CN115000288A - 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法 - Google Patents

一种利用等离子炬对无铅压电陶瓷涂层热处理的方法 Download PDF

Info

Publication number
CN115000288A
CN115000288A CN202210473121.2A CN202210473121A CN115000288A CN 115000288 A CN115000288 A CN 115000288A CN 202210473121 A CN202210473121 A CN 202210473121A CN 115000288 A CN115000288 A CN 115000288A
Authority
CN
China
Prior art keywords
coating
plasma torch
bnbtln
heat treatment
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210473121.2A
Other languages
English (en)
Inventor
岳豪杰
方凯灵
景琴芳
卢金山
谢兵
刘智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202210473121.2A priority Critical patent/CN115000288A/zh
Publication of CN115000288A publication Critical patent/CN115000288A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,该方法包括制备涂层原料、准备基体、热喷涂过程、等离子炬热处理和性能测试等步骤,本发明利用等离子火炬高效热传导的加热技术和设备,能大大提高基体的传热速度,从而加快热处理时间,提高涂层生产效率。

Description

一种利用等离子炬对无铅压电陶瓷涂层热处理的方法
技术领域
本发明涉及压电陶瓷涂层技术领域,尤其涉及一种利用等离子炬对无铅压电陶瓷涂层热处理的方法。
背景技术
压电器件在传感器、换能器、电容器等的应用已经得到了广泛的研究。近年来,研究者们希望将传感器和换能器等集成到智能结构上,这直接促进了对压电材料的制造与研究。与此同时,压电涂层的制备也逐渐成为一个热门的研究领域。由于含铅压电陶瓷中含有对人体有害的铅成分,目前压电陶瓷涂层的研究也多为无铅压电陶瓷涂层。
传统的压电涂层制备方法,如丝网印刷、物理气相沉积(PVD)、化学溶液沉积(CSD)、气溶胶沉积(AD)等,不能满足露天工程作业、基体形状复杂、大规模、生产率高等实际操作要求。热喷涂技术很好的避免了这些缺点,并逐渐成为一种成熟的涂层制备技术,广泛应用于压电陶瓷涂层的制备(Sampath S,Schulz U,Jarligo M O,et al.Processingscience of advanced thermal-barrier systems[J].MRS bulletin,2012,37(10):903-910)。
Ctibor P,eta采用热喷涂技术在碳钢基体上制备了BT无铅压电陶瓷涂层。研究了炉内热处理后BT无铅压电陶瓷涂层的介电特性。与热处理前相比其介电常数和介电损耗均有很大改善。(Ctibor P,Sedlacek J,Pala Z.Structure and properties of plasmasprayed BaTiO3 coatings after thermal posttreatment[J].CeramicsInternational,2015,41(6):7453-7460)。然而,传统炉内热处理的高温(1150℃)限制了涂层在金属基体上的应用,其主要原因是金属基体在高温下很容易快速氧化,进而毁坏基体;由于炉内热处理对金属基体传热时间比较长,故所需热处理周期比较长,降低生产效率;由于一些工程结构和零件的尺寸过大,传统炉内热处理根本无法实现。
想要扩大压电陶瓷涂层生产规模必须要在现场进行热处理。通过等离子炬对压电陶瓷涂层热处理很好的避免了上述缺陷。
发明内容
本发明的目的在于解决现有技术中存在的技术问题,提供一种利用等离子炬对无铅压电陶瓷涂层热处理的方法。
为实现上述目的,本发明提供的技术方案是:一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,该方法包括一下步骤:
1)、按摩尔比1:1:0.255:0.434:0.434:4.255称量Bi2O3、Na2CO3、BaCO3、Li2CO3、Nb2O5、TiO2用于合成BNBTLN;
2)、将通过步骤1)制得的化学药品放入球磨罐中一次球磨,干燥,过筛,压柱,预烧;进行二次球磨,干燥,过筛得到粉体;
3)、准备316L不锈钢,在316L不锈钢表面制备TBC热障涂层,得到316L-TBC基体;
4)、在316L-TBC基体表面刷上一层Pd/Ag底部电极;
5)、将BNBTLN涂层原料在316L-TBC基体上进行沉积,得到BNBTLN涂层;
6)、对步骤5)中所得BNBTLN涂层进行等离子炬热处理,测试其性能。
优选的,所述步骤1)中称量前将Na2CO3、BaCO3、Li2CO3在120℃下干燥24h。
优选的,所述步骤2)中球磨工艺的球磨时间为24h,转速为200r/min,球磨珠为ZrO2,球磨介质为无水乙醇。
优选的,所述步骤4)中用丝网印刷法将Pd/Ag底部电极刷在316L-TBC基体表面。
优选的,所述步骤5)中采用热喷涂法将BNBTLN涂层原料在等离子功率为18KW的条件下利用氩气等离子体在316L-TBC基体上进行粉末沉积。
优选的,所述步骤6)在等离子火炬为950℃温度下对BNBTLN涂层进行扫描热处理,等离子火炬与BNBTLN涂层的距离为120mm。
本发明有益效果:
1.本发明利用等离子火炬高效热传导的加热技术和设备,能大大提高基体的传热速度,从而加快热处理时间,提高涂层生产效率。
2.本发明利用能提高传热速度的等离子加热能大大缩短加热时间,即缩短热处理时间,可以尽量避免金属基体氧化,造成基体毁坏。
3.针对这一问题。本发明采用等离子炬技术可以在露天环境下进行操作,从而很好的规避了一些工程结构和零件的尺寸过大,无法放进炉内进行热处理的缺陷。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明涂层热处理前后XRD衍射图谱;
图2是本发明涂层热处理前后表面形貌对比图;
图3是本发明涂层热处理前后压电性能测试图;
图4是本发明涂层热处理前后介电性能测试图;
图5是本发明涂层热处理前后铁电性能测试图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
参照图1-图5,本发明的优选实施例,一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,该方法包括一下步骤:
1)、按摩尔比1:1:0.255:0.434:0.434:4.255称量Bi2O3、Na2CO3、BaCO3、Li2CO3、Nb2O5、TiO2用于合成BNBTLN;
所述Bi2O3的纯度为99.99%、Na2CO3的纯度为99.5%、BaCO3的纯度为99.95%、Li2CO3的纯度为99.998%、Nb2O5的纯度为99.9%、TiO2的纯度为99.90%;
根据[0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]0.98-(LiNbO3)0.02化学计量组成对所有的原料称重。
2)、将通过步骤1)制得的化学药品放入球磨罐中一次球磨,干燥,过筛,压柱,预烧;进行二次球磨,干燥,过筛得到粉体;
称重后对所得原料与酒精在球磨罐中进行混合,用行星球磨机球磨24小时。球磨后将混合物进行干燥,在850℃的炉中烧结2小时,接着在1000℃下持续烧结5小时。将烧结后得到的团聚体通过筛网筛到所需的粒径作为涂层原料;
3)、准备316L不锈钢,在316L不锈钢表面制备TBC热障涂层,得到316L-TBC基体;
4)、在316L-TBC基体表面刷上一层底部电极;
5)、将BNBTLN涂层原料在316L-TBC基体上进行沉积,得到BNBTLN涂层;
6)、对步骤5)中所得BNBTLN涂层进行等离子炬热处理,测试其性能。
等离子炬热处理的原理是使工件经受气体放电的一种真空热处理。当气体放电时,所选择气体的离子打到工件的表面并能渗入到表面层,于是表面层在化学成分上起了变化。
为了提高钙钛矿相的结晶度,提高涂层的性能,对BNBTLN涂层通过等离子炬法进行热处理。
所述步骤6)中的性能测试测试:
采用X射线衍射(X-ray diffraction,XRD)技术对热处理前后涂层的晶体结构进行测试、在场发射扫描电子显微镜(FESEM)下对热处理前后涂层的表面形貌进行观察、采用阻抗分析仪对热处理前后涂层的介电性能进行测试、用铁电分析仪在10Hz的频率下研究了热处理前后涂层的铁电性能、对热处理后的涂层在100℃下以20kV/cm的直流电场极化时间10min,用激光扫描振动计对涂层的压电性能进行测试。
作为本发明的优选实施例,其还可具有以下附加技术特征:
本实施例中,所述步骤1)中称量前将Na2CO3、BaCO3、Li2CO3在120℃下干燥24h,由于碳酸盐粉末容易吸收空气中的水分,从而避免称重错误。
本实施例中,所述步骤2)中球磨工艺的球磨时间为24h,转速为200r/min,球磨珠为ZrO2,球磨介质为无水乙醇。
本实施例中,所述步骤4)中用丝网印刷法将Pd/Ag底部电极刷在316L-TBC基体表面。
本实施例中,所述步骤5)中采用热喷涂法将BNBTLN涂层原料在等离子功率为18KW的条件下利用氩气等离子体在316L-TBC基体上进行粉末沉积。
本实施例中,所述步骤6)在等离子炬热处理为在950℃温度下对BNBTLN涂层进行扫描热处理,等离子火炬与BNBTLN涂层距离为120mm。
本发明利用等离子火炬高效热传导的加热技术和设备,能大大提高基体的传热速度,从而加快热处理时间,提高涂层生产效率;本发明利用能提高传热速度的等离子加热能大大缩短加热时间,即缩短热处理时间,可以尽量避免金属基体氧化,造成基体毁坏;针对这一问题。本发明采用等离子炬技术可以在露天环境下进行操作,从而很好的规避了一些工程结构和零件的尺寸过大,无法放进炉内进行热处理的缺陷。
具体的:
(1)如图1所示,采用X射线衍射技术对热处理前以及通过等离子炬热处理后的压电涂层进行测试。沉积在316L-TBC基体上的BNBTLN涂层均显示有钙钛矿相,由于涂层中的非晶态,造成了其它轻微的衍射峰。经过等离子炬热处理后,所有BNBTLN涂层均表现出单相钙钛矿结构。与热处理前的涂层相比,非晶态衍射峰消失,晶态衍射峰强度显著增强。表明等离子炬热处理有效地提高了晶体的结晶度。
(2)通过FESEM对涂层的表面形貌进行观察。热处理前在喷涂的BNBTLN涂层表面观察到大球形和小立方形颗粒的混合。球形特征是由于涂层沉积过程中熔融粉末的快速凝固造成的。经过等离子炬热处理后立方形颗粒增多,且尺寸明显大于热处理前涂层,球形特征逐渐消失。表明通过等离子炬热处理使钙钛矿结构的结晶度提高。如图2所示。
(3)用激光扫描振动计对所得涂层的压电性能进行测试,测得BNBTLN涂层的有效压电常数d33=40pm/v,如图3所示。
(4)图4和图5分别为涂层的介电性能和铁电性能测试结果图。热处理显著提高了BNBTLN涂层的介电常数,介电损耗与热处理前相差无几。如图4所示;经过热处理后,BNBTLN涂层的剩余极化强度也显著改善,P-E曲线比热处理前更“高”更“胖”,表明其铁电性能增强,如图5所示。
(5)涂层经过等离子炬热处理前后具体电学性能对比如表1所示。
表1等离子炬热处理前后电学性能对比表
Figure BDA0003623851640000071
具体实施例1:
以Bi2O3、Na2CO3、BaCO3、Li2CO3、Nb2O5、TiO2为原料合成BNBTLN涂层。将上述化学药品称量放入球磨罐中进行球磨,用行星球磨机球磨24小时,转速为200r/min,
球磨珠和球磨介质分别为ZrO2和无水乙醇。球磨后进行干燥、过筛、压柱、预烧、再次过筛,得到我们所需要的涂层原料。
将原料在316L-TBC基体通过热喷涂技术喷涂后,得到的BNBTLN涂层不进行等离子炬热处理。测得结果如下:
(1)测得其XRD衍射图谱虽显示有钙钛矿相,但由于涂层中的非晶态,造成了其它轻微的衍射峰。
(2)通过FESEM对涂层的表面形貌进行观察。热处理前在喷涂的BNBTLN涂层表面观察到大球形和小立方形颗粒的混合,球形颗粒比较多,表明钙钛矿结构的结晶度不是很高。
(3)用激光扫描振动计对所得涂层的压电性能进行测试,测得BNBTLN涂层的有效压电常数d33=9pm/v。
(4)采用阻抗分析仪对涂层的介电性能进行测试,测得其介电常数为538,介电损耗为0.024。
(5)用铁电分析仪研究涂层铁电性能,测得其剩余极化强度Pr=8μC/cm2,P-E曲线偏“矮”偏“瘦”。
具体实施例2:
以Bi2O3、Na2CO3、BaCO3、Li2CO3、Nb2O5、TiO2为原料合成BNBTLN涂层。将上述化学药品称量放入球磨罐中进行球磨,用行星球磨机球磨24小时,转速为200r/min,球磨珠和球磨介质分别为ZrO2和无水乙醇。球磨后进行干燥、过筛、压柱、预烧、再次过筛,得到我们所需要的涂层原料。
将原料在316L-TBC基体通过热喷涂技术喷涂后,得到的BNBTLN涂层进行等离子炬热处理。测得结果如下:
(1)BNBTLN涂层均表现出单相钙钛矿结构。非晶态衍射峰消失,晶态衍射峰强度显著增强,晶体的结晶度较高。
(2)立方形颗粒较多,球形特征逐渐消失。钙钛矿结构的结晶度较高。
(3)用激光扫描振动计对所得涂层的压电性能进行测试,测得BNBTLN涂层的有效压电常数d33=40pm/v。
(4)采用阻抗分析仪对涂层的介电性能进行测试,测得其介电常数为648,介电损耗为0.038。
(5)用铁电分析仪研究涂层铁电性能,测得其剩余极化强度Pr=16μC/cm2,P-E曲线偏“高”偏“胖”。
在不出现冲突的前提下,本领域技术人员可以将上述附加技术特征自由组合以及叠加使用。
以上所述仅为本发明的优先实施方式,只要以基本相同手段实现本发明目的的技术方案都属于本发明的保护范围之内。

Claims (6)

1.一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:该方法包括以下步骤:
1)、按摩尔比1:1:0.255:0.434:0.434:4.255称量Bi2O3、Na2CO3、BaCO3、Li2CO3、Nb2O5、TiO2用于合成BNBTLN;
2)、将通过步骤1)制得的化学药品放入球磨罐中一次球磨,干燥,过筛,压柱,预烧;进行二次球磨,干燥,过筛得到粉体;
3)、准备316L不锈钢,在316L不锈钢表面制备TBC热障涂层,得到316L-TBC基体;
4)、在316L-TBC基体表面刷上一层底部电极;
5)、将BNBTLN涂层原料在316L-TBC基体上进行沉积,得到BNBTLN涂层;
6)、对步骤5)中所得BNBTLN涂层进行等离子炬热处理,测试其性能。
2.根据权利要求1所述的一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:所述步骤1)中称量前将Na2CO3、BaCO3、Li2CO3在120℃下干燥24h。
3.根据权利要求1所述的一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:所述步骤2)中球磨工艺的球磨时间为24h,转速为200r/min,球磨珠为ZrO2,球磨介质为无水乙醇。
4.根据权利要求1所述的一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:所述步骤4)中用丝网印刷法将Pd/Ag底部电极刷在所述316L-TBC基体表面。
5.根据权利要求1所述的一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:所述步骤5)中采用热喷涂法将BNBTLN涂层原料在等离子功率为18KW的条件下利用氩气等离子体在316L-TBC基体上进行粉末沉积。
6.根据权利要求1所述的一种利用等离子炬对无铅压电陶瓷涂层热处理的方法,其特征在于:所述步骤6)在等离子炬为在950℃温度下对BNBTLN涂层进行扫描热处理,等离子火炬与BNBTLN涂层距离为120mm。
CN202210473121.2A 2022-04-29 2022-04-29 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法 Pending CN115000288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210473121.2A CN115000288A (zh) 2022-04-29 2022-04-29 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210473121.2A CN115000288A (zh) 2022-04-29 2022-04-29 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法

Publications (1)

Publication Number Publication Date
CN115000288A true CN115000288A (zh) 2022-09-02

Family

ID=83025214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210473121.2A Pending CN115000288A (zh) 2022-04-29 2022-04-29 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法

Country Status (1)

Country Link
CN (1) CN115000288A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403378A (zh) * 2022-09-06 2022-11-29 国网智能电网研究院有限公司 一种无铅压电涂层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403378A (zh) * 2022-09-06 2022-11-29 国网智能电网研究院有限公司 一种无铅压电涂层及其制备方法
CN115403378B (zh) * 2022-09-06 2023-06-27 国网智能电网研究院有限公司 一种无铅压电涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN109437927A (zh) 稀土钽/铌酸盐(RE3Ta/NbO7)陶瓷粉体及其制备方法
JP2013507526A (ja) 酸化スズセラミックスパッタリングターゲットおよびその製造方法
CN110467457A (zh) 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN107253857A (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN107140974A (zh) 一种微波烧结的无铅高储能密度st‑nbt陶瓷材料及其制备方法
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN1850719A (zh) 一种钛酸锶压敏电阻器介质及其制备方法
JP5692224B2 (ja) 酸化亜鉛焼結体タブレットおよびその製造方法
CN115000288A (zh) 一种利用等离子炬对无铅压电陶瓷涂层热处理的方法
CN112479708A (zh) 一种医用超声换能器用无铅压电陶瓷及其制备方法和应用
CN109650878B (zh) 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
CN109650875B (zh) 一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN107857585A (zh) (Na0.5Bi0.5)(1‑x)BaxTi(1‑x)SnxO3陶瓷及其制备方法
CN114716243B (zh) 一种高温稳定型钛酸铋钠-钛酸锶基介电储能陶瓷材料及其制备与应用
CN114573338B (zh) 一种高储能密度介电陶瓷的制备方法及应用
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
CN109851357B (zh) 一种无铅高介电低损耗x9r温度稳定型陶瓷复合材料及其制备方法
CN110156456B (zh) 一种一氧化钛半导体陶瓷及其制备方法
CN115466117A (zh) 一种低温制备的具有超高压电常数的pzt基压电陶瓷
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN108117386A (zh) 一种二氧化锡掺杂st基储能材料及其制备方法
EP4397641A1 (en) Perovskite-type ceramic compact and method for manufacturing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Guo Kun

Inventor after: Yue Haojie

Inventor after: Fang Kailing

Inventor after: Jing Qinfang

Inventor after: Lu Jinshan

Inventor after: Xie Bing

Inventor after: Liu Zhiyong

Inventor before: Yue Haojie

Inventor before: Fang Kailing

Inventor before: Jing Qinfang

Inventor before: Lu Jinshan

Inventor before: Xie Bing

Inventor before: Liu Zhiyong