CN115011617A - 一种控制小麦株高的主效qtl及其候选基因和应用 - Google Patents

一种控制小麦株高的主效qtl及其候选基因和应用 Download PDF

Info

Publication number
CN115011617A
CN115011617A CN202210527987.7A CN202210527987A CN115011617A CN 115011617 A CN115011617 A CN 115011617A CN 202210527987 A CN202210527987 A CN 202210527987A CN 115011617 A CN115011617 A CN 115011617A
Authority
CN
China
Prior art keywords
wheat
candidate gene
plant height
tasdr
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210527987.7A
Other languages
English (en)
Other versions
CN115011617B (zh
Inventor
李斯深
郭宝晋
赵岩
郭营
安艳荣
孙俊生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202210527987.7A priority Critical patent/CN115011617B/zh
Publication of CN115011617A publication Critical patent/CN115011617A/zh
Application granted granted Critical
Publication of CN115011617B publication Critical patent/CN115011617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种控制小麦株高的主效QTL及其候选基因和应用。所述主效QTL为QPh‑2D.1,位于2D染色体上,其遗传距离为1995.71~2002.73cM,物理区间大小为212Kb;所述候选基因为TaSDR‑2D,其核苷酸序列如SEQ ID No.1所示。本发明对该候选基因TaSDR‑2D进行了基因编辑,并经过实验验证,TaSDR‑2D基因通过调控细胞长度来影响小麦的株高,这有利于小麦株高性状的遗传改良和分子育种,并可以加快对矮秆小麦品种进行筛选,或者用来调控小麦的株高。

Description

一种控制小麦株高的主效QTL及其候选基因和应用
技术领域
本发明属于小麦分子遗传育种技术领域,特别涉及一种控制小麦株高的主效QTL及其候选基因和应用。
背景技术
小麦(Triticum aestivum L.,2n=6X=42,AABBDD)是世界上最重要的粮食作物之一,贡献了全世界约20%的膳食热量和蛋白质。提高小麦总产量一直是生产上面临的重大问题,而我国耕地面积有限,提高单产是实现我国小麦总产量提升的主要途径。小麦产量性状QTL定位一直是小麦遗传研究热点,但已克隆的基因仍很少。株高是影响产量的重要性状,因此分离和鉴定小麦株高基因,对小麦遗传改良具有重大意义。
虽然被命名的株高基因已达到25个(Rht1~Rht25),但其中大部分未被克隆。已通过图位克隆的方法分离到了位于4B染色体上的Rht-B1(TraesCS4B02G043100)基因和位于4D染色体上的Rht-D1(TraesCS4D02G040400)基因,Rht-B1已鉴定出7个等位基因,其中Rht-B1a为高杆等位基因,编码有功能的DELLA蛋白;Rht-D1鉴定出了4个等位基因,其中Rht-D1a为高杆基因,编码完整的DELLA蛋白结构。
CRISPR/Cas9的基因组编辑技术可以充分利用现有的基因组信息,快速验证初步获得的候选基因,加快性状改良,进而加速育种进程。通过对株高基因进行CRISPR/Cas9基因编辑验证,可为利用该基因进行株高性状的遗传改良提供理论依据。
发明内容
本发明提供了一种控制小麦株高的主效QTL及其候选基因和应用。所述主效QTL和候选基因TaSDR-2D有利于矮秆小麦品种的选育。
为实现上述发明目的,本发明采取的技术方案为:
本发明提供了一种控制小麦株高的主效QTL,所述主效QTL为QPh-2D.1,位于2D染色体上,其遗传距离为1995.71~2002.73cM,物理区间大小为212Kb。
进一步的,所述主效QTL具有降低株高效应,其减效等位基因来自父本品种鲁麦21。
本发明还提供了所述的控制小麦株高的主效QTL的候选基因,所述候选基因为TaSDR-2D,其核苷酸序列如SEQ ID No.1所示。
本发明还提供了所述的候选基因的编码蛋白,所述编码蛋白的氨基酸序列如SEQID No.2所示。
本发明还提供了所述的主效QTL或所述的候选基因在小麦株高性状的遗传改良中的应用。
进一步的,在应用时,通过敲除所述候选基因能够降低小麦的株高。
进一步的,所述候选基因通过调控小麦细胞的长度来影响小麦的株高。
本发明还提供了所述的主效QTL或所述的候选基因在加快选育小麦矮秆品种中的应用。
进一步的,利用所述候选基因来检测小麦品种或品系中候选基因等位变异,从而加快选育小麦品种的进程。
与现有的技术相比,本发明效果和优点是:
本发明从普通小麦中根据QTL分析结果,在2D染色体定位了一个稳定主效QTL----QPh-2D.1,并在其峰值区间内筛选到一个候选基因,TaSDR-2D基因。本发明对该候选基因进行了基因编辑,并经过实验验证,TaSDR-2D基因通过调控细胞长度来影响小麦的株高,这有利于小麦株高性状的遗传改良和分子育种,并可以加快对矮秆小麦品种进行筛选,或者用来调控小麦的株高。
附图说明
图1为候选基因TraesCS2D02G058400进化树分析。
图2为TaSDR-2D和TaSDR-2A、TaSDR-2B编码序列之间的比较。
图3为TaSDR-2D和TaSDR-2A、TaSDR-2B蛋白序列之间的比较。
图4为TaSDR基因编辑突变体基因型。
图5为野生型(WT)和突变体氨基酸序列差异。
图6为突变基因型及野生型(WT)株系的株高图片(标尺,10cm)。
图7为突变基因型与野生型(WT)株系的株高表现箱线图。
图8为突变基因型株系与野生型Fielder穗下节间细胞学观察结果。
图9为突变基因型株系与野生型(WT)细胞长度箱线图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案进一步的详细说明,但本发明要求保护的范围并不局限于实例表述的范围。下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学试剂公司购买。
本发明所用到的小麦品种:QTL分析材料为“山农0431/鲁麦21”重组自交系群体(SL-RILs),亲本山农0431和鲁麦21为冬小麦品种(系)。基因编辑材料为春性品种Fielder,上述材料均可由山东农业大学处获得。
实施例1:小麦QPh-2D.1候选基因TaSDR的确定
利用3种QTL分析软件进行QTL分析,分别为:IciMapping 4.1,Windows QTLCartographer 2.5(http://statgen.ncsu.edu/qtlcart/WQTLCart.htm),MapQTL6.0。IciMapping 4.1软件,采用完备区间作图法;Windows QTL Cartographer 2.5和MapQTL6.0软件,均采用复合区间作图法,LOD值均为大于3.0,步长均为0.5cM。
利用IciMapping 4.1、WinQTLCart 2.5和MapQTL 6.0三个软件在水旱地条件下均检测到一个稳定主效QTL——QPh-2D.1,其平均LOD值分别为5.40、6.72和6.07;平均贡献率分别为9.41%、14.41%和14.68%;加性效应为正值,表明降低株高效应来自父本鲁麦21;峰值区间分别为1997~2002.5cM、1995.71~2002.21cM和2001.73~2002.73cM(表1)。QPh-2D.1对应中国春参考序列物理区间大小为212Kb;对应中国春注释文件,差异基因只有1个,为TraesCS2D02G058400,故确定该基因为候选基因。该基因在中国春RefSeq v1.1版注释为短链脱氢/还原酶(short-chain dehydrogenase/reductase),因此将其命名为TaSDR基因。
表1株高QTL QPh-2D.1定位结果
Figure BDA0003645357520000031
Figure BDA0003645357520000041
注:TA,泰安;RU,乌鲁木齐;ZB,淄博。13,2013;14,2014。W,浇水;R雨养。
实施例2:小麦TaSDR基因的生物信息学分析
利用wheat-expression网站(http://www.wheat-expression.com/)对候选基因TraesCS2D02G058400(TaSDR-2D)进行表达量预测表明:TaSDR-2D在全生育期不同组织部位均表达,说明其为组成型表达基因。进化树分析(图1)显示,该候选基因与粗山羊草AET0Gv20136800亲缘关系最近。
实施例3:小麦TaSDR基因的序列分析
根据中国春Refseqv1.1注释可知,TraesCS2D02G058400(TaSDR-2D)的同源基因为TraesCS2A02G121800(TaSDR-2A)、TraesCS2B02G143600(TaSDR-2B)。TaSDR-2D与TaSDR-2A、TaSDR-2B的核苷酸序列如图2所示,其编码的氨基酸序列如图3所示。如图2所示,TaSDR-2D与TaSDR-2A、TaSDR-2B均含有3个外显子,2个内含子,TaSDR-2D与TaSDR-2A、TaSDR-2B的基因全长分别为1381bp、1126bp和1561bp,编码序列长度分别为921bp、894bp和921bp。如图2所示,DNAman软件进行序列比对,可知TaSDR-2D与TaSDR-2A、TaSDR-2B的相似性分别为87.34%、91.13%。如图3所示,TaSDR-2D与TaSDR-2A、TaSDR-2B分别编码306,297和306个氨基酸。利用DNAman软件进行序列比对,可知TaSDR-2D与TaSDR-2A、TaSDR-2B蛋白相似性分别为84.69%和88.27%。
实施例4:小麦TaSDR基因的基因编辑
利用CRISPR/Cas9系统对该候选基因及其同源基因进行敲除。由于小麦基因组的高度同源性,在基因的第二和第三外显子上设计了两个通用sgRNA:
sgRNA1:GAAGCGAGCGAGGCCGACGCCGG;
sgRNA2:GGACGACCTCGGCCACGCCGTGG。
载体构建、农杆菌转化等基因编辑工作及阳性苗筛选均委托山东省农业科学研究院的转基因中心完成。T0代共获得36株阳性苗。T1代于2020年9月种植49盆,包含7盆对照,每盆种植4株,每盆材料均来源于T0代同一单株。
在小麦拔节期,对T1代每一单株下部幼嫩叶片进行取样,采用天根生化科技(北京)有限公司的高效植物基因组DNA提取试剂盒,按照说明书进行DNA提取。对每组sgRNA序列设计特异序列进行PCR扩增,引物序列如下(小写字母为接头序列):
Figure BDA0003645357520000051
PCR反应体系如下:
Figure BDA0003645357520000052
Figure BDA0003645357520000061
PCR程序为:
预变性94℃10min;变性94℃30s,退火68℃30s,延伸72℃30s,重复30个循环;延伸72℃10min。
PCR产物由中国农科院水稻所测序组进行Hi-TOM测序,获取变异位点。
在Fielder及转基因植株收获前,测量其主茎株高。表型数据分析主要用Microsoft Excel 2007和SPSS 19.0完成,Fielder及转基因株系之间表型数据显著性比较采用t测验方法。
T1代突变体包括2种基因型,参见图4,AAbbDD基因型为2B基因组插入1bp、删除2bp两种类型;AAbbdd基因型为2B基因组插入1bp、2D基因组删除12bp。将野生型(WT)和突变体的氨基酸序列进行预测比对,如图5所示,2B基因组编辑突变体造成移码突变,提前终止;2D基因组编辑删除4个氨基酸。
野生型(WT,Fielder)和各突变体小麦植株照片见图6。株高表现见表2,t-测验结果表明(图7),WT和突变型植株间差异极显著。以上结果表明,TaSDR基因为控制小麦株高的基因。
表2野生型(WT)和突变体株高表现
Figure BDA0003645357520000062
实施例5:小麦TaSDR基因对茎秆细胞长度影响
在小麦开花期,分别取Fielder及转基因植株穗下节新鲜组织进行细胞学观察和测量,Fielder及每个植株设置3次生物学重复,每个重复取一个分蘖的穗下节中部组织,横切1~2cm小段,用50%的FAA固定液固定,进行组织石蜡包埋和纵切制作切片。切片扫描后分析Fielder及不同转基因植株之间薄壁细胞的长度差异。Fielder及每个转基因植株选择3张切片(每个生物学重复制作1张),用于节间薄壁细胞长度的测量。每个节间纵切切片中,于表皮向内的几层薄壁细胞区域随机选择一个区域测量薄壁细胞长度,每张切片测量细胞数目大于30,取平均值用于数据分析。
在细胞学水平上,株高性状变异主要是由细胞增多或增长造成(细胞数目或大小)。为了探究候选基因TaSDR控制株高的细胞学基础,我们在开花期取野生型及AAbbDD和AAbbdd突变体穗下节间中部组织为材料,进行切片观察。对茎部纵切切片薄壁细胞统计结果(表3和图8)显示,WT(Fielder)、AAbbdd和AAbbDD的细胞长度分别为354.9、294.4和220.3μm,图9显示它们相互之间差异极显著。以上结果表明,TaSDR基因通过调控细胞的长度来影响株高。
表3野生型(WT)和突变体细胞长度表现
Figure BDA0003645357520000071
Figure BDA0003645357520000081
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
序列表
<110> 山东农业大学
<120> 一种控制小麦株高的主效QTL及其候选基因和应用
<141> 2022-05-16
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 920
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgctcagag caattcacca tcttcttctt aggagcaaga tgagggcagc cgcggtggcg 60
atctcgtccg gcgtcggcct cgctcgcttc tgcacggcct cgagctccat gaggctggcc 120
ggcaaagtgg ccgtcatcac cggcgctgcc agcggcatgg gcaaggcgac cgccacggag 180
ttcgtcagga atggcgccaa ggtcatcctc accgacatcc aggacgacct cggccacgcc 240
gtggccgccg agctcggccc cgacgcttcc tacgcccgct gcgacgtgac cgacgaggcg 300
cagattgccg ccgccgtcga cctcgcagtg gcacgccacg gccggcttga cgtcctgcac 360
aaccacgccg gggtcaccgg gaggatgagt ttggagtccg tcgcatcgct cgacctggcc 420
gacttcgacc gcaccatggc agccaacgtc cggtctgccg tcgccggcat caagcacgcg 480
gcgcgggtga tggtgccgcg ccggagcggg tgcatcatct gcaccgcggg cacggcgggg 540
gtgctcggaa gcggcgtaaa ccccgcgtac tgcatctcca aggccgccgt gattggcgcc 600
gtccgggcgt tggccgggga gctggggagg cagggcgtgc gcgtgaacgc catatcgccg 660
cacgccatcg cgacgccgtt cgggctgcgc gggatggcag agctgctgcc ggagacgagc 720
gaggaggagc tgaggcggat ggtggcgacg gccatgaacg agatgggcgg gagtgttctg 780
gaggtggagg acatcgcgcg ggcggccgtg tacctggcgt ccgacgaggc caagtatgtc 840
aacgggcaca acctcgtcgt cgatggcggg tttaccgtgg ggaagctgat tcacatgccg 900
gatccggtga gcagtgcgtg 920
<210> 2
<211> 305
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Leu Arg Ala Ile His His Leu Leu Leu Arg Ser Lys Met Arg Ala
1 5 10 15
Ala Ala Val Ala Ile Ser Ser Gly Val Gly Leu Ala Arg Phe Cys Thr
20 25 30
Ala Ser Ser Ser Met Arg Leu Ala Gly Lys Val Ala Val Ile Thr Gly
35 40 45
Ala Ala Ser Gly Met Gly Lys Ala Thr Ala Thr Glu Phe Val Arg Asn
50 55 60
Gly Ala Lys Val Ile Leu Thr Asp Ile Gln Asp Asp Leu Gly His Ala
65 70 75 80
Val Ala Ala Glu Leu Gly Pro Asp Ala Ser Tyr Ala Arg Cys Asp Val
85 90 95
Thr Asp Glu Ala Gln Ile Ala Ala Ala Val Asp Leu Ala Val Ala Arg
100 105 110
His Gly Arg Leu Asp Val Leu His Asn His Ala Gly Val Thr Gly Arg
115 120 125
Met Ser Leu Glu Ser Val Ala Ser Leu Asp Leu Ala Asp Phe Asp Arg
130 135 140
Thr Met Ala Ala Asn Val Arg Ser Ala Val Ala Gly Ile Lys His Ala
145 150 155 160
Ala Arg Val Met Val Pro Arg Arg Ser Gly Cys Ile Ile Cys Thr Ala
165 170 175
Gly Thr Ala Gly Val Leu Gly Ser Gly Val Asn Pro Ala Tyr Cys Ile
180 185 190
Ser Lys Ala Ala Val Ile Gly Ala Val Arg Ala Leu Ala Gly Glu Leu
195 200 205
Gly Arg Gln Gly Val Arg Val Asn Ala Ile Ser Pro His Ala Ile Ala
210 215 220
Thr Pro Phe Gly Leu Arg Gly Met Ala Glu Leu Leu Pro Glu Thr Ser
225 230 235 240
Glu Glu Glu Leu Arg Arg Met Val Ala Thr Ala Met Asn Glu Met Gly
245 250 255
Gly Ser Val Leu Glu Val Glu Asp Ile Ala Arg Ala Ala Val Tyr Leu
260 265 270
Ala Ser Asp Glu Ala Lys Tyr Val Asn Gly His Asn Leu Val Val Asp
275 280 285
Gly Gly Phe Thr Val Gly Lys Leu Ile His Met Pro Asp Pro Val Ser
290 295 300
Ser
305
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gaagcgagcg aggccgacgc cgg 23
<210> 4
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggacgacctc ggccacgccg tgg 23
<210> 5
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggagtgagta cggtgtgcca tggaccagga cacgacat 38
<210> 6
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gagttggatg ctggatggag gtagtgctcc ctccgtaa 38
<210> 7
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ggagtgagta cggtgtgcgc gacggactcc aaactcat 38
<210> 8
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gagttggatg ctggatgggg tcatcctcac cgacatcc 38
<210> 9
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ggagtgagta cggtgtgccg gagtccatgg tcatcc 36
<210> 10
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gagttggatg ctggatgggg tcatcctcac tgacattca 39
<210> 11
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggagtgagta cggtgtgcag aaaacaaaga ttccacggca 40
<210> 12
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gagttggatg ctggatgggc accaccttct tctgaggt 38

Claims (9)

1.一种控制小麦株高的主效QTL,其特征在于,所述主效QTL为QPh-2D.1,位于2D染色体上,其遗传距离为1995.71~2002.73cM,物理区间大小为212Kb。
2.根据权利要求1所述的控制小麦株高的主效QTL,其特征在于,所述主效QTL具有降低株高效应,其减效等位基因来自父本品种鲁麦21。
3.权利要求1所述的控制小麦株高的主效QTL的候选基因,其特征在于,所述候选基因为TaSDR-2D,其核苷酸序列如SEQ ID No.1所示。
4.权利要求3所述的候选基因的编码蛋白,其特征在于,所述编码蛋白的氨基酸序列如SEQ ID No.2所示。
5.权利要求1所述的主效QTL或权利要求3所述的候选基因在小麦株高性状的遗传改良中的应用。
6.根据权利要求5所述的应用,其特征在于,在应用时,通过敲除所述候选基因能够降低小麦的株高。
7.根据权利要求6所述的应用,其特征在于,所述候选基因通过调控小麦细胞的长度来影响小麦的株高。
8.权利要求1所述的主效QTL或权利要求3所述的候选基因在加快选育小麦矮秆品种中的应用。
9.根据权利要求8所述的应用,其特征在于,利用所述候选基因来检测小麦品种或品系中候选基因等位变异,从而加快选育小麦品种的进程。
CN202210527987.7A 2022-05-16 2022-05-16 一种控制小麦株高的主效qtl及其候选基因和应用 Active CN115011617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210527987.7A CN115011617B (zh) 2022-05-16 2022-05-16 一种控制小麦株高的主效qtl及其候选基因和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210527987.7A CN115011617B (zh) 2022-05-16 2022-05-16 一种控制小麦株高的主效qtl及其候选基因和应用

Publications (2)

Publication Number Publication Date
CN115011617A true CN115011617A (zh) 2022-09-06
CN115011617B CN115011617B (zh) 2023-11-14

Family

ID=83069278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210527987.7A Active CN115011617B (zh) 2022-05-16 2022-05-16 一种控制小麦株高的主效qtl及其候选基因和应用

Country Status (1)

Country Link
CN (1) CN115011617B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199584A (ja) * 2001-11-02 2003-07-15 Plant Genome Center Co Ltd 植物の半わい性遺伝子およびその利用
CN102459614A (zh) * 2009-04-29 2012-05-16 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
CN103060319A (zh) * 2013-01-17 2013-04-24 中国农业科学院作物科学研究所 用于鉴定小麦千粒重的引物对以及相关分子标记
JP2016063763A (ja) * 2014-09-24 2016-04-28 国立研究開発法人農業生物資源研究所 Sdr1遺伝子の発現又は活性が抑制されたイネ又はコムギ
CN108642064A (zh) * 2018-05-21 2018-10-12 安徽农业大学 小麦种子休眠持续期基因TaCNGC-2A及其功能标记
EP3561079A1 (en) * 2018-04-24 2019-10-30 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Soybean anti-pod-shattering major qtlqpd08-1, and mapping method and application thereof
US20190333602A1 (en) * 2018-04-24 2019-10-31 Institute Of Crop Sciences, Chinese Academy Of Agricultural Sciences SOYBEAN ANTI-POD-SHATTERING MAJOR QTLqPD05, AND MAPPING METHOD AND APPLICATION THEREOF
CN111118041A (zh) * 2020-01-07 2020-05-08 福建省农业科学院水稻研究所 一种水稻类病斑spl36基因的突变体及其应用
CN112574289A (zh) * 2020-12-30 2021-03-30 中国农业科学院作物科学研究所 小麦TaTFIIB基因在调控小麦株高发育中的应用
CN113151576A (zh) * 2021-06-07 2021-07-23 鲁东大学 与小麦株高主效qtl紧密连锁的分子标记及其获取方法和应用
CN114457091A (zh) * 2021-12-22 2022-05-10 山东农业大学 一种影响小麦籽粒品质的基因TaXip及其应用
CN114921583A (zh) * 2022-05-23 2022-08-19 山东农业大学 一种控制小麦株高的QTL及其候选基因TaDHL-7B和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199584A (ja) * 2001-11-02 2003-07-15 Plant Genome Center Co Ltd 植物の半わい性遺伝子およびその利用
CN102459614A (zh) * 2009-04-29 2012-05-16 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
CN103060319A (zh) * 2013-01-17 2013-04-24 中国农业科学院作物科学研究所 用于鉴定小麦千粒重的引物对以及相关分子标记
JP2016063763A (ja) * 2014-09-24 2016-04-28 国立研究開発法人農業生物資源研究所 Sdr1遺伝子の発現又は活性が抑制されたイネ又はコムギ
EP3561079A1 (en) * 2018-04-24 2019-10-30 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Soybean anti-pod-shattering major qtlqpd08-1, and mapping method and application thereof
US20190333602A1 (en) * 2018-04-24 2019-10-31 Institute Of Crop Sciences, Chinese Academy Of Agricultural Sciences SOYBEAN ANTI-POD-SHATTERING MAJOR QTLqPD05, AND MAPPING METHOD AND APPLICATION THEREOF
CN108642064A (zh) * 2018-05-21 2018-10-12 安徽农业大学 小麦种子休眠持续期基因TaCNGC-2A及其功能标记
CN111118041A (zh) * 2020-01-07 2020-05-08 福建省农业科学院水稻研究所 一种水稻类病斑spl36基因的突变体及其应用
CN112574289A (zh) * 2020-12-30 2021-03-30 中国农业科学院作物科学研究所 小麦TaTFIIB基因在调控小麦株高发育中的应用
CN113151576A (zh) * 2021-06-07 2021-07-23 鲁东大学 与小麦株高主效qtl紧密连锁的分子标记及其获取方法和应用
CN114457091A (zh) * 2021-12-22 2022-05-10 山东农业大学 一种影响小麦籽粒品质的基因TaXip及其应用
CN114921583A (zh) * 2022-05-23 2022-08-19 山东农业大学 一种控制小麦株高的QTL及其候选基因TaDHL-7B和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GENBANK: "NCBI Reference Sequence: XM_044474025.1", GENBANK, pages 1 - 2 *
GENBANK: "NCBI Reference Sequence: XP_044329960.1", GENBANK, pages 1 - 2 *
LINGFENG MAO等: "Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants", PROC NATL ACAD SCI U S A, vol. 117, no. 22, pages 12472 - 12480 *
王伟;王斌;于亮;王伟伟;曹平平;陆莉;王奉芝;钮力亚;: "小麦叠氮化钠诱变群体重要功能基因的KASP标记检测", 种子, no. 01, pages 46 - 52 *
王佳佳等: "小麦穗部性状和株高的QTL定位", 分子植物育种, vol. 15, no. 1, pages 77 - 84 *
王竹林;王辉;孙道杰;何中虎;夏先春;刘曙东;: "小麦株高的QTL分析", 西北农林科技大学学报(自然科学版), no. 12, pages 67 - 71 *

Also Published As

Publication number Publication date
CN115011617B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2005024017A1 (en) Nucleic acid molecules associated with oil in plants
CN111153974A (zh) 玉米抗病基因和分子标记及其应用
CN111172173B (zh) 降低玉米株高或延迟开花的方法
CN110862993B (zh) 控制玉米株高和穗位高基因zkm89及其应用
CN114990139B (zh) CsHLS1基因或其编码的蛋白在调控黄瓜植株器官大小中的应用
CN112522282B (zh) 一种调控番茄可溶性固形物含量的基因及应用
CN110698550B (zh) 一种快速鉴定真梅/杏梅品系的分子检测方法
CN110760527B (zh) 与干旱胁迫相关的菏豆12号GmYLD1基因及其等位突变基因与应用
CN112680459A (zh) 雄性不育基因ZmTGA10及其在创制玉米雄性不育系中的应用
CN113429468B (zh) 大麦雄性不育基因msg3002及其应用
CN113774043B (zh) 一种控制水稻颖壳色彩性状的相关蛋白及其编码基因
CN115011617B (zh) 一种控制小麦株高的主效qtl及其候选基因和应用
CN113754746B (zh) 水稻雄性育性调控基因、其应用以及利用CRISPR-Cas9调控水稻育性的方法
CN112574288B (zh) 小麦TaFBX113基因在调控粒厚发育中的应用
CN112538487B (zh) 番茄不规则裂果关键调控基因及其鉴定方法和应用
CN114921583A (zh) 一种控制小麦株高的QTL及其候选基因TaDHL-7B和应用
CN114395580A (zh) 用于控制玉米株高的基因
CN113430209A (zh) 大麦雄性不育基因bms-1及其应用
CN111172171A (zh) 控制玉米株高和花期的基因及其应用
CN110862994A (zh) 控制玉米株高和穗位高基因zkm76及其应用
CN100529078C (zh) 控制水稻绒毡层降解的蛋白编码序列
CN113754747B (zh) 一种水稻雄性育性调控基因突变体及其分子标记和应用
CN110903369B (zh) Aoc3蛋白在调控植物苞叶厚度中的应用
Liu et al. A 1-bp deletion in the MC04g1399 is highly associated with failure to produce fruit wart in bitter gourd
CN111499713B (zh) 水稻粒型基因qGL6-2及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant