CN115010482B - 一种大功率用高导电氧化锌基陶瓷的制备方法 - Google Patents

一种大功率用高导电氧化锌基陶瓷的制备方法 Download PDF

Info

Publication number
CN115010482B
CN115010482B CN202210678142.8A CN202210678142A CN115010482B CN 115010482 B CN115010482 B CN 115010482B CN 202210678142 A CN202210678142 A CN 202210678142A CN 115010482 B CN115010482 B CN 115010482B
Authority
CN
China
Prior art keywords
equal
less
temperature
powder
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210678142.8A
Other languages
English (en)
Other versions
CN115010482A (zh
Inventor
张代兵
王俊
张晨然
吕辰
钦达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN202210678142.8A priority Critical patent/CN115010482B/zh
Publication of CN115010482A publication Critical patent/CN115010482A/zh
Application granted granted Critical
Publication of CN115010482B publication Critical patent/CN115010482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种大功率用高导电氧化锌基陶瓷的制备方法。本发明以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,以氨水、三乙醇胺和去离子水混合液作为溶剂,通过二次水热反应制备了Zn1‑x‑yNixGayO(0≤x≤0.005,0≤y≤0.2)粉体,所得粉体经真空热压法烧结后,制备出载流子浓度≥2×1020cm‑3、载流子迁移率≥50cm2V‑1S‑1、电阻率为ρ≤3.0×10‑6Ω·m、电阻温度系数为k≤+2.0×10‑3/℃、使用温度范围为‑100~500℃的Zn1‑x‑yNixGayO(0≤x≤0.005,0≤y≤0.2)导电陶瓷。本发明工艺具有环境友好、节能、高效等特点。

Description

一种大功率用高导电氧化锌基陶瓷的制备方法
技术领域
本发明属于导电材料技术领域,特别涉及一种制备大功率用高导电氧化锌基陶瓷的方法,涉及到水热合成法和真空热压烧结工艺。
背景技术
在脉冲大功率供电系统中,通常采用金属导电体,但它在升温150℃后性能失效,因此需增加金属体积和串并联数量,导致其体积较大且因电感量大而使控制电路复杂。为了克服金属材料的不足,采用“水电阻”技术可克服上述问题,但“水电阻”体积仍然庞大、温度范围窄、实战性差。近年来,国内外采用高导电的非金属陶瓷方案,解决以上问题,但存在抗氧化特性差、使用温度窄等问题(陶瓷需浸泡在油里)。目前这些非金属陶瓷全部依赖进口,需求量大,价格昂贵。
导电氧化物陶瓷可解决上述问题,但国内外此类产品甚少,目前已有氧化物陶瓷产品一般其导电性能低、且电阻温度系数为负,无法满足实际要求。氧化物陶瓷因其具有高温服役稳定、抗氧化、环境友好等特点,近几年颇受国内外研究者关注。已发展众多氧化物陶瓷:ZnO、NaxCoO2、Ca3Co4O9、SrTiO3、CaMnO3等,相比于其它氧化物陶瓷,NaxCoO2和ZnO均具有较优异的导电能力。NaxCoO2陶瓷凭借其[CoO2]层可为电子提供快速通道,结合有效的掺杂改性及结构调控,常温电阻率低至1×10-4Ω·m,已具备了较优异的导电性[Tak JY,etal.Journal of Electronic Materials,2015,44:1408-1412.]。但因在高温下,Na容易挥发导致其结构和性能不稳定,进而限制了其应用。相比于NaxCoO2陶瓷,ZnO陶瓷的电学性能及热稳定性都极佳,而且原料丰富、价格低廉,是一种极富应用潜力的导电陶瓷。ZnO由于天然存在着O空位和Zn间隙等多种缺陷,因此不掺杂的ZnO表现为n型导电特性,可通过高价离子的n型掺杂实现更优异的导电性。早在1996年,M.ohtaki等利用传统球磨工艺结合固相烧结法制备的Al掺杂ZnO陶瓷,其室温电阻率可低至~1×10-5Ω·m[Ohtaki M,etal.Journal of Applied Physics,1996,79:1816-1818.]。继此之后,各国学者通过不同的制备工艺和掺杂改性,对ZnO陶瓷的电输运性质进行了大量的研究和探索。但随后的研究发现,ZnO-Al2O3体系的相图中没有Al2O3在ZnO中的固溶区,固溶度仅~0.3%mol,这就给Al掺杂ZnO的研究带来了困难,因此限制了ZnO陶瓷电导率的进一步提升。研究者们也曾尝试利用其它Ti4+、Sn4+、Bi3+、Ga3+、Sb5+等高价离子单掺或者共掺提高ZnO的导电性,但结果并不理想,该系列掺杂离子的固溶度依然很低,当离子掺杂量高于2%mol时容易出现高电阻率的第二相,限制了ZnO电导率的提升。
发明内容
本发明提供一种制备大功率用高导电氧化锌基高温陶瓷的方法,采用二次水热法制备了Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)前驱粉体,结合真空热压烧结技术,制备出载流子浓度≥2x1020cm-3、载流子迁移率≥50cm2V-1S-1、电阻率为ρ≤3.0×10-6Ω·m、电阻温度系数为k≤+2.0×10-3/℃、使用温度范围为-100~500℃的Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)导电陶瓷。
一种大功率用高导电氧化锌基高温陶瓷的制备方法,其特征是:以形貌为1~3μm颗粒自组装成的5~15μm花状微米球结构且XRD检测未发现第二相的Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)为前驱粉体,在压力为20~25Mpa,温度为900~1000℃下真空热压烧结,保温1~2h,获得Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)导电陶瓷。
具有花状微米球结构Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)粉体采用二次水热法进行合成,其制备工艺包括以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,140~180℃进行2~3h一次水热反应;粉体收集后以氨水作为表面活性剂,调制PH值为9.1~9.5,在180~190℃进行1~2h二次水热反应。
本发明的技术特征是:利用二次水热法制备了形貌为1~3μm颗粒自组装成的5~15μm花状微米球结构且XRD检测未发现第二相的Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)的前驱粉体,花状结构有利于块体陶瓷获得高迁移率,粉体中未发现第二相表明高的离子掺杂浓度,该方法克服了掺杂离子固溶量低的问题,前驱粉体经真空热压烧结技术烧结后,获得了高导电的Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)导电陶瓷。
目前,获得电阻率为ρ≤3.0x10-6Ω·m、电阻温度系数为k≤+2.0×10-3/℃、使用温度范围为-100~500℃的Zn1-x-yNixGayO(0≤x≤0.005,0≤y≤0.2)导电陶瓷未见报道。
具体实施方式
1.以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,按照化学通式Zn0.945Ni0.005Ga0.05O配置,以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,180℃进行2h一次水热反应;粉体收集后以氨水作为表面活性剂,调制PH值为9.1,在180℃进行2h二次水热反应,获得Zn0.945Ni0.005Ga0.05O粉体,该粉体在压力25Mpa,温度为950℃下真空热压烧结,保温1h,制备出电阻率为ρ=2.7×10-6Ω·m、电阻温度系数为k=+1.1×10-3/℃、使用温度范围为-100~500℃的Zn0.945Ni0005Ga0.05O导电陶瓷。
2.以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,按照化学通式Zn0.915Ni0.005Ga0.08O配置,以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,170℃进行2h一次水热反应;粉体收集后以氨水作为表面活性剂,调制PH值为9.5,在190℃进行2h二次水热反应,获得Zn0.915Ni0.005Ga0.08O粉体,该粉体在压力20Mpa,温度为1000℃下真空热压烧结,保温1.5h,制备出电阻率为ρ=2.2×10-6Ω·m、电阻温度系数为k=+1.4×10-3/℃、使用温度范围为-100~500℃的Zn0.915Ni0.005Ga0.08O导电陶瓷。
3.以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,按照化学通式Zn0.878Ni0.002Ga0.12O配置,以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,140℃进行3h一次水热反应;粉体收集后以氨水作为表面活性剂,调制PH值为9.3,在180℃进行1h二次水热反应,获得Zn0.878Ni0.002Ga0.12O粉体,该粉体在压力20Mpa,温度为1000℃下真空热压烧结,保温2h,制备出电阻率为ρ=1.6×10-6Ω·m、电阻温度系数为k=+1.9×10-3/℃、使用温度范围为-100~500℃的Zn0.878Ni0.002Ga0.12O导电陶瓷。
4.以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,按照化学通式Zn0.795Ni0.005Ga0.2O配置,以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,160℃进行3h一次水热反应;粉体收集后以氨水作为表面活性剂,调制PH值为9.5,在180℃进行1h二次水热反应,获得Zn0.795Ni0.005Ga0.2O粉体,该粉体在压力20Mpa,温度为1000℃下真空热压烧结,保温2h,制备出电阻率为ρ=2.0×10-6Ω·m、电阻温度系数为k=+1.6×10-3/℃、使用温度范围为-100~500℃的Zn0.795Ni0.005Ga0.2O导电陶瓷。

Claims (1)

1.一种大功率用高导电氧化锌基高温陶瓷的制备方法,其特征是:以Zn(CH3COO)2·2H2O、Ga(NO3)3·xH2O和Ni(NO3)2·6H2O为原料,按照化学通式Zn1-x-yNixGayO配置,0<x≤0.005,0<y≤0.2,以体积比为0.5∶1.5∶8的氨水、三乙醇胺和去离子水混合液作为溶剂,140~180℃进行2~3h一次水热反应;粉体收集后以氨水作为表面活性剂,调制pH值为9.1~9.5,在180~190℃进行1~2h二次水热反应,获得形貌为1~3μm颗粒自组装成的5~15μm花状微米球结构且XRD检测未发现第二相的Zn1-x-yNixGayO粉体,0<x≤0.005,0<y≤0.2,该粉体在压力20~25MPa,温度为900~1000℃下真空热压烧结,保温1~2h,制备出载流子浓度≥2×1020cm-3、载流子迁移率≥50cm2V-1S-1、电阻率为ρ≤3.0×10-6Ω·m、电阻温度系数为k≤+2.0×10-3/℃、使用温度范围为-100~500℃的Zn1-x-yNixGayO导电陶瓷,0<x≤0.005,0<y≤0.2。
CN202210678142.8A 2022-05-11 2022-05-11 一种大功率用高导电氧化锌基陶瓷的制备方法 Active CN115010482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210678142.8A CN115010482B (zh) 2022-05-11 2022-05-11 一种大功率用高导电氧化锌基陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210678142.8A CN115010482B (zh) 2022-05-11 2022-05-11 一种大功率用高导电氧化锌基陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN115010482A CN115010482A (zh) 2022-09-06
CN115010482B true CN115010482B (zh) 2023-10-24

Family

ID=83074147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210678142.8A Active CN115010482B (zh) 2022-05-11 2022-05-11 一种大功率用高导电氧化锌基陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115010482B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050551A1 (en) * 2002-12-02 2004-06-17 Council Of Scientific And Industrial Research Rocess for preparing and self-assembling nano-sized binary and ternary oxy/hydroxides
US20070215456A1 (en) * 2006-03-15 2007-09-20 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP2007302508A (ja) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜
CN101381228A (zh) * 2008-10-08 2009-03-11 吉林大学 镓掺杂氧化锌透明多晶陶瓷的制备方法
US20090200525A1 (en) * 2006-08-24 2009-08-13 Nippon Mining & Metals Co., Ltd. Zinc Oxide Based Transparent Electric Conductor, Sputtering Target for Forming of the Conductor and Process for Producing the Target
KR20100004202A (ko) * 2008-07-03 2010-01-13 김창호 전도성 무기 나노분말의 제조방법
CN102509648A (zh) * 2011-10-24 2012-06-20 北京科技大学 一种Ga掺杂ZnO纳米材料的制备方法
KR20120098528A (ko) * 2011-02-28 2012-09-05 인제대학교 산학협력단 수열 합성법과 플라즈마 표면 처리의 반복에 의한 나노 로드의 제조 방법, 이에 의하여 제조된 나노 로드 및 이를 포함하는 소자
KR20130083214A (ko) * 2012-01-12 2013-07-22 희성금속 주식회사 수열합성법에 의한 이종(異種)원소가 도핑된 전도성 산화아연 나노분말 제조방법
CN103693954A (zh) * 2013-12-09 2014-04-02 中国科学院福建物质结构研究所 高电导率氧化锌陶瓷及其制备方法
CN104891554A (zh) * 2015-06-08 2015-09-09 济南大学 一种ZnO双花头状结构的制备方法及所得产品
CN105669182A (zh) * 2016-01-05 2016-06-15 北京工业大学 一种用放电等离子烧结研究镓掺杂氧化锌陶瓷最佳烧结工艺的方法
CN106986373A (zh) * 2017-04-26 2017-07-28 武汉理工大学 一种ZnO纳米棒的制备方法
KR20180117350A (ko) * 2017-04-19 2018-10-29 울산대학교 산학협력단 산화아연 흡착층을 포함하는 소수성 복합체 및 이의 제조방법
CN111661871A (zh) * 2020-06-05 2020-09-15 济南大学 一种锥形棒组装的In2O3/ZnO微米花结构的合成方法
CN113135586A (zh) * 2021-04-21 2021-07-20 内蒙古大学 氧化锌微米球、电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805813B2 (ja) * 1988-08-09 1998-09-30 東ソー株式会社 スパッタリングターゲット及びその製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050551A1 (en) * 2002-12-02 2004-06-17 Council Of Scientific And Industrial Research Rocess for preparing and self-assembling nano-sized binary and ternary oxy/hydroxides
US20070215456A1 (en) * 2006-03-15 2007-09-20 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP2007302508A (ja) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜
US20090200525A1 (en) * 2006-08-24 2009-08-13 Nippon Mining & Metals Co., Ltd. Zinc Oxide Based Transparent Electric Conductor, Sputtering Target for Forming of the Conductor and Process for Producing the Target
KR20100004202A (ko) * 2008-07-03 2010-01-13 김창호 전도성 무기 나노분말의 제조방법
CN101381228A (zh) * 2008-10-08 2009-03-11 吉林大学 镓掺杂氧化锌透明多晶陶瓷的制备方法
KR20120098528A (ko) * 2011-02-28 2012-09-05 인제대학교 산학협력단 수열 합성법과 플라즈마 표면 처리의 반복에 의한 나노 로드의 제조 방법, 이에 의하여 제조된 나노 로드 및 이를 포함하는 소자
CN102509648A (zh) * 2011-10-24 2012-06-20 北京科技大学 一种Ga掺杂ZnO纳米材料的制备方法
KR20130083214A (ko) * 2012-01-12 2013-07-22 희성금속 주식회사 수열합성법에 의한 이종(異種)원소가 도핑된 전도성 산화아연 나노분말 제조방법
CN103693954A (zh) * 2013-12-09 2014-04-02 中国科学院福建物质结构研究所 高电导率氧化锌陶瓷及其制备方法
CN104891554A (zh) * 2015-06-08 2015-09-09 济南大学 一种ZnO双花头状结构的制备方法及所得产品
CN105669182A (zh) * 2016-01-05 2016-06-15 北京工业大学 一种用放电等离子烧结研究镓掺杂氧化锌陶瓷最佳烧结工艺的方法
KR20180117350A (ko) * 2017-04-19 2018-10-29 울산대학교 산학협력단 산화아연 흡착층을 포함하는 소수성 복합체 및 이의 제조방법
CN106986373A (zh) * 2017-04-26 2017-07-28 武汉理工大学 一种ZnO纳米棒的制备方法
CN111661871A (zh) * 2020-06-05 2020-09-15 济南大学 一种锥形棒组装的In2O3/ZnO微米花结构的合成方法
CN113135586A (zh) * 2021-04-21 2021-07-20 内蒙古大学 氧化锌微米球、电极及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Fabrication of a TiNx/Ni/Au Contact on ZnO Films With High Thermal Stability and Low Resistance;J. W. Chai 等;《IEEE TRANSACTIONS ON ELECTRON DEVICES》;20111231;第58卷(第12期);第4297-4300页 *
Low resistivity of Ni–Al co-doped ZnO thin films deposited by DC magnetron sputtering at low sputtering power;JongWoo Lee 等;《Applied Surface Science》;20131220;第293卷;第55-61页 *
Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor;Chen Xiaoshuang 等;《CrystEngComm》;20130628;第15卷;第7243-7249页 *
ZnO基热电材料的掺杂改性及微结构调控;张代兵;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20170515(第5期);第B015-18页 *
水热法制备ZnO抗静电导电粉研究;刘雪佳 等;《化工新型材料》;20180930;第46卷(第9期);第253-255页 *
过渡族元素掺杂ZnO稀磁半导体薄膜的生长及其性能研究;王雪涛;《中国优秀硕士学位论文全文数据库 信息科技辑》;20100815(第8期);第I135-158页 *

Also Published As

Publication number Publication date
CN115010482A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN110272270B (zh) 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法
Park et al. Enhanced high-temperature thermoelectric properties of Ce-and Dy-doped ZnO for power generation
EP1672709B1 (en) Conductive paste for connecting thermoelectric conversion material
CN109560186B (zh) 一种n型热电薄膜及其制备和应用
CN104341144B (zh) 低温烧结c0g特性微波介质材料及其制备方法
CN103420675A (zh) 一种Nd2-xCexCuO4-δ超导纳米瓷粉的低温制备方法
CN105355771B (zh) 一种高功率因子氧化锌热电材料及其制备方法
CN102875141A (zh) 一种Nb掺杂的YBCO超导薄膜及制备方法
CN106699173B (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN105642884B (zh) 一种具有核‑壳结构的Bi‑Te基热电材料的制备方法
CN115010482B (zh) 一种大功率用高导电氧化锌基陶瓷的制备方法
CN111377733B (zh) 一种CaTiO3基氧化物热电材料及其制备方法
CN109659427B (zh) 一种过渡金属包覆In2O3(ZnO)5核-壳结构热电材料的制备方法
CN109554674A (zh) 一种具有异质结构的碲化铋热电薄膜的制备方法
CN104193323B (zh) SrTiO3/TiO2复合热电陶瓷材料的制备方法
CN101694789B (zh) 一种Ti掺杂的YBCO薄膜的制备方法
CN115050884A (zh) 一种ZrNiSn基Half-Heusler热电材料及其制备方法
JP4595236B2 (ja) 熱電材料の製造方法
KR101188788B1 (ko) 고체산화물 연료전지용 세라믹 접속자 분말의 제조방법 및 그 접속자
El Shinawi et al. Synthesis and characterization of La1. 5+ x Sr 0.5− x Co 0.5 Ni 0.5 O 4±δ (x= 0, 0.2)
Sastry et al. Stoichiometry and Tc of Bi-2201 doped with La, Pr, Nd and Pb
CN115504503B (zh) 一种铌掺杂立方相二维片状钛酸锶材料及其制备方法
CN115403358B (zh) 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法
Yuenyongchaiwat et al. Synthesis of Sr-and Fe-doped LaGaO 3 perovskites by the modified citrate method
CN116081678A (zh) 一种管式炉烧结制备Cu2S热电材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant