CN115007874A - 由小纳米团簇到大纳米团簇的静电融合方法 - Google Patents

由小纳米团簇到大纳米团簇的静电融合方法 Download PDF

Info

Publication number
CN115007874A
CN115007874A CN202210607670.4A CN202210607670A CN115007874A CN 115007874 A CN115007874 A CN 115007874A CN 202210607670 A CN202210607670 A CN 202210607670A CN 115007874 A CN115007874 A CN 115007874A
Authority
CN
China
Prior art keywords
nanoclusters
pet
solution
preparation
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210607670.4A
Other languages
English (en)
Other versions
CN115007874B (zh
Inventor
乌代
赵海蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210607670.4A priority Critical patent/CN115007874B/zh
Publication of CN115007874A publication Critical patent/CN115007874A/zh
Application granted granted Critical
Publication of CN115007874B publication Critical patent/CN115007874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了由小纳米团簇到大纳米团簇的静电融合方法,属于纳米材料合成领域。本发明采用简单的静电融合的方法,制备较大的新型纳米团簇。利用其中的正负电荷的融合形成大的团簇。本发明与现有的技术相比,具有制备方法相对简单,方法具有普适性可大规模推广的优点。其高稳定性为以后的实际应用打下坚实的基础。

Description

由小纳米团簇到大纳米团簇的静电融合方法
技术领域
本发明属于纳米材料合成领域,具体涉及采用静电融合纳米团簇,通过还原反应和洗涤分离作用,制备的由较小的纳米团簇到较大的纳米团簇转变的方法。
背景技术
近年来,原子级精确调控金纳米团簇引起了科学研究人员的极大兴趣,特别是它们独特的结构以及与光学、电子和催化性能的相关性。众所周知,块金具有面心立方结构,但金纳米团簇的结构却是高度多样化的,因此发现新型纳米团簇具有重大意义。通过适当调整硫醇选择、反应物的相对浓度和实验条件,可以控制特定硫醇化金纳米团簇的制备。重要的是,通过反应将一种结构转化为另一种结构,可以显著扩展金纳米团簇库。
一种方法是从更大的金纳米团簇着手,并用过量硫醇对它们进行热蚀刻,从而产生更小的纳米团簇。然而,通常采用的方法是通过配体位置交换从而诱导尺寸转换,它涉及在大量过量硫醇的存在下对簇进行热活化。为了使该反应成功,过量的硫醇应与表面保护的硫醇有所不同。另一种方法就是从较小的纳米团簇到较大的纳米团簇的转变,但这种方法并没有被大量报道。
发明内容
[要解决的技术问题]
本发明的目的是开发一种新型的方法,通过纳米团簇的静电融合,将较小的纳米团簇转变为较大的纳米团簇。本发明合成条件温和,合成过程简单,容易实现快速高效的大量生产,并且对于多种纳米团簇适用性较广泛。
[技术方案]
本发明采取以下技术方案:
本发明利用动力学控制多分散金纳米团簇粗产物的合成,在氯金酸/四正辛基溴化铵/四氢呋喃体系中加入硫醇,溶液颜色由橙色变成无色,表明三价金被还原成一价金,然后加入硼氢化钠的水溶液,将一价金还原成纳米团簇。通过柱色法将带不同电荷量的纳米团簇分离,利用带有正负电荷的纳米团簇的静电融合,实现从较小的纳米团簇到较大的纳米团簇的转变。本发明提供了一种简便、普适的方法制备由较小的纳米团簇到较大的纳米团簇的转变。
A.[Aum1SRn1]-纳米团簇的制备
配置四氯金酸/四正辛基溴化铵/四氢呋喃的混合体系,搅拌使其溶解完全,溶液颜色由黄色变成深红色,加入2-苯乙硫醇,完全溶解后得到无色澄清透明的溶液;之后快速加入溶于冰水的硼氢化钠溶液,进行搅拌,得到黑色溶液并保持搅拌状态8小时,之后在室温下旋蒸黑色溶液,得到黑色像油一样的纳米团簇,随后加入甲醇进行离心,倒掉上清液,得到的黑色沉淀用甲醇溶液重复上述操作清洗两到三次,然后加入乙腈进行离心,收集上清液然后旋蒸,最后将旋蒸得到的黑色固体溶于甲苯溶液中,得到稳定的[Aum1SRn1]-纳米团簇溶液。
B、[Aum2SRn2]+的制备
利用柱色法将上述步骤A所得到的[Aum1SRn1]-产物转化为[Aum2SRn2]+,具体操作为:
将[Aum1SRn1]-溶液加入到以溶于二氯甲烷的硅胶为固定相的吸附柱中,根据[Aum1SRn1]-和[Aum2SRn2]+的极性不同,在柱色法中被分离出来。
C、[Aum1+m2SRn3]2-纳米团簇的制备
将步骤A中的[Aum1SRn1]-溶液与步骤B中的[Aum2SRn2]+溶液均匀混合,常温下保存6小时,然后放进真空干燥箱中加热,得到[Aum1+m2SRn3]2-纳米团簇。
一种如上述所述的制备方法得到的较大的纳米团簇,稳定性良好,在5℃条件下能够存放数月,其高稳定性在实际应用中非常重要。
[有益效果]
本发明与现有技术相比,具有以下的有益效果:
与现有的技术相比,本发明所制备的较大的纳米团簇合成过程比较简单。通过正负电荷的融合,形成比自身尺寸更大的团簇。具有原料易得,制备工艺简单、价格低廉的优势,同事制备的纳米团簇具有很高的稳定性。
举例:
[Au25PET18]-与[Au25PET18]+静电融合为[Au52PET33C]2-
附图说明
图1采用该方法制备得到的[Au52PET33C]2-纳米团簇的透射电子显微镜图;
图2甲苯溶液下,[Au52PET33C]2-纳米团簇的紫外吸收光谱图
具体实施方式
下面结合本发明的实施例对本发明作进一步的阐述和说明。
将1mg的[Au52PET33C]2-纳米团簇溶于2mL甲苯溶液中,取2-3滴溶液滴于铜网上,待挥发干之后做透射电子显微镜扫描。
紫外吸收光谱测试:取1mg的[Au52PET33C]2-纳米团簇溶于2mL甲苯溶液中,用甲苯溶液做基线,使用紫外可见光谱仪测试纳米团簇的吸收光谱。

Claims (4)

1.由小纳米团簇到大纳米团簇的静电融合方法,其特征在于它包括以下步骤:
A.[Au25PET18]-纳米团簇的制备
配置四氯金酸/四正辛基溴化铵/四氢呋喃的混合体系,搅拌使其溶解完全,溶液颜色由黄色变成深红色,加入2-苯乙硫醇,完全溶解后得到无色澄清透明的溶液;之后快速加入溶于冰水的硼氢化钠溶液,进行搅拌,得到黑色溶液并保持搅拌状态8小时,之后在室温下旋蒸黑色溶液,得到黑色像油一样的纳米团簇,随后加入甲醇进行离心,倒掉上清液,得到的黑色沉淀用甲醇溶液重复上述操作清洗两到三次,然后加入乙腈进行离心,收集上清液然后旋蒸,最后将旋蒸得到的黑色固体溶于甲苯溶液中,得到稳定的[Au25PET18]-纳米团簇溶液;
B、[Au25PET18]+的制备
利用柱色法将上述步骤A所得到的[Au25PET18]-产物转化为[Au25PET18]+,具体操作为:将[Au25PET18]-溶液加入到以溶于二氯甲烷的硅胶为固定相的吸附柱中,根据[Au25PET18]-和[Au25PET18]+的极性不同,在柱色法中被分离出来;
C、[Au52PET33C]2-纳米团簇的制备
将步骤A中的[Au25PET18]-溶液与步骤B中的[Au25PET18]+溶液均匀混合,常温下保存6小时,然后放进真空干燥箱中加热,得到[Au52PET33C]2-纳米团簇。
2.根据权利要求1所述的制备方法,在步骤A中,所述四氯金酸质量为240mg,四正辛基溴化铵的质量为387mg,四氢呋喃的体积为45mL;2-苯乙硫醇的体积为420uL;硼氢化钠的质量为231mg,冰水的体积为15mL。
3.根据权利要求1所述的制备方法,在步骤C中,加热温度为80℃,反应时间为1h。
4.根据权利要求1所述的制备方法,在步骤A中,所选的离心速度为8000rpm,离心时间为2min。
CN202210607670.4A 2022-05-31 2022-05-31 由小纳米团簇到大纳米团簇的静电融合方法 Active CN115007874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210607670.4A CN115007874B (zh) 2022-05-31 2022-05-31 由小纳米团簇到大纳米团簇的静电融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210607670.4A CN115007874B (zh) 2022-05-31 2022-05-31 由小纳米团簇到大纳米团簇的静电融合方法

Publications (2)

Publication Number Publication Date
CN115007874A true CN115007874A (zh) 2022-09-06
CN115007874B CN115007874B (zh) 2023-05-05

Family

ID=83071156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210607670.4A Active CN115007874B (zh) 2022-05-31 2022-05-31 由小纳米团簇到大纳米团簇的静电融合方法

Country Status (1)

Country Link
CN (1) CN115007874B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032451A1 (de) * 2004-07-05 2006-01-26 Diatronic GmbH Gesellschaft für Diamant- und Hochtemperatur-Elektronik Strukturen aus Nanoclustern und Vorrichtung und Verfahren zum Herstellen derselben
CN110883341A (zh) * 2018-09-11 2020-03-17 清华大学 金纳米团簇制备方法
CN114085666A (zh) * 2021-12-14 2022-02-25 安徽大学 一种寡肽保护的金团簇组装材料的制备方法及其在检测三价铁离子中的应用
CN114197053A (zh) * 2021-11-06 2022-03-18 西北工业大学 一种原子精确的金镉双金属纳米团簇及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032451A1 (de) * 2004-07-05 2006-01-26 Diatronic GmbH Gesellschaft für Diamant- und Hochtemperatur-Elektronik Strukturen aus Nanoclustern und Vorrichtung und Verfahren zum Herstellen derselben
CN110883341A (zh) * 2018-09-11 2020-03-17 清华大学 金纳米团簇制备方法
CN114197053A (zh) * 2021-11-06 2022-03-18 西北工业大学 一种原子精确的金镉双金属纳米团簇及制备方法
CN114085666A (zh) * 2021-12-14 2022-02-25 安徽大学 一种寡肽保护的金团簇组装材料的制备方法及其在检测三价铁离子中的应用

Also Published As

Publication number Publication date
CN115007874B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Kalinski et al. Multicomponent reactions as a powerful tool for generic drug synthesis
CN104985176A (zh) 一种具有可调控手性信号的银包金纳米棒二聚体的制备方法
CN111848688B (zh) 一种阳离子型金属铱配合物、其制备方法及光催化水解的方法
CN110563599B (zh) 一种制备3-甲氧基-n-苯基丙酰胺的方法
Wang et al. Molecular cage-bridged plasmonic structures with well-defined nanogaps as well as the capability of reversible and selective guest trapping
CN104724756A (zh) 一种一步法制备尺寸可控、特定结构钒氧化物的方法
CN115007874A (zh) 由小纳米团簇到大纳米团簇的静电融合方法
Sun et al. Controlled microwave synthesis of RuII synthons and chromophores relevant to solar energy conversion
CN109834262B (zh) 一种原子个数、尺寸可控的Au19Ag4合金纳米簇的合成方法
US20100227189A1 (en) Method of Synthesizing Metal Nanoparticles Using 9-Borabicyclo [3.3.1] Nonane (9-BBN) as a Reducing Agent
CN113210623A (zh) 一种微波辅助合成可控长径比纯净银纳米线的制备方法
CN105859761B (zh) 一种芳香硼酸酯化合物合成方法
CN114871443A (zh) 一种用固态研磨法制备金纳米团簇的方法
Cao et al. Preparation of Au nanoparticles-coated polystyrene beads and its application in protein immobilization
CN115283688B (zh) 一种用固相动力学控制法制备金纳米团簇的方法
CN101357402B (zh) 十面体纳米金的合成方法
CN101143387A (zh) 一种稳定的纳米铜颗粒的制备方法
CN110681875B (zh) 一种异斯特维醇类金属凝胶及其制备方法和应用
CN110407742B (zh) 一种制备3-溴-4-甲磺酰吡啶的方法
CN110860700A (zh) 一种片状纳米银粉的制备方法
CN111618315A (zh) 一种铜纳米线的制备方法
CN110713568A (zh) 离子液体中合成L-苯丙氨酸酯化蔗渣木聚糖-g-VAc的方法
CN110016039A (zh) 一种一锅法制备螺[1’,3’,3’-三甲基吲哚-苯并二氢吡喃]的合成方法
CN113072524B (zh) 一种多氟芳基取代烷烃及其制备方法
CN110452138B (zh) 一种制备n-苯基-3-甲磺酰基丙酰胺的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant