13降低了拟南芥对干旱胁迫的防御。
实施例5 MeGLYI-13转基因木薯的抗逆性分析
将实施例1中得到的含有植物表达载体pCAMBIA1300-35S-MeGLYI-13:GFP的LBA4404农杆菌侵染SC8木薯脆性胚性愈伤组织,并诱导再生植株,经在潮霉素抗性培养基上培养筛选获得生根株系,将所有生根的木薯株系和SC8每株各取叶片约2mm2进行直接叶片PCR,检测所用引物为pCAMBIA1300-35S-GFP载体检测通用引物1300F/R(1300F:GTTGATACATATGCCCGTCG,1300R:CTCGCCCTTGCTCACCAT)。检测获得MeGLYI-13转基因阳性苗9株,分别命名为OEMe1~OEMe9。选择OEMe1、OEMe6、OEMe8三个株系进行后续抗逆性实验。将转MeGLYI-13基因木薯和SC8组培苗的茎段扦插在分别加有4mmol/L MG、60mmol/L NaCl、300mmol/L甘露醇、450μmol/LFeCl3的MS培养基上进行胁迫处理,以MS培养基培养的作为对照。处理30d后,观察转MeGLYI-13基因木薯与SC8的表型变化。结果显示(图8)4mmol/L MG胁迫下,对木薯的生长均受抑制,尤其是SC8,仅叶片萌发,根系不生长严重受到抑制甚至白化死亡,而转MeGLYI-13基因基因木薯茎段依旧绿色,但根系变少,植株矮小。说明转MeGLYI-13基因木薯能更好的应对MG的胁迫。60mmol/L NaCl处理后,转MeGLYI-13基因木薯根变得极短,叶片很小,SC8叶片生长受限,而根系依旧生长,但数量变少。在最高浓度80mmol/LNaCl,SC8仅生根,不长叶,转MeGLYI-13基因木薯均死亡。说明过表达MeGLYI-13降低了转基因木薯株系对NaCl盐胁迫的抗性。在300mmol/L甘露醇处理下,转MeGLYI-13基因木薯和SC8形成鲜明对比,根系变少、变短,茎段不生长,颜色变浅。说明过表达MeGLYI-13降低了转基因木薯对甘露醇模拟干旱的抗性。450mmol/L FeCl3胁迫下,SC8株系的茎段不长根,侧芽有萌发,但长势被严重抑制,而转基因木薯的生长虽然也被抑制,根系变少变短,但其长势明显优于SC8。说明过表达MeGLYI-13提高了转基因木薯株系的Fe3+胁迫的抗性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 中国热带农业科学院热带生物技术研究所
<120> 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 492
<212> DNA
<213> 乙二醛酶I(Glyoxalase I)
<400> 1
gctcagcagg aagtccagaa cggcggttcc gccaaggctg acgtggaggt aacttttacg 60
gctgtgaagc ctcagctgtt gattgaagca cctaaggcaa atgatgccgt tcagttctac 120
aaggcagcgt ttggagccgt ggaagctggt cgtataactc agcctaagcg caaggctgaa 180
caggagctcc ctcacattat cccagctcag ctccaacttg ctggcacaac cattattgtc 240
tctgaccttg ttgatgactc tgcaccggtg aagactgtgg ggaccggaat ctctctctgc 300
ttggaaactg aggacattga aactgctata tccaaggccg tgtctgcggg agctgtggcc 360
gagggagaga ttgtcgaggg agatggagct tactatggtg gtggtcgcgt gggcaaggtg 420
aaggatcctt acggtttagt gtgggtcatt tcctccccgg ccaagaagtc gattactgat 480
gcggaagttt ag 492
<210> 2
<211> 164
<212> PRT
<213> 乙二醛酶I(Glyoxalase I)
<400> 2
Met Ala Gln Gln Glu Val Gln Asn Gly Gly Ser Ala Lys Ala Asp Val
1 5 10 15
Glu Val Thr Phe Thr Ala Val Lys Pro Gln Leu Leu Ile Glu Ala Pro
20 25 30
Lys Ala Asn Asp Ala Val Gln Phe Tyr Lys Ala Ala Phe Gly Ala Val
35 40 45
Glu Ala Gly Arg Ile Thr Gln Pro Lys Arg Lys Ala Glu Gln Glu Leu
50 55 60
Pro His Ile Ile Pro Ala Gln Leu Gln Leu Ala Gly Thr Thr Ile Ile
65 70 75 80
Val Ser Asp Leu Val Asp Asp Ser Ala Pro Val Lys Thr Val Gly Thr
85 90 95
Gly Ile Ser Leu Cys Leu Glu Thr Glu Asp Ile Glu Thr Ala Ile Ser
100 105 110
Lys Ala Val Ser Ala Gly Ala Val Ala Glu Gly Glu Ile Val Glu Gly
115 120 125
Asp Gly Ala Tyr Tyr Gly Gly Gly Arg Val Gly Lys Val Lys Asp Pro
130 135 140
Tyr Gly Leu Val Trp Val Ile Ser Ser Pro Ala Lys Lys Ser Ile Thr
145 150 155 160
Asp Ala Glu Val

Claims (4)

1.木薯MeGLYI-13基因及其编码蛋白在调控酵母抗逆性方面的应用,所述木薯MeGLYI-13基因的核苷酸序列如SEQ ID NO:1所示,所述木薯MeGLYI-13基因编码蛋白的氨基酸序列如SEQ ID NO:2所示;过表达木薯MeGLYI-13基因能提高转基因酵母对Na2CO3、NaHCO3、FeCl3、KCl、Pb(CH3COOH)2、MnCl2、Zn(CH3COOH)2、Cd(NO3)2和CuCl2的耐受性,能降低转基因酵母对NaCl、CoCl2、BaCl2、CaCl2、山梨醇和H2O2的耐受性,所述转基因酵母含有重组质粒pYES2-MeGLYI-13。
2.木薯MeGLYI-13基因及其编码蛋白在调控拟南芥抗逆性方面的应用,所述木薯MeGLYI-13基因的核苷酸序列如SEQ ID NO:1所示,所述木薯MeGLYI-13基因编码蛋白的氨基酸序列如SEQ ID NO:2所示;过表达木薯MeGLYI-13基因能提高转基因拟南芥无菌幼苗对丙酮醛(MG)、NH4Cl、H2O2、FeCl3、CuCl2、Zn(CH3COOH)2、MeJA逆境胁迫的耐性,能降低转基因拟南芥无菌幼苗对KCl、CaCl2、NaCl、甘露醇、CoCl2、SA和ABA胁迫的抗性,所述转基因拟南芥采用农杆菌介导的花粉管浸染法获得。
3.根据权利要求2所述的应用,其特征是:过表达木薯MeGLYI-13基因能增加转基因拟南芥盆栽苗对丙酮醛(MG)、FeCl3胁迫抗性,能降低转基因拟南芥盆栽苗对NaCl和干旱胁迫抗性。
4.木薯MeGLYI-13基因及其编码蛋白在调控木薯抗逆性方面的应用,所述木薯MeGLYI-13基因的核苷酸序列如SEQ ID NO:1所示,所述木薯MeGLYI-13基因编码蛋白的氨基酸序列如SEQ ID NO:2所示;过表达木薯MeGLYI-13基因能增强转基因木薯苗对丙酮醛(MG)和FeCl3胁迫抗性,能减弱转基因木薯苗对NaCl和甘露醇胁迫抗性,其中所述转基因木薯苗采用农杆菌介导法侵染木薯脆性胚性愈伤组织获得。
CN202210465227.8A 2022-04-29 2022-04-29 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用 Active CN115011619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210465227.8A CN115011619B (zh) 2022-04-29 2022-04-29 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210465227.8A CN115011619B (zh) 2022-04-29 2022-04-29 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用

Publications (2)

Publication Number Publication Date
CN115011619A CN115011619A (zh) 2022-09-06
CN115011619B true CN115011619B (zh) 2023-07-07

Family

ID=83066726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210465227.8A Active CN115011619B (zh) 2022-04-29 2022-04-29 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用

Country Status (1)

Country Link
CN (1) CN115011619B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000898A1 (en) * 2001-06-22 2003-01-03 Syngenta Participations Ag Plant genes involved in defense against pathogens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001286811B2 (en) * 2000-08-24 2007-03-01 Syngenta Participations Ag Stress-regulated genes of plants, transgenic plants containing same, and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000898A1 (en) * 2001-06-22 2003-01-03 Syngenta Participations Ag Plant genes involved in defense against pathogens

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves;Meera SP等;Plant Physiol Biochem;683-696 *
Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L;Yan G等;Int J Mol Sci;第24卷;2130 *
Genome-Wide Identification of Cassava Glyoxalase I Genes and the Potential Function of MeGLYⅠ-13 in Iron Toxicity Tolerance;Tang F等;Int J Mol Sci;第23卷(第9期);5212 *
利用酵母双杂交筛选木薯果胶甲酯酶抑制因子MePMEI1的互作蛋白;仇婷婷等;基因组学与应用生物学;第40卷(第4期);1626-1633 *
香蕉根系均一化全长cDNA文库的构建和鉴定;王卓;殷晓敏;王家保;徐碧玉;金志强;;园艺学报(第09期);1667-1674 *

Also Published As

Publication number Publication date
CN115011619A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN107188940B (zh) GsHA12蛋白及其编码基因在调控植物耐逆性中的应用
CN107383179B (zh) 一种与植物耐逆性相关蛋白GsSLAH3及其编码基因与应用
CN111235165B (zh) 一种百合的易感真菌基因LrWRKY-S1及其应用
CN104059937B (zh) 一个来源于苜蓿的蛋白质及其编码基因的新用途
CN113831397B (zh) 一种原花青素物质调控因子NtMYB330及其表达载体、转化体、试剂盒与方法
CN109536516B (zh) 玉米抗旱基因ZmDSR的克隆及其应用
CN109810985B (zh) 一种岷江百合Lr4CL-1基因及其应用
CN113430212A (zh) 苹果砧木抗盐胁迫相关基因MdLysMe3及其编码蛋白与应用
CN109879947B (zh) 毛竹转录因子PheDof 2基因及应用
CN104004073B (zh) 来源于小麦的抗病性相关蛋白TaCPK7-R及其相关生物材料与应用
CN111979253B (zh) TrFQR1基因及其克隆、表达载体构建方法和应用
US20120266325A1 (en) Plant Stress Tolerance Related Protein GmSIK1 and Encoding Gene and Use Thereof
CN113403325A (zh) 茶树孤儿基因CsOG3及其在提高茶树耐寒性上的应用
ES2336173B2 (es) Metodo para mejorar la tolerancia a la salinidad.
CN109971766B (zh) 一种与植物耐逆相关蛋白PwRBP1及其编码基因与应用
CN112322600A (zh) 紫花苜蓿耐盐基因MsSnRK2.3及其编码蛋白与应用
CN115011619B (zh) 木薯MeGLYI-13基因及其编码蛋白在调控真核生物抗逆性方面的应用
CN106749584A (zh) 一种与植物耐碱性相关蛋白GsERF71及其编码基因与应用
CN114507674A (zh) 茶树昼夜节律基因lux在提高植物抗寒性上的应用
CN104513825B (zh) 一种小麦耐盐基因TaNAS1及其应用
CN103695444B (zh) 花生紫黄质脱环氧化酶基因及其编码蛋白和应用
CN109207487B (zh) 一种油菜耐渍基因BnaLPP1及制备方法和应用
CN113136398A (zh) GsHA24蛋白及其相关生物材料在调控植物耐逆性中的应用
CN107488643B (zh) 一种兰花叶绿素降解代谢调控蛋白及其编码基因和应用
CN107630026B (zh) 极端耐干齿肋赤藓醛脱氢酶基因及其编码蛋白

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant