CN114999806A - 一种多相稀土永磁材料的制备工艺 - Google Patents

一种多相稀土永磁材料的制备工艺 Download PDF

Info

Publication number
CN114999806A
CN114999806A CN202210692588.6A CN202210692588A CN114999806A CN 114999806 A CN114999806 A CN 114999806A CN 202210692588 A CN202210692588 A CN 202210692588A CN 114999806 A CN114999806 A CN 114999806A
Authority
CN
China
Prior art keywords
magnetic field
cefeb
rare earth
ndfeb
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210692588.6A
Other languages
English (en)
Inventor
熊吉磊
陈敏
成丽春
李涛
周宏亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jihua New Material Co ltd
Original Assignee
Anhui Jihua New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jihua New Material Co ltd filed Critical Anhui Jihua New Material Co ltd
Priority to CN202210692588.6A priority Critical patent/CN114999806A/zh
Publication of CN114999806A publication Critical patent/CN114999806A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种多相稀土永磁材料的制备工艺,涉及稀土钕铁硼永磁材料领域。所述多相稀土永磁材料的制备工艺主要包括熔炼浇铸、溅射靶材的制备、氢爆处理、磨粉处理、磁场成型、磁场微波烧结、磁控溅射、真空磁场热处理、再次磁控溅射、二次真空磁场微波热处理等步骤。本发明克服了以La\Ce\Y代替Nd2Fe14B中的Nd导致钕铁硼材料磁性能降低的问题,实现稀土资源的高效、平衡利用,降低了生产成本。

Description

一种多相稀土永磁材料的制备工艺
技术领域
本发明涉及稀土钕铁硼永磁材料领域,具体涉及一种多相稀土永磁材料的制备工艺。
背景技术
磁性材料,特别是稀土NdFeB系永磁材料,是目前综合性能最好的一类永磁材料,已成为现代工业与科学技术中不可或缺的重要物质基础。其中烧结钕铁硼永磁材料由于具有优异的性价比而被迅速产业化,被广泛应用于新能源汽车、节能家电、电机、核磁共振、电子通讯等各个高新技术领域。
但是随着钕铁硼稀土永磁应用的不断扩大,在生产中消耗了大量的紧缺资源Pr、Nd、Dy、Tb等稀土元素,而高丰度稀土元素La、Ce、Y等大量闲置积压;同时,在原生矿中就包含La、Ce、Y稀土元素,稀土分离提纯也会造成大量能源的损耗和严重的生态环境污染。因此,稀土资源的高效、平衡利用成为我国稀土产业可持续发展亟需解决的问题。由于资源丰度的差异,高丰度稀土La、Ce、Y稀土元素的价格较为低廉,事实上近年来,为降低生产成本,高丰度稀土元素逐渐被用于生产稀土永磁材料。
据统计,2016年我国烧结钕铁硼毛坯产品中有近20%不同程度的使用了Ce元素;国际最大的快淬磁粉供应商麦格昆兹也推出了高Ce含量的粘接磁体用商业磁粉。同时近年来国家有关部门也提出了发展高性能Ce磁体,实现高丰度稀土永磁材料在电机等高端领域的应用,对于2:14:1型稀土永磁的强磁性源于四方相化合物的内禀硬磁性。La2Fe14B饱和磁极化强度Js为1.38T,磁晶各向异性场HA约20kOe,Ce2Fe14B饱和磁极化强度Js为1.17T,磁晶各向异性场Ha约26kOe左右,Y2Fe14B饱和磁极化强度Js为1.41T,磁晶各向异性场HA约26kOe,使用高丰度稀土元素La\Ce\Y代替Nd2Fe14B中的Nd会导致钕铁硼材料磁性能的降低,呈现出显著的磁稀释效应。这也是目前制约高丰度稀土永磁材料发展的关键问题。
发明内容
针对现有技术不足,本发明提供一种多相稀土永磁材料的制备工艺,克服了以La\Ce\Y代替Nd2Fe14B中的Nd导致钕铁硼材料磁性能降低的问题,实现稀土资源的高效、平衡利用,降低了生产成本。
为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
一种多相稀土永磁材料的制备工艺,所述制备工艺包括以下步骤:
(1)熔炼浇铸:将NdFeB、CeFeB合金进行熔炼后浇铸制备NdFeB、CeFeB片状合金备用;
(2)溅射靶材的制备:对LaCeYAlCuAgTi合金进行铸锭,后将铸锭进行均质化热处理,再表面磨抛及外形加工制成LaCeYAlCuAgTi合金溅射靶材备用;
(3)氢爆处理:将上述步骤(1)中的片状合金分别装到旋转式氢爆炉反应釜中进行抽真空处理,后充入氢气饱和吸氢,后脱氢制得NdFeB氢爆粉和CeFeB氢爆粉备用;
(4)磨粉处理:将上述步骤(3)中的NdFeB氢爆粉和CeFeB氢爆粉分别采用气流磨粉机进行制粉,获得NdFeB细粉和CeFeB细粉备用;
(5)磁场成型:将步骤(4)中NdFeB细粉和CeFeB细粉分别放入磁场成型压机中取向成型,获得NdFeB坯体和CeFeB坯体备用;
(6)磁场微波烧结:将上述步骤(5)中的NdFeB坯体和CeFeB坯体分别进行强磁场微波烧结,获得NdFeB预烧结坯料和CeFeB预烧结坯料,对CeFeB预烧结坯体进行表面磨抛及外形加工,得到CeFeB靶材备用;
(7)磁控溅射:将上述步骤(2)中的LaCeYAlCuAgTi合金溅射靶材通过磁控溅射镀在上述步骤(6)中的NdFeB预烧结坯料上,得溅射后的混合磁体备用;
(8)真空磁场热处理:将上述步骤(7)中的混合磁体进行磁场热处理,得预混合磁体备用;
(9)再次磁控溅射:将上述步骤(6)中的CeFeB靶材通过磁控溅射镀在所述步骤(8)中的预混合磁体上,获得溅射后的混合钕铁硼磁体备用;
(10)二次真空磁场微波热处理:将上述步骤(9)中的混合钕铁硼磁体进行强磁场微波热处理,得多相稀土永磁材料。
优选的,所述步骤(1)中控制NdFeB合金熔炼的温度达到1480±20℃、CeFeB合金的熔炼温度达到1440±20℃时开始浇铸,且获得的NdFeB、CeFeB片状合金厚度在0.10-0.20mm之间。
优选的,所述步骤(2)中均质化热处理的方式为在真空或氩气保护下于500℃处理4h。
优选的,所述步骤(4)中获得的NdFeB细粉和CeFeB细粉的粒度分布为X10=0.2-0.30μm,X50=0.9-1.1μm,X90=2.3-2.52μm。
优选的,所述步骤(5)中磁场成型的磁场强度为2.0T,成型的NdFeB坯体和CeFeB坯体密度为4.5±0.5g/cm3
优选的,所述步骤(6)中强磁场微波烧结的烧结温度为900-1000℃,保温30-40min,微波频率为4.5-5.5kW,磁场强度为4.0-5.0T。
优选的,所述步骤(7)中通过控制溅射时间来控制LaCeYAlCuAgTi合金的含量占总重量4-16%。
优选的,所述步骤(8)中磁场热处理的方式为升温至600-700℃,保温4-5h,磁场强度为2.3-3.2T。
优选的,所述步骤(9)中通过控制溅射时间来控制CeFeB占总重量的4-16%。
优选的,所述步骤(10)中强磁场微波烧结的温度为520-550℃,保温时间为150-240min,微波频率为3.0-4.5kW,磁场强度为3.5-4.5T。
本发明提供一种多相稀土永磁材料的制备工艺,与现有技术相比优点在于:
针对现有技术中使用高丰度稀土元素La\Ce\Y改性Nd2Fe14B时,常规真空烧结和时效处理会导致钕铁硼材料磁性能降低,呈现出显著磁稀释效应的问题,本发明以NdFeB为基体,通过制备工艺调整,减弱了主相间磁性耦合作用,大幅提高磁体的磁性能,获得各种性能优异的钕铁硼磁钢,实现稀土资源的高效、平衡利用,降低了生产成本。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种多主相磁体的制备:
(1)按照以下质量比Nd29Fe70.06B0.94、Ce26.4Fe72.62B0.98,La6Ce54Y6Al16Cu10Ag4.5Ti3.5配料;
(2)对Nd29Fe70.06B0.94,Ce26.4Fe72.62B0.98合金采用真空熔炼炉进行熔炼,熔炼甩带炉抽成真空度为小于0.5Pa环境时开始进行熔炼,控制熔炼温度分别达到1480±20℃,1440±20℃时开始浇铸,控制铜辊进水温度在10-15℃开始浇铸获得片状合金,所制备的Nd29Fe70.06B0.94,Ce26.4Fe72.62B0.98片状合金厚度控制在0.10-0.20mm之间;
(3)采用真空感应熔炼炉制备La6Ce54Y6Al16Cu10Ag4.5Ti3.5的铸锭,然后将铸锭在真空或氩气保护下于500℃均质化热处理4h,热处理完成后充入氩气进行风冷,后将热处理完成的铸锭进行表面磨抛及外形加工制成溅射靶材;
(4)将步骤(2)中的片状合金分别装到旋转式氢爆炉反应釜中进行抽真空处理,当真空度达到0.5Pa以下时充氩至常压然后抽真空充入高纯工业氢气(纯度99.99%),饱和吸氢,当吸氢失压≤0.01Mpa/5min时结束吸氢,吸氢过程中使用水冷并使用红外测温仪测温保证吸氢过程温度控制在100℃以下,吸氢完成后合炉升温至550℃进行脱氢至真空度达到15Pa以下时结束脱氢,最后进行水冷处理,使温度降至30℃以下出炉至氩气保护的混料罐中,得氢爆粉;
(5)采用QLMR-400G型气流磨粉设备,把步骤(3)混好的氢爆粉分别放入气流磨粉机中,磨粉过程的氧含量控制在5ppm以下,整个气流磨在氮气保护下操作,研磨压力控制在0.60-0.62Mpa之间,控制氮气进气温度在5-10℃之间,研磨室外冷却循环水温度在5-10℃之间;获得粒度分布为X10=0.2-0.30μm,X50=0.9-1.1μm,X90=2.3-2.52μm的细粉;
(6)将步骤(5)中细粉分别放入到氧含量小于10ppm的全密封的磁场成型压机中取向成型,其中磁场强度为2.0T,成型的压坯密度为4.5±0.5g/cm3
(7)将步骤(6)的产品进行强磁场微波烧结,其中微波烧结温度在1000℃,保温30min,微波频率为5.5kW,过程所加磁场强度为5.0T;保温完成后在氩气保护下风冷至30℃以下出炉,获得Nd29Fe70.06B0.94,Ce26.4Fe72.62B0.98,预烧坯料,对成型的Ce26.4Fe72.62B0.98坯料进行表面磨抛及外形加工,得到Ce26.4Fe72.62B0.98靶材;
(8)采用磁控溅射将La6Ce54Y6Al16Cu10Ag4.5Ti3.5靶材合金(简称合金1)镀在所述Nd29Fe70.06B0.94预烧坯料上,通过控制溅射时间来控制La6Ce54Y6Al16Cu10Ag4.5Ti3.5合金的含量,使其重量占总重分别为4%、8%、12%、16%,获得溅射后的混合磁体1号(4%)、2号(8%)、3号(12%)、4号(16%);
(9)将步骤(8)的产品放入真空度小于0.05Pa的高真空磁场热处理炉中进行磁场热处理,升温至700℃,保温5h,磁场强度3.2T,整个过程炉体真空度小于5.0E-2Pa,保温完成后在氩气保护下风冷至30℃以下出炉,制得所述预混合磁体1号(4%)、2号(8%)、3号(12%)、4号(16%);
(10)采用磁控溅射将Ce26.4Fe72.62B0.98型靶材合金(简称合金2)镀在所述步骤(9)的预烧坯料1号、2号、3号、4号,通过控制溅射时间来控制Ce26.4Fe72.62B0.98合金的含量,使其重量占总重分别为4%、8%、12%、16%,20%,获得溅射后的混合钕铁硼磁体;
(11)将步骤(10)的产品进行强磁场微波热处理,其中微波烧结温度在520℃,保温150min,微波频率为3.0kW,过程所加磁场强度为4.5T,整个过程炉体真空度小于5.0E-2Pa,保温完成后在氩气保护下风冷至30℃以下出炉,获得所需磁体。
测定不同合金含量的永磁体性能,测定结果见下表1:
表1
Figure BDA0003700725360000061
Figure BDA0003700725360000071
实施例2:
一种多主相磁体的制备:
(1)按照以下质量比Nd27Fe72.06B0.94,Ce28.8Fe70.22B0.98,La22.5Ce34.5Y23Al9Cu7Ag2.5Ti1.5配料;
(2)步骤(2)-(6)同实施案例1;
(7)将步骤(6)的产品进行强磁场微波烧结,其中微波烧结温度在900℃,保温40min,微波频率为4.5kW,过程所加磁场强度为4.0T;保温完成后在氩气保护下风冷至30℃以下出炉,获得Nd27Fe72.06B0.94,Ce28.8Fe70.22B0.98,预烧坯料,对成型的Ce28.8Fe70.22B0.98,坯料进行表面磨抛及外形加工,得到Ce28.8Fe70.22B0.98靶材;
(8)采用磁控溅射将La22.5Ce34.5Y23Al9Cu7Ag2.5Ti1.5靶材合金(简称合金1)镀在所述Nd27Fe72.06B0.94预烧坯料上,通过控制溅射时间来控制La22.5Ce34.5Y23Al9Cu7Ag2.5Ti1.5合金的含量,使其重量占总重分别为4%、8%、12%、16%,获得溅射后的混合磁体1号(4%)、2号(8%)、3号(12%)、4号(16%);
(9)将步骤(8)的产品放入真空度小于0.05Pa的高真空磁场热处理炉中进行磁场热处理,升温至600℃,保温4h,磁场强度2.3T,保温完成后在氩气保护下风冷至30℃以下出炉,制得所述预混合磁体1号(4%)、2号(8%)、3号(12%)、4号(16%);
(10)采用磁控溅射将Ce28.8Fe70.22B0.98型靶材合金(简称合金2)镀在所述步骤(9)的预烧坯料1号、2号、3号、4号,通过控制溅射时间来控制Ce28.8Fe70.22B0.98合金的含量,使其重量占总重分别为4%、8%、12%、16%,20%,获得溅射后的混合钕铁硼磁体;
(11)将步骤(10)的产品进行强磁场微波烧结,其中微波烧结温度在550℃,保温240min,微波频率为4.5kW,过程所加磁场强度为3.5T,保温完成后氩气保护下风冷至30℃以下出炉,制得所述所需磁体。
测定不同合金含量的永磁体性能,测定结果见下表2:
表2
Figure BDA0003700725360000081
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种多相稀土永磁材料的制备工艺,其特征在于,所述制备工艺包括以下步骤:
(1)熔炼浇铸:将NdFeB、CeFeB合金进行熔炼后浇铸制备NdFeB、CeFeB片状合金备用;
(2)溅射靶材的制备:对LaCeYAlCuAgTi合金进行铸锭,后将铸锭进行均质化热处理,再表面磨抛及外形加工制成LaCeYAlCuAgTi合金溅射靶材备用;
(3)氢爆处理:将上述步骤(1)中的片状合金分别装到旋转式氢爆炉反应釜中进行抽真空处理,后充入氢气饱和吸氢,后脱氢制得NdFeB氢爆粉和CeFeB氢爆粉备用;
(4)磨粉处理:将上述步骤(3)中的NdFeB氢爆粉和CeFeB氢爆粉分别采用气流磨粉机进行制粉,获得NdFeB细粉和CeFeB细粉备用;
(5)磁场成型:将步骤(4)中NdFeB细粉和CeFeB细粉分别放入磁场成型压机中取向成型,获得NdFeB坯体和CeFeB坯体备用;
(6)磁场微波烧结:将上述步骤(5)中的NdFeB坯体和CeFeB坯体分别进行强磁场微波烧结,获得NdFeB预烧结坯料和CeFeB预烧结坯料,对CeFeB预烧结坯体进行表面磨抛及外形加工,得到CeFeB靶材备用;
(7)磁控溅射:将上述步骤(2)中的LaCeYAlCuAgTi合金溅射靶材通过磁控溅射镀在上述步骤(6)中的NdFeB预烧结坯料上,得溅射后的混合磁体备用;
(8)真空磁场热处理:将上述步骤(7)中的混合磁体进行磁场热处理,得预混合磁体备用;
(9)再次磁控溅射:将上述步骤(6)中的CeFeB靶材通过磁控溅射镀在所述步骤(8)中的预混合磁体上,获得溅射后的混合钕铁硼磁体备用;
(10)二次真空磁场微波热处理:将上述步骤(9)中的混合钕铁硼磁体进行强磁场微波热处理,得多相稀土永磁材料。
2.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(1)中控制NdFeB合金熔炼的温度达到1480±20℃、CeFeB合金的熔炼温度达到1440±20℃时开始浇铸,且获得的NdFeB、CeFeB片状合金厚度在0.10-0.20mm之间。
3.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(2)中均质化热处理的方式为在真空或氩气保护下于500℃处理4h。
4.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(4)中获得的NdFeB细粉和CeFeB细粉的粒度分布为X10=0.2-0.30μm,X50=0.9-1.1μm,X90=2.3-2.52μm。
5.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(5)中磁场成型的磁场强度为2.0T,成型的NdFeB坯体和CeFeB坯体密度为4.5±0.5g/cm3
6.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(6)中强磁场微波烧结的烧结温度为900-1000℃,保温30-40min,微波频率为4.5-5.5kW,磁场强度为4.0-5.0T。
7.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(7)中通过控制溅射时间来控制LaCeYAlCuAgTi合金的含量占总重量4-16%。
8.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(8)中磁场热处理的方式为升温至600-700℃,保温4-5h,磁场强度为2.3-3.2T。
9.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(9)中通过控制溅射时间来控制CeFeB占总重量的4-16%。
10.根据权利要求1所述的一种多相稀土永磁材料的制备工艺,其特征在于:所述步骤(10)中强磁场微波烧结的温度为520-550℃,保温时间为150-240min,微波频率为3.0-4.5kW,磁场强度为3.5-4.5T。
CN202210692588.6A 2022-06-17 2022-06-17 一种多相稀土永磁材料的制备工艺 Withdrawn CN114999806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210692588.6A CN114999806A (zh) 2022-06-17 2022-06-17 一种多相稀土永磁材料的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210692588.6A CN114999806A (zh) 2022-06-17 2022-06-17 一种多相稀土永磁材料的制备工艺

Publications (1)

Publication Number Publication Date
CN114999806A true CN114999806A (zh) 2022-09-02

Family

ID=83035665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210692588.6A Withdrawn CN114999806A (zh) 2022-06-17 2022-06-17 一种多相稀土永磁材料的制备工艺

Country Status (1)

Country Link
CN (1) CN114999806A (zh)

Similar Documents

Publication Publication Date Title
JP7220301B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物及び製造方法、並びに応用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN111430143B (zh) 一种稀土钕铁硼永磁体的制备方法
JP2022537003A (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
CN108154986B (zh) 一种含y高丰度稀土永磁体及其制备方法
JP2023061988A (ja) 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用
CN103187133A (zh) 一种稀土永磁合金及其磁性相复合制备方法
CN108389711A (zh) 一种具有高矫顽力的烧结钕铁硼磁体的制备方法
CN114864264B (zh) 一种低重稀土高矫顽力稀土钕铁硼永磁体的制备工艺
CN104851544A (zh) 一种低能耗钕铁硼磁性材料的制备方法
WO2022258070A1 (zh) 一种低成本高矫顽力富LaCe钕铁硼永磁体及其制备方法和应用
CN113205936B (zh) 一种NdFeB/YCo5型高性能磁体及其制备工艺
CN114724838A (zh) 一种废旧钕铁硼磁钢再生新磁体的制备工艺
WO2021169905A1 (zh) 一种钕铁硼材料及其制备方法和应用
CN116612956A (zh) 一种具有核壳结构的含铈钕铁硼磁体及其制备方法和应用
CN114999806A (zh) 一种多相稀土永磁材料的制备工艺
CN113205938B (zh) 一种低成本高性能的烧结钕铁硼永磁材料及其制备工艺
CN105788794A (zh) 一种富钇永磁材料的制备方法
CN113205937B (zh) 一种无重稀土高性能烧结钕铁硼永磁材料及其制备工艺
CN109243746A (zh) 一种低温延时烧结而成的超细晶烧结永磁体及其制备方法
CN113724956B (zh) 一种双主相稀土永磁材料及其制备方法
CN114038641A (zh) 一种含银的混合稀土铁硼烧结永磁体及其制备方法
CN113921218A (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用
CN113724954B (zh) 一种无重稀土的高矫顽力永磁体及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220902

WW01 Invention patent application withdrawn after publication