CN114985006B - 一种二维层状催化膜材料及制备方法与应用 - Google Patents

一种二维层状催化膜材料及制备方法与应用 Download PDF

Info

Publication number
CN114985006B
CN114985006B CN202210559994.5A CN202210559994A CN114985006B CN 114985006 B CN114985006 B CN 114985006B CN 202210559994 A CN202210559994 A CN 202210559994A CN 114985006 B CN114985006 B CN 114985006B
Authority
CN
China
Prior art keywords
cofe
pbas
solution
dimensional
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210559994.5A
Other languages
English (en)
Other versions
CN114985006A (zh
Inventor
方齐乐
黎佳鑫
庄斯翔
文武
景晓旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Campus Of Beijing Normal University
Original Assignee
Zhuhai Campus Of Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Campus Of Beijing Normal University filed Critical Zhuhai Campus Of Beijing Normal University
Priority to CN202210559994.5A priority Critical patent/CN114985006B/zh
Publication of CN114985006A publication Critical patent/CN114985006A/zh
Application granted granted Critical
Publication of CN114985006B publication Critical patent/CN114985006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种二维层状催化膜材料及制备方法与应用,二维层状催化膜材料是由CoFe PBAs纳米片配成水溶液,通过气体压滤制备得到。CoFe PBAs纳米片是由1‑4mmol/L的亚铁氰根盐溶液以1‑20mL/min的速度滴加到4mmol/L的钴盐溶液共沉淀;收集固体产物,洗涤、干燥后即得到的。本发明基于氰基配位化合物合成方法简单、可控的特点制备二维钴铁氰基配位化合物纳米片,并组装成自支撑的层状膜进行动态水处理应用,实现对水体抗生素有机污染物的高效动态催化降解。

Description

一种二维层状催化膜材料及制备方法与应用
技术领域
本发明涉及催化材料技术领域,具体涉及一种二维层状催化膜材料及制备方法与应用。
背景技术
高级氧化技术(Advanced oxidation processes,AOPs)是一项基于活性自由基作用以实现对有机污染物完全矿化或部分氧化的水处理技术。因其无需对污染物进行二次处理过程,相较其他水处理技术(吸附、离子交换、纳滤等),AOPs更直接、更彻底、应用前景更广阔。而传统的芬顿氧化技术在处理新兴难降解有机废水过程中,羟基自由基利用率低,导致芬顿矿化过程难以进行;而且传统芬顿过程产生大量铁泥,铁泥作为危废处理,成本非常高。针对于此,基于催化剂材料的非均相催化过程可通过催化剂表面有机物浓缩和界面反应实现活性自由基的高效利用,以达到难降解有机污染物的高效矿化降解;而且绝大部分催化剂可回用。其中过渡金属纳米材料是一类性能优越的异相催化剂,能够有效实现水体有机污染物的催化降解。尤其是二维过渡金属纳米材料,高的长径比和超薄二维片层厚度,使其具有高比表面积和高的活性位点暴露,在异相高级氧化中被认为是极具前景的一类催化剂材料。然而纳米催化剂因高比表面积、高活性导致的团聚问题大大限制了其催化活性和传质过程;此外,水处理应用过程中纳米颗粒难以管控,一旦泄露或排放进入环境,其自身便会引起相应的生态和健康风险,产生二次污染,这也是微纳米催化剂所面临的应用难题。
将纳米催化剂与膜分离技术相结合形成的催化膜,不仅克服了微纳米催化剂的应用难题,而且集成了新的理化优势。与其他维度(零维或一维)纳米材料所不同,二维纳米催化剂具有自身可组装成层状膜的优势。因此,二维层状催化膜一方面避免溶液体系中微纳米颗粒的团聚和管控问题;另一方面,催化膜的运行是一个动态过程,反应底物的输入和反应产物的输出在经过膜前后是一个连续和实时更替的过程,有效避免了溶液体系中出现的催化效率逐渐降低的现象,同时也克服了微纳米催化剂在污染物催化中间产物影响下的钝化问题。因此,对于二维过渡金属层状催化膜的组装,关键在于制备流程简单、结构完整、产率高的超薄二维纳米片层,并能够组装成稳定的二维层状膜。
发明内容
针对上述现有技术,本发明的目的是提供一种二维层状催化膜材料及制备方法与应用。本发明基于氰基配位化合物合成方法简单、可控的特点制备二维钴铁氰基配位化合物纳米片,并组装成自支撑的层状膜进行动态水处理应用,实现对水体抗生素有机污染物的高效动态催化降解。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种CoFe PBAs纳米片的制备方法,包括以下步骤:
(1)分别配制1-4mmol/L的亚铁氰根盐溶液和4mmol/L的钴盐溶液,室温下将亚铁氰根盐溶液以1-20mL/min的速度滴加至持续搅拌的钴盐溶液中,随后静置;
(2)静置结束后,抽滤收集固体产物,并用清水洗涤,干燥后即得到CoFe PBAs纳米片。
优选的,步骤(1)中,所述亚铁氰根盐溶液为亚铁氰化钠溶液或亚铁氰化钾溶液;所述钴盐溶液为硫酸钴溶液、氯化钴溶液或硝酸钴溶液;所述亚铁氰根盐溶液与钴盐溶液的体积比为1:5。
优选的,步骤(1)中,所述亚铁氰根盐溶液的浓度为1mmol/L;所述滴加的速度为5mL/min。
优选的,步骤(1)中,所述静置的时间为10~14h。
优选的,步骤(2)中,所述干燥为60℃下真空干燥36h。
本发明的第二方面,提供上述制备方法制备得到的CoFe PBAs纳米片。
本发明的第三方面,提供CoFe PBAs纳米片在制备自支撑二维层状膜或降解抗生素中的应用。
本发明的第四方面,提供一种自支撑CoFe PBAs二维层状膜,由以下方法制备:将CoFe PBAs纳米片配成水溶液,通过气体压滤得到自支撑CoFe PBAs二维层状膜。
优选的,所述水溶液的浓度为0.8mg/mL。
本发明的第五方面,提供自支撑CoFe PBAs二维层状膜在水处理中的应用。
优选的,所述应用为自支撑CoFe PBAs二维层状膜对水体抗生素有机污染物的降解。
本发明的有益效果:
(1)本发明的制备方法简单且产率高,在室温下便可通过共沉积方法直接制备得到二维片层结构,无需其他添加剂或高温高压等条件。
(2)本发明制备的超薄CoFe PBAs二维片层结构完整、径向尺寸可达几个微米(1~5微米),利于成膜。
(3)本发明制备的CoFe PBAs二维片层上Co和Fe过渡金属均匀分布,使得活性位点充分暴露在二维片层表面。
(4)本发明制备的CoFe PBAs纳米片可直接作为基元体组装成自支撑的层状催化膜进行动态水处理应用。
附图说明
图1:不同亚铁氰根盐浓度下制得CoFe PBAs纳米片的电子扫描图;(a)亚铁氰根盐的浓度为1mmol/L;(b)亚铁氰根盐的浓度为2mmol/L;(c)亚铁氰根盐的浓度为4mmol/L;(d)亚铁氰根盐的浓度为6mmol/L;(e)亚铁氰根盐的浓度为8mmol/L;(f)亚铁氰根盐的浓度为12mmol/L;
图2:不同亚铁氰根盐滴加速度下制得CoFe PBAs纳米片的电子扫描图;(a)亚铁氰根盐滴加速度为1mL/min;(b)亚铁氰根盐滴加速度为5mL/min;(c)亚铁氰根盐滴加速度为10mL/min;(d)亚铁氰根盐滴加速度为20mL/min;
图3:CoFe PBAs纳米片的透射电子扫描及过渡金属元素分布图;(a)CoFe PBAs纳米片的透射电子扫描图;(b)单片CoFe PBAs纳米片的透射电子扫描图;(c)扫描透射图;(d)Fe元素分布图;(e)Co元素分布图;
图4:CoFe PBAs纳米片的XPS图;
图5:CoFe PBAs纳米片对抗生素的去除性能比较;
图6:CoFe PBAs纳米片组装得到的自支撑二维层状膜;
图7:二维层状膜的水处理性能比较;(a)去除率;(b)通量。
图8:垂直流向膜池中处理含抗生素污水的过程示意图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术部分介绍的,现有技术制备过渡金属二维纳米片通常采用牺牲模板法或表面活性剂引导法,前者制备过程复杂、条件严苛(高温高压等),后者需要添加额外的引导剂。此外,现有技术制得的过渡金属纳米片存在结构缺陷或水稳定性较差,无法组装成完整的层状膜在水处理中进行催化膜运行。
基于此,本发明的目的是提供一种二维层状催化膜材料及制备方法与应用。现有技术制备的钴铁氰基配位化合物均为纳米颗粒或纳米球,纳米球因颗粒间作用面小、结合力弱,无法自组装成稳定的薄膜,而二维纳米片基于其高的长径比可实现片层与片层之间的面对面作用,从而组装成自支撑的二维层状膜。所以本发明基于氰基配位化合物合成方法简单、可控的特点,通过共沉淀制备出二维钴铁氰基配位化合物纳米片,并组装成自支撑的层状膜进行动态水处理应用,实现对水体抗生素有机污染物的高效动态催化降解。在制备纳米片的过程中,只有将特定浓度的二价亚铁氰根离子滴加到二价钴离子中,才能形成纳米片。且亚铁氰根盐和钴盐都需要在特定的浓度和滴加速度下才能形成均一且径向尺寸较大的纳米片。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例1
(1)分别配制1mmol/L的亚铁氰化钠溶液100mL和4mmol/L的硫酸钴溶液500mL。在室温(25℃)条件下,通过蠕动泵控速的方法将亚铁氰化钠溶液以5mL/min的速度滴入持续搅拌的硫酸钴溶液中,随后静置12小时。
(2)12小时后,通过真空泵抽滤收集固体产物,并用去离子水清洗3次。将清洗好的固体产物在60度下真空干燥36小时后即可得到CoFe PBAs纳米片材料。
(3)将40mg二维CoFe PBAs纳米片配成50mL水溶液,通过气体压滤装置在1bar
压力下组装制备自支撑的二维层状膜(见图6)。
CoFe PBAs纳米片材料的透射电子扫描及过渡金属元素分布图和XPS图分别见图3和4,CoFe PBAs二维片层上Co和Fe过渡金属均匀分布,使得活性位点充分暴露的二维片层表面。
实施例2
与实施例1的区别在于:亚铁氰化钠的浓度为2mmol/L。
实施例3
与实施例1的区别在于:亚铁氰化钠的浓度为4mmol/L。
实施例4
与实施例1的区别在于:亚铁氰化钠溶液的滴加速度为1mL/min。
实施例5
与实施例1的区别在于:亚铁氰化钠溶液的滴加速度为10mL/min。
实施例6
与实施例1的区别在于:亚铁氰化钠溶液的滴加速度为20mL/min。
对比例1
与实施例1的区别在于:亚铁氰化钠的浓度为6mmol/L,得到的是CoFe PBAs片层与颗粒的混合物,无法得到纯相CoFe PBAs纳米片(见图1),所以无法制备CoFe PBAs二维层状膜。
对比例2
与实施例1的区别在于:亚铁氰化钠的浓度为8mmol/L,得到的是CoFe PBAs无规则颗粒,无法得到CoFe PBAs纳米片(见图1),所以无法制备CoFe PBAs二维层状膜。
对比例3
与实施例1的区别在于:亚铁氰化钠的浓度为12mmol/L,得到的是CoFe PBAs颗粒,无法得到CoFe PBAs纳米片(见图1),所以无法制备CoFe PBAs二维层状膜。
对比例4
按照申请号201710300143.8磁性纳米催化剂CoFe-PBAs@rGO催化Oxone降解有机燃料废水的方法中实施例2的方法制备CoFe-PBAs纳米球:
(1)在常温常压下,将40mL含2mmoL K3[Fe(CN)6]的水溶液滴加到40mL含3mmoLCoCl2·H2O和1.2gPVP的水溶液中,搅拌24h后离心收集沉淀,用无水乙醇和去离子水各洗涤3次,然后在烘箱中于60℃烘干,得到普鲁士蓝类配合物Co3[Fe(CN)6]2,呈小球形,粒径为20nm左右,并且颗粒堆积在一起。
(2)将40mg CoFe PBAs纳米球配成50mL水溶液,通过气体压滤装置无法制备自支撑的二维层状膜。
由图1不同前驱体浓度下制得CoFe PBAs纳米片的电子扫描图可以看出,前驱体Fe(CN)6 4-的浓度在(1~4)mmol/L时才能形成CoFe PBAs纳米片,超过4mmol/L则无法形成二维的片层;低于1mmol/L则金属离子利用率与产率太低。
Co2+与Fe(CN)6 4-的比例决定最后的二维层状催化膜性能,以Co2+(4mmol/L)浓度不变为例,Fe(CN)6 4-浓度从1mmol/L增加到4mmol/L,催化膜性能(通量和去除率)依次降低,因此4mmol/L的Co2+与1mmol/L的Fe(CN)6 4-为最佳配比,在此配比下制备的纳米片结构完整、径向尺寸可达几个微米(1~5微米),利于成膜。
由图2不同前驱体滴加速度下制得CoFe PBAs纳米片的电子扫描图可以看出,Fe(CN)6 4-溶液滴加到Co2+溶液中的速度从1mL/min增加到20mL/min,在5mL/min下制得的二维片层最均一且径向尺寸较大;而低速(1mL/min)和高速(10,20mL/min)条件下制得的产物均匀性较差,且径向尺寸相对较小。
应用例1
(1)分别将40mg实施例1~3制备的CoFe PBA纳米片加入到400mL、10mg/L的诺氟沙星抗生素溶液中,并在25℃下磁力搅拌30min。
(2)在上述混合溶液中添加20mg过硫酸氢钾作为氧化剂,实施例1制备的CoFe PBA纳米片可在10min内实现抗生素污染物接近100%的去除。
应用例2
(1)将实施例1~3制备好的CoFe PBA二维层状膜装载在连续运行的垂直流向膜池中(见图8)。空白对照为不添加CoFe PBA二维层状膜下的运行结果。
(2)通过蠕动泵将含有5mg/L浓度诺氟沙星和50mg/L浓度过硫酸氢钾的混合溶液以0.3bar压力输送进入膜池。
(3)经过CoFe PBA二维层状膜的连续动态催化便可实现对诺氟沙星的瞬时催化去除(见图7a)。
说明本发明制备的CoFe PBA二维层状膜可广泛用于工业和生活污水中抗生素的去除。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (5)

1. 一种CoFe PBAs纳米片的制备方法,其特征在于,包括以下步骤:
(1)将浓度为1mmol/L的亚铁氰根盐溶液在室温下,以5mL/min的速度滴加至持续搅拌的4 mmol/L的钴盐溶液中,随后静置;所述亚铁氰根盐溶液为亚铁氰化钠溶液或亚铁氰化钾溶液;所述钴盐溶液为硫酸钴溶液、氯化钴溶液或硝酸钴溶液;所述亚铁氰根盐溶液与钴盐溶液的体积比为1:5;所述静置的时间为10~14h;
(2)静置结束后,收集固体产物,洗涤、干燥后即得到CoFe PBAs纳米片;所述洗涤为用清水洗涤3次,所述干燥为60℃下真空干燥36h。
2.权利要求1所述的制备方法制备得到的CoFe PBAs纳米片,所述CoFe PBAs纳米片的尺寸为1~5微米。
3.权利要求2所述的CoFe PBAs纳米片在制备自支撑二维层状膜或降解抗生素中的应用。
4.一种自支撑CoFe PBAs二维层状膜,其特征在于,由以下方法制备:将权利要求2所述的CoFe PBAs纳米片配成水溶液,通过气体压滤得到自支撑CoFe PBAs二维层状膜;所述水溶液的浓度为0.8mg/mL。
5.权利要求4所述的自支撑CoFe PBAs二维层状膜在水处理中的应用。
CN202210559994.5A 2022-05-23 2022-05-23 一种二维层状催化膜材料及制备方法与应用 Active CN114985006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210559994.5A CN114985006B (zh) 2022-05-23 2022-05-23 一种二维层状催化膜材料及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210559994.5A CN114985006B (zh) 2022-05-23 2022-05-23 一种二维层状催化膜材料及制备方法与应用

Publications (2)

Publication Number Publication Date
CN114985006A CN114985006A (zh) 2022-09-02
CN114985006B true CN114985006B (zh) 2023-11-14

Family

ID=83026360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210559994.5A Active CN114985006B (zh) 2022-05-23 2022-05-23 一种二维层状催化膜材料及制备方法与应用

Country Status (1)

Country Link
CN (1) CN114985006B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116747832A (zh) * 2023-08-07 2023-09-15 北京师范大学珠海校区 一种二维镧基吸附膜及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967207A (zh) * 2016-05-10 2016-09-28 北京化工大学 一种以水滑石为模板构建无基底连接二维普鲁士蓝类化合物纳米片的方法
CN106966459A (zh) * 2017-05-02 2017-07-21 河南师范大学 磁性纳米催化剂CoFe‑PBAs@rGO催化Oxone降解有机染料废水的方法
AU2019101135A4 (en) * 2019-09-30 2019-10-31 Huang, Zhengnong MR Synthesis of Mn/Fe Prussian Blue Analogues and Investigation on Its Catalytic Activity
CN110735147A (zh) * 2019-09-10 2020-01-31 复旦大学 一种普鲁士蓝类似物纳米片阵列材料及其电解水应用
CN113385237A (zh) * 2020-03-12 2021-09-14 兰州大学 快速活化pms的复合催化膜、其制备方法及其应用和处理有机废水的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967207A (zh) * 2016-05-10 2016-09-28 北京化工大学 一种以水滑石为模板构建无基底连接二维普鲁士蓝类化合物纳米片的方法
CN106966459A (zh) * 2017-05-02 2017-07-21 河南师范大学 磁性纳米催化剂CoFe‑PBAs@rGO催化Oxone降解有机染料废水的方法
CN110735147A (zh) * 2019-09-10 2020-01-31 复旦大学 一种普鲁士蓝类似物纳米片阵列材料及其电解水应用
AU2019101135A4 (en) * 2019-09-30 2019-10-31 Huang, Zhengnong MR Synthesis of Mn/Fe Prussian Blue Analogues and Investigation on Its Catalytic Activity
CN113385237A (zh) * 2020-03-12 2021-09-14 兰州大学 快速活化pms的复合催化膜、其制备方法及其应用和处理有机废水的方法

Also Published As

Publication number Publication date
CN114985006A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
Yu et al. Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr (VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method
Chen et al. Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be (II) from Be (NH2) 2 complexing solutions
CN108706573B (zh) 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Zhang et al. Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr (VI)-polluted water
Ma et al. Research progress of magnetic bismuth-based materials in photocatalysis: A review
Zhang et al. ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation
CN103464091A (zh) 一种改性膨润土负载纳米铁材料及其制备方法
Gao et al. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr (VI) reduction
Li et al. Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation
CN109499603B (zh) 用于活化过硫酸盐的Co3O4/三维氮掺杂石墨烯水凝胶催化剂及其制备和使用方法
CN103349916B (zh) 功能性纳米零价铁/聚合物复合膜的原位制备方法
CN114985006B (zh) 一种二维层状催化膜材料及制备方法与应用
CN114057279A (zh) 一种利用水热炭来加速铁循环以促进催化降解有机污染物的方法
Wang et al. Fabrication of SnWO 4/ZnFe-layered double hydroxide composites with enhanced photocatalytic degradation of methyl orange
CN115337964B (zh) 一种钴铁改性zif-8复合材料及其制备方法与应用
CN110064407A (zh) 一种基于锌锰铁氧体负载纳米硫化铜的生物制备方法
Tu et al. Photocatalytic self-cleaning graphene oxide membrane coupled with carbon nitride and Ti3C2-Mxene for enhanced wastewater purification
Huang et al. Highly polymerized linear polyimide/H3PW12O40 photocatalyst with full visible light region absorption
CN111203245B (zh) 一种高效降解环丙沙星的复合光催化剂及其制备方法和应用
Zhang et al. Construction lamellar BaFe12O19/Bi3. 64Mo0. 36O6. 55 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Mo6+/Mo4+ redox cycle
CN103599806A (zh) 一种用于合成芳香醛化学品的光催化剂及其制备方法
CN106964365B (zh) 一种高分散性磁分离还原氧化石墨烯/四氧化三铁/纳米银层级结构材料、制备方法和应用
Lu et al. Preparation and characterization of BiOBr/CuFe2O4 composite catalyst and constitute photo-Fenton system for degradation of polyacrylamide under visible light
Shi et al. Fabrication of Bi/BiPMo12O40 composite with enhanced photocatalytic activities for Cr (VI) reduction and tetracycline degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant