CN114988990A - 一种香兰素的制备方法 - Google Patents

一种香兰素的制备方法 Download PDF

Info

Publication number
CN114988990A
CN114988990A CN202210680455.7A CN202210680455A CN114988990A CN 114988990 A CN114988990 A CN 114988990A CN 202210680455 A CN202210680455 A CN 202210680455A CN 114988990 A CN114988990 A CN 114988990A
Authority
CN
China
Prior art keywords
reaction
vanillin
oxygen
guaiacol
condensation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210680455.7A
Other languages
English (en)
Other versions
CN114988990B (zh
Inventor
程晓波
宋军伟
张涛
丁大康
李俊平
黎源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN202210680455.7A priority Critical patent/CN114988990B/zh
Publication of CN114988990A publication Critical patent/CN114988990A/zh
Application granted granted Critical
Publication of CN114988990B publication Critical patent/CN114988990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J31/0208Ketones or ketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种香兰素的制备方法,步骤包括:(1)将愈创木酚、甲醛、碱、水混合,发生缩合反应,得到含3‑甲氧基‑4‑羟基‑苯甲醇的缩合反应液;(2)向步骤(1)的缩合反应液中加入铂炭催化剂(Pt/C)、助剂,然后通入含氧气体,使3‑甲氧基‑4‑羟基‑苯甲醇与发生氧化反应,生成香兰素。本发明提供的方法该路线工艺流程简化,缩合反应过程愈创木酚转化率高,避免了原料重复利用,有效降低了生产成本,提升了生产效率;同时本发明氧化后直接得到香兰素,不需要进行脱羧工序,原子利用率提高,并且能有效减少温室气体排放。

Description

一种香兰素的制备方法
技术领域
本发明涉及一种香兰素的制备方法,属于香料化学合成技术领域。
背景技术
香兰素,俗称香草醛,化学名为3-甲氧基-4-羟基苯甲醛,具有香荚兰特有的香气,通常为白色或浅黄色结晶状粉末,是世界上产量最大的合成香料,广泛应用于食品与香料加工行业。由与香兰素的应用广泛性以及在各行业的重要性,香兰素的合成工艺一直是长期以来的研究热点。
目前合成香兰素的工艺有三种,一种是用愈创木酚与乙醛酸缩合反应生成扁桃酸后采用氧化铜或空气作为氧化剂,氧化扁桃酸再脱羧后制备香兰素,该工艺技术成熟,但流程复杂,路线长,缩合反应过程反应原料转化率低,氧化反应及脱羧过程会产生大量温室气体。CN1016190188公开了一种化学氧化法制备香兰素的方法,该方法收率高,但涉及的物料为高固含率的固液混合物,对设备分离性能要求较高。
第二种工艺是采用愈创木酚-二甲基苯胺法,该工艺生产三废较多,目前已基本被淘汰。
第三种是生物合成法,主要是利用植物细胞培养法或酶法,制备香兰素,但目前该技术仍然处于实验室研究阶段,不具备量产条件。
现有成熟工艺愈创木粉-乙醛酸法制备的香兰素的主要缺点是缩合过程原料转化率低,氧化与脱羧过程会产生大量的温室气体,碳原子利用率低。
发明内容
针对现有技术中存在的上述问题,本发明的目的是提供一种香兰素的制备方法,能够克服现有愈创木酚-乙醛酸法制备香兰素工艺存在的缩合过程原料转化率低,氧化与脱羧过程产生大量的温室气体,碳原子利用率低等缺点。
为实现上述目的,本发明采用如下技术方案:
一种香兰素的制备方法,步骤包括:
(1)将愈创木酚、甲醛、碱、水混合,发生缩合反应,得到含3-甲氧基-4-羟基-苯甲醇的缩合反应液;
(2)向步骤(1)的缩合反应液中加入铂炭催化剂(Pt/C)、助剂,然后通入含氧气体,使3-甲氧基-4-羟基-苯甲醇与发生氧化反应,生成香兰素。
本发明中,步骤(1)所述的甲醛与愈创木酚的摩尔比为1.05-1.4:1,优选1.1-1.2:1。
本发明中,步骤(1)所述的碱与愈创木酚摩尔比为1.2-2.0:1,优选1.3-1.6:1;
优选地,所述的碱为无机强碱,选自氢氧化钠、氢氧化钾,优选为氢氧化钠。
本发明中,步骤(1)所述的水用量为愈创木酚质量的1.5-2.6倍,优选1.8-2.2倍。
本发明中,步骤(1)所述的甲醛为甲醛溶液,优选采用浓度37wt%的甲醛水溶液。
本发明中,步骤(1)所述的缩合反应,反应温度为20.0-80.0℃,优选40.0-60.0℃;反应停留时间为0.25-2.0h,优选0.5-1.0h。
本发明中,步骤(2)所述的铂炭催化剂(Pt/C)用量为步骤(1)的缩合反应液质量的0.5-2.5wt%,优选1.0-1.5wt%;
优选地,所述的铂炭催化剂中Pt含量为1.0-10.0wt%,优选2.5-5.0wt%。
本发明中,步骤(2)所述的助剂用量为铂炭催化剂质量的1-10wt%,优选2-5wt%;
所述的助剂选自苯醌类化合物、亚磷酸酯类化合物、哌啶类化合物中的任意一种或至少两种的组合,优选为2,3,5,6-四甲基苯醌、亚磷酸三戊烯酯、四甲氧基苯醌、N-羟基-四丁基哌啶中的任意一种或至少两种的组合,更优选四甲氧基苯醌。
本发明中,步骤(2)所述的含氧气体,可以为纯氧气或者含氧混合气体;
优选地,所述含氧气体,其中氧气含量为15.0-100.0%,优选20.0-50.0%,选自空气、氮氧混合气;
优选地,所述的含氧气体采用连续进料方式,单位体积反应器内气体通入量为0.1-0.8min-1,优选0.2-0.4min-1,此处单位即L/(min·L反应器),简化为min-1;并调控所述的反应压力为0.0-1000.0KPaG,优选500.0-800.0KPaG。
本发明中,步骤(2)所述的氧化反应,反应液的pH值为10.0-14.0,优选11.0-12.0,具体可由步骤(1)制备的缩合反应液采用酸或碱调控使pH在所需范围内,例如滴加稀酸(硫酸、盐酸等)或稀碱(氢氧化钠等),该方法为本领域常规操作,本发明没有特别要求。
本发明中,步骤(2)所述的氧化反应,反应温度为45.0-65.0℃,优选50.0-60.0℃;反应时间为12.0-36.0h,优选18.0-24.0h;反应压力为0.0-1000.0KPaG,优选500.0-800.0KpaG;
优选地,所述的氧化反应开始前,系统预先采用氮气置换。
本发明由愈创木酚、甲醛缩合、氧化制香兰素的工艺,反应过程可用下式表示:
Figure BDA0003696138280000041
本发明人对氧化反应过程进行了系统性研究后,发现在使用Pt/C催化剂催化氧化3-甲氧基-4-羟基-苯甲醇氧化成香兰素的过程中,反应速率缓慢,且收率较低。主要原因是:(1)与苯环相连的甲基上的羟基活性较弱,难以被氧气直接氧化;(2)当3-甲氧基-4-羟基-苯甲醇被氧化生成香兰素后,香兰素易发生过度氧化副反应,生成香草酸。本发明实验发现,在添加适量具有大共轭体系的特定结构苯醌类化合物、亚磷酸酯类化合物、哌啶类化合物作为助催化剂后,反应速率及香兰素选择性可以得到显著提高其中相同时间反应转化率可以由30%提高到99%,反应时间可缩短3倍,香兰素选择性可提升至91%以上,香草酸选择性降低至8%以下。
上述反应过程中,氧气在Pt的表面被催化活化,并吸附在催化剂表面,反应体系中具有大共轭体系的助催化剂能快速与催化剂表面的氧结合,生成活性氧的过渡态产物。活性氧的过渡态产物能选择性地将羟基氧化为醛基,而不能将醛基进一步氧化为羧基,助催化剂在反应历程中能加快活性氧的传递效率,从而提升反应速率及选择性。
与现有技术相比,本发明具有以下突出的效果:
本发明提供的方法该路线工艺流程简化,缩合反应过程愈创木酚转化率高,避免了原料重复利用,有效降低了生产成本,提升了生产效率;同时本发明氧化后直接得到香兰素,不需要进行脱羧工序,原子利用率提高,并且能有效减少二氧化碳排放。
附图说明
图1为实施例1制备的香兰素产品(油相)HPLC色谱图。
具体实施方式
下面对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,均应涵盖在本发明的保护范围中。
HPLC分析条件:色谱型号:岛津LC-20A;进样量为5μL;UV检测波长为310nm;柱温箱:40℃;流速:0.4ml/min;选用外标法定量。
实施例中主要原料规格及来源如下,其它若无特别说明均为普通市售原料:
试剂名称 试剂规格 生产厂家
愈创木酚 AR 阿拉丁
37%甲醛/水溶液 AR 西陇试剂
Pt/C催化剂 AR 凯特立斯
MIBK AR 科密欧
氢氧化钠 AR 科密欧
实施例1
(1)缩合步骤:称量500g(4mol)愈创木酚、288g(7.2mol)NaOH、1152g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至20℃,称量349g质量分数为37%的甲醛/水溶液(4.3mol),一次性加入到烧瓶中,开始反应;0.5h后,反应结束,取样测得,原料转化率99.5%,3-甲氧基-4-羟基-苯甲醇选择性92.9%。
(2)氧化步骤:将步骤(1)的缩合反应液pH值调节为14,然后转移至5L鼓泡釜中,加入28.61gPt/C催化剂(Pt含量7.5wt%)、2.304g 2,3,5,6-四甲基苯醌,氮气置换后,用电加热套升温至45℃,连续通入流量为0.75L/min(单位体积反应器内气体通入量为0.15min-1)的氮氧混合气(氧气体积分数为20%),控制反应压力为900KPaG,反应36h后,降温至室温,测得原料转化率98.1%,香兰素选择性92.4%、香草酸选择性6.2%。HPLC分析结果如附图1。
实施例2
(1)缩合步骤:称量500g(4mol)愈创木酚、208g(5.2mol)NaOH、832g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至60℃,称量389g(4.8mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;2h后,反应结束,取样测得,原料转化率98.4%,3-甲氧基-4-羟基-苯甲醇选择性91.4%。
(2)氧化步骤:将缩合反应液pH值调节为11.5,然后转移至5L鼓泡釜中,加入48.2gPt/C催化剂(Pt含量1wt%)、1.664g四甲氧基苯醌,氮气置换后,用电加热套升温至50℃,通入流量为4L/min(单位体积反应器内气体通入量为0.8min-1)的氮氧混合气(氧气体积分数为50%),控制反应压力为0KPaG,反应30h后,降温至室温,测得原料转化率99%,香兰素选择性92.5%,香草酸选择性5.8%。
实施例3
(1)缩合步骤:称量500g(4mol)愈创木酚、232g(5.8mol)NaOH、928g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至70℃,称量357g(4.4mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;1h后,反应结束,取样测得,原料转化率99.4%,3-甲氧基-4-羟基-苯甲醇选择性91.2%。
(2)氧化步骤:将缩合反应液pH值调节为11.0,然后转移至5L鼓泡釜中,加入15.1gPt/C催化剂(Pt含量10wt%)、0.3g亚磷酸三戊烯酯,氮气置换后,用电加热套升温至55℃,通入流量为2L/min(单位体积反应器内气体通入量为0.4min-1)的氧气,控制反应压力为650KPaG,反应12h后,降温至室温,测得原料转化率99.5%,香兰素选择性92.3%,香草酸选择性6.01%。
实施例4
(1)缩合步骤:称量500g(4mol)愈创木酚、256g(6.4mol)NaOH、1000g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至50℃,称量422g(4.4mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;0.35h后,反应结束,取样测得,原料转化率98.8%,3-甲氧基-4-羟基-苯甲醇选择性92%。
(2)氧化步骤:将缩合反应液pH值调节为12.0,然后转移至5L鼓泡釜中,加入44.03gPt/C催化剂(Pt含量5wt%)、1.38g N-羟基-四丁基哌啶,氮气置换后,用电加热套升温至50℃,通入流量为1.5L/min(单位体积反应器内气体通入量为0.3min-1)的氮气氧气混合气(氧气体积分数为75%),控制反应压力为250KPaG,反应18h后,降温至室温,测得原料转化率98.4%,香兰素选择性92.1%,香草酸选择性6.5%。
实施例5
(1)缩合步骤:称量500g(4mol)愈创木酚、280g(5mol)KOH、800g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至80℃,称量341g(4.2mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;1.5h后,反应结束,取样测得,原料转化率99.6%,3-甲氧基-4-羟基-苯甲醇选择性92.1%。
(2)氧化步骤:将缩合反应液pH值调节为10.5,然后转移至5L鼓泡釜中,加入27.6gPt/C催化剂(Pt含量1.75wt%)、1.38g亚磷酸三戊烯酯,氮气置换后,用电加热套升温至47.5℃,通入流量为1.0L/min(单位体积反应器内气体通入量为0.2min-1)的氮气氧气混合气(氧气体积分数为35%),控制反应压力为800KPaG,反应24h后,降温至室温,测得原料转化率99.6%,香兰素选择性92%,香草酸选择性7.2%。
实施例6
(1)缩合步骤:称量500g(4mol)愈创木酚、320g(8mol)NaOH、1280g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至40℃,称量454g(5.6mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;0.25h后,反应结束,取样测得,原料转化率99.7%,3-甲氧基-4-羟基-苯甲醇选择性91.4%。
(2)氧化步骤:将缩合反应液pH值调节为10.0,然后转移至5L鼓泡釜中,加入12.8gPt/C催化剂(Pt含量2.5wt%)0.894g N-羟基-四丁基哌啶,氮气置换后,用电加热套升温至62.5℃,通入流量为0.5L/min(单位体积反应器内气体通入量为0.1min-1)的氮气氧气混合气(氧气体积分数为15%),控制反应压力为500KPaG,反应15h后,降温至室温,测得原料转化率98.1%,香兰素选择性91.8%,香草酸选择性8%。
实施例7
(1)缩合步骤:称量500g(4mol)愈创木酚、268.8(4.8mol)gKOH、768g水加入到3L三口烧瓶中,搅拌均匀后,采用恒温控温系统控温至20℃,称量373g(4.6mol)质量分数为37%的甲醛/水溶液,一次性加入到烧瓶中,开始反应;0.75h后,反应结束,取样测得,原料转化率98.8%,3-甲氧基-4-羟基-苯甲醇选择性91.1%。
(2)氧化步骤:将缩合反应液pH值调节为13.0,然后转移至5L鼓泡釜中,加入18.33gPt/C催化剂(Pt含量3.5wt%),1.83g N-羟基-四丁基哌啶,氮气置换后,用电加热套升温至60℃,通入流量为3L/min(单位体积反应器内气体通入量为0.6min-1)的氮气氧气混合气(氧气体积分数为17.5%),控制反应压力为1000KPaG,反应21h后,降温至室温,测得原料转化率98.8%,香兰素选择性91.3%,香草酸选择性5%。
对比例1
参照实施例1方法制备香兰素,不同之处仅在于:步骤(1)中的碱替换为等质量的Na2CO3,其它操作均不变,取样测得,原料转化率65%,3-甲氧基-4-羟基-苯甲醇选择性23%、香草酸选择性65%。
对比例2
参照实施例1方法制备香兰素,不同之处仅在于:步骤(1)中的碱替换为等质量的三乙胺,其它操作均不变,取样测得,原料转化率25%,3-甲氧基-4-羟基-苯甲醇选择性72%、香草酸选择性18%。
对比例3
参照实施例1方法制备香兰素,不同之处仅在于:步骤(2)中,不加入助剂,其它操作均不变,反应结束后取样分析,测得原料转化率40%,香兰素选择性60.06%、香草酸选择性37.2%。
对比例4
参照实施例1方法制备香兰素,不同之处仅在于:步骤(2)中,助剂替换为3-氰基吡啶,其它操作均不变,反应结束后取样分析,测得原料转化率75.8%,香兰素选择性70.2%、香草酸选择性26.9%。
对比例5
参照实施例1方法制备香兰素,不同之处仅在于:步骤(2)中,催化剂替换为氧化锰,其它操作均不变,反应结束后取样分析,测得原料转化率69%,香兰素选择性85%、香草酸选择性10.3%。

Claims (10)

1.一种香兰素的制备方法,其特征在于,步骤包括:
(1)将愈创木酚、甲醛、碱、水混合,发生缩合反应,得到含3-甲氧基-4-羟基-苯甲醇的缩合反应液;
(2)向步骤(1)的缩合反应液中加入铂炭催化剂、助剂,然后通入含氧气体,使3-甲氧基-4-羟基-苯甲醇与发生氧化反应,生成香兰素。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的甲醛与愈创木酚的摩尔比为1.05-1.4:1,优选1.1-1.2:1。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤(1)所述的碱与愈创木酚摩尔比为1.2-2.0:1,优选1.3-1.6:1;
优选地,所述的碱选自氢氧化钠、氢氧化钾,优选为氢氧化钠。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)所述的水用量为愈创木酚质量的1.5-2.6倍,优选1.8-2.2倍;
步骤(1)所述的甲醛为甲醛溶液,优选采用浓度37wt%的甲醛水溶液。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,步骤(1)所述的缩合反应,反应温度为20.0-80.0℃,优选40.0-60.0℃;反应停留时间为0.25-2.0h,优选0.5-1.0h。
6.根据权利要求1-5任一项所述的制备方法,其特征在于,步骤(2)所述的铂炭催化剂用量为步骤(1)的缩合反应液质量的0.5-2.5wt%,优选1.0-1.5wt%;
优选地,所述的铂炭催化剂中Pt含量为1.0-10.0wt%,优选2.5-5.0wt%。
7.根据权利要求1-6任一项所述的制备方法,其特征在于,步骤(2)所述的助剂用量为铂炭催化剂质量的1-10wt%,优选2-5wt%;
所述的助剂选自苯醌类化合物、亚磷酸酯类化合物、哌啶类化合物中的任意一种或至少两种的组合,优选为2,3,5,6-四甲基苯醌、亚磷酸三戊烯酯、四甲氧基苯醌、N-羟基-四丁基哌啶中的任意一种或至少两种的组合,更优选四甲氧基苯醌。
8.根据权利要求1-7任一项所述的制备方法,其特征在于,步骤(2)所述的含氧气体为纯氧气或者含氧混合气体;
优选地,所述含氧气体,其中氧气含量为15.0-100.0%,优选20.0-50.0%,选自空气、氮氧混合气;
优选地,所述的含氧气体采用连续进料方式,单位体积反应器内气体通入量为0.1-0.8min-1,优选0.2-0.4min-1
9.根据权利要求1-8任一项所述的制备方法,其特征在于,步骤(2)所述的氧化反应,反应液的pH值为10.0-14.0,优选11.0-12.0。
10.根据权利要求1-9任一项所述的制备方法,其特征在于,步骤(2)所述的氧化反应,反应温度为45.0-65.0℃,优选50.0-60.0℃;反应时间为12.0-36.0h,优选18.0-24.0h;反应压力为0.0-1000.0KPaG,优选500.0-800.0KpaG;
优选地,所述的氧化反应开始前,系统预先采用氮气置换。
CN202210680455.7A 2022-06-15 2022-06-15 一种香兰素的制备方法 Active CN114988990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210680455.7A CN114988990B (zh) 2022-06-15 2022-06-15 一种香兰素的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210680455.7A CN114988990B (zh) 2022-06-15 2022-06-15 一种香兰素的制备方法

Publications (2)

Publication Number Publication Date
CN114988990A true CN114988990A (zh) 2022-09-02
CN114988990B CN114988990B (zh) 2023-12-19

Family

ID=83035604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210680455.7A Active CN114988990B (zh) 2022-06-15 2022-06-15 一种香兰素的制备方法

Country Status (1)

Country Link
CN (1) CN114988990B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124413A (zh) * 2022-02-18 2022-09-30 山东新和成药业有限公司 一种羟基香茅醇制备羟基香茅醛的方法
CN117209369A (zh) * 2023-09-18 2023-12-12 山东泓瑞医药科技股份公司 香兰素的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040495A (zh) * 2010-11-22 2011-05-04 天津市职业大学 用乙醛酸和愈创木酚一锅合成香兰素的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040495A (zh) * 2010-11-22 2011-05-04 天津市职业大学 用乙醛酸和愈创木酚一锅合成香兰素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. BOLOGNINI等: "Guaiacol hydroxyalkylation with aqueous formaldehyde: role of surface properties of H-mordenites on catalytic performance", 《APPLIED CATALYSIS A: GENERAL》, vol. 272, no. 1, pages 115 - 124, XP004527138, DOI: 10.1016/j.apcata.2004.05.021 *
郭松林;刘文明;: "愈创木酚法合成香兰素研究进展", 萍乡高等专科学校学报, no. 03, pages 20 - 24 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124413A (zh) * 2022-02-18 2022-09-30 山东新和成药业有限公司 一种羟基香茅醇制备羟基香茅醛的方法
CN115124413B (zh) * 2022-02-18 2023-11-28 山东新和成药业有限公司 一种羟基香茅醇制备羟基香茅醛的方法
CN117209369A (zh) * 2023-09-18 2023-12-12 山东泓瑞医药科技股份公司 香兰素的制备方法

Also Published As

Publication number Publication date
CN114988990B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
CN114988990A (zh) 一种香兰素的制备方法
Almeida et al. Ruthenium (II)‐Catalyzed Oppenauer‐Type Oxidation of Secondary Alcohols
US4026950A (en) Process for the preparation of hydroxybenzaldehydes
CN103232327B (zh) 一种苯直接氧化联产苯酚和苯二酚的方法
CN107335454B (zh) 一种负载型Pd3Cl团簇催化剂的制备及其应用
EP3828158A1 (en) Method for preparing benzyl alcohol and homologues by means of catalytic conversion of lower alcohol and catalyst used
CN109415287B (zh) 通过在液相存在下氧化醇制备α,β不饱和醛的方法
Hatakeyama et al. Efficient production of adipic acid from 2-methoxycyclohexanone by aerobic oxidation with a phosphotungstic acid catalyst
Petronilho et al. Ether formation through reductive coupling of ketones or aldehydes catalyzed by a mesoionic carbene iridium complex
Zalomaeva et al. Synthesis of coenzyme Q 0 through divanadium-catalyzed oxidation of 3, 4, 5-trimethoxytoluene with hydrogen peroxide
WO2013023257A1 (pt) Processo catalítico oxidativo para síntese de ácido lático
CN108727161B (zh) 一种苯硼酸高效本位羟基化制备苯酚的方法
RU2186055C2 (ru) Способ получения производных 3-карбокси-4-гидроксибензальдегида, способ получения 4-гидроксибензальдегида, способы получения ванилина и этилванилина
CN101921178B (zh) 一种由甲苯一步羟基化制备甲基苯酚的方法
EP2611763A1 (en) Process for industrial production of 2 -methyl - 1, 4 - naphthaquinone
CN102219679B (zh) Co气相偶联生产草酸酯的方法
CN102649738B (zh) 一氧化碳气相偶联催化反应生产草酸酯的方法
EP1440963B1 (en) Production method of ketone compound
JPH08151346A (ja) ケトマロン酸の製造方法
CN113751072B (zh) 一种二甲醚羰基化制备乙酸甲酯的催化剂及其制备方法和应用
CN116496146B (zh) 一种甲基苯酚及同系物的制备方法
CN114573450B (zh) 一种MnCeOx催化乙酰丙酸制备乙酸的方法
CN112979463B (zh) 一种离子液体催化酯化合成酯的方法
JPH0529381B2 (zh)
Wolfson et al. Aerobic oxidation of benzylic alcohols with solid alkaline metal hydroxides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant